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Abstract—Augmented reality aims to mix real-world visual
content with virtual objects. Achieving realistic results involves
solving challenging computer vision tasks, such as tracking real
3D objects and estimating the illumination conditions of a scene.
In this short paper, we present how these two challenging tasks
can be solved robustly and accurately with deep learning. In both
cases, deep convolutional neural networks are trained on large
amounts of data, and achieve state-of-the-art results.

Index Terms—deep learning, augmented reality, tracking,
lighting estimation

I. INTRODUCTION

Augmented reality (AR) aims to mix real-world visual
content (photos, movies, etc.) with virtual objects. While doing
so has so far been confined to the realm of visual effects artists,
AR is now on the verge of becoming part of our everyday lives.
Indeed, due in most part to recent progress in SLAM-based
camera localization techniques which can robustly position a
camera in an unknown 3D environment, devices supporting
various forms of AR are now commercially available and are
paving the way to a wide range of applications. Unfortunately,
the results obtained from these devices are a long distance
away from matching the high degree of realism attained
by special effects artists, who routinely fool audiences into
thinking that computer-generated objects are real.

The key to achieving realism when compositing (mixing)
virtual with real content is that the virtual object must share
the same characteristics as the real world. Let us illustrate this
idea with the example of placing a virtual apple onto a real
plate. First, the apple must be stay on the plate irrespective of
the user point of view. Second, if the user moves the plate,
then the apple must respond to that movement accordingly (by
following the plate, or, depending on the user skills, by falling
from it!). Third, the apple must be lit in the same way as its
real surroundings to realistically blend in.

All three problems involve solving three challenging com-
puter vision problems: 1) camera localization, 2) object track-
ing, and 3) illumination estimation. While robust solutions
exist for the first, the other two are still very much open
research problems. In this short paper, we will briefly present
how these two challenging tasks can be solved robustly and
accurately with the use of deep learning [1].

II. LEARNING TO TRACK OBJECTS IN 3D
We present an accurate, real-time temporal 6-degrees of

freedom (DOF) object tracking method which is more robust
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Fig. 1. Tracking objects in real-time with deep learning. Left: input image,
right: 3D model overlaid on the object.

to occlusions than existing state-of-the-art algorithms. Our
main key contribution is to frame 6-DOF tracking as a deep
learning problem. This contribution provides us with three
key benefits. First, deep learning architectures can be trained
on very large amounts of data, so they can be robust to
a wide variety of capture conditions such as color shifts,
illumination changes, motion blur, and occlusions. Second,
they possess very efficient GPU implementations that can
be processed in real-time on mobile GPUs given a small
enough network. Finally, and perhaps most importantly, no
hand-designed features need to be computed: object-specific
features can automatically be learned from data. This is in
contrast to most previous work (e.g. [2], [3]) which compute
specific, hand-designed features.

Applying a deep convolutional neural network (CNN) to
tracking is not trivial. Indeed, temporal tracking differs from
tracking by detection in that the temporal tracker uses two
frames (images) adjacent in time, and assumes knowledge
of the object pose at the previous frame. To train a deep
network on that task, one could straightforwardly use the
current and previous frames directly as input. Unfortunately,
while doing so yields low prediction errors on a “conventional”
machine learning test set (composed of pairs of frames as
input and rigid pose change as target), it completely fails
to track in sequences of multiple frames. Indeed, since the
network never learned to correct itself, small errors accumulate



Fig. 2. Our method learns a direct mapping from image appearance to scene lighting from large amounts of real image data; it does not require any additional
scene information, and can even recover light sources that are not visible in the photograph, as shown in these examples. Using our lighting estimates, virtual
objects can be realistically relit and composited into photographs.

rapidly and tracking is lost in a matter of milliseconds. Another
solution could be to provide the previous estimate of the pose
change instead of the previous frame as input to the network.
In this case, this information alone is not rich enough to
enable the network to learn robust high level representations,
also yielding high tracking errors. To solve this problem, we
propose to use an estimate of the object pose from the previous
timestep in the sequence as input to the network, in addition
to the current frame. This allows the network to correct errors
made in closed loop tracking. The feedback, which is the
estimate of the current object pose, is obtained by rendering
a synthetic frame of the tracked object. Thus, our approach
requires a 3D model of the object a priori, and the tracker is
trained for a specific object. To the best of our knowledge, we
are the first to use deep learning for 6-DOF temporal object
tracking.

In a nutshell, our deep neural network accepts two inputs:
an image of the object rendered at its predicted position
(from the previous timestamp in the video sequence), and
an image of the observed object at the current timestamp.
The network directly outputs the 6 degrees of freedom (3 for
translation, 3 for rotation in Euler angles) representing the pose
change between the two inputs. To train the network, we rely
on a dataset of synthetically-generated images of the object,
obtained from its 3D model. When evaluated on a large dataset
of real objects, we find our approach is more stable (0.4 mm
movement per frame in a static video vs. 1.2 mm for [2]), more
robust under significant occlusions (12.5 mm average error at
45% occlusion vs. 138 mm for [2]), and more accurate at large
object speed (3.6◦ average error vs. 8.1◦ for [2]), see tab. I
for more details. Fig. 1 shows a qualitative example of our
tracker in action. More details about this work can be found
in [4], [5].

III. LEARNING TO ESTIMATE LIGHTING

Inferring scene illumination from a single photograph is
a challenging problem. The pixel intensities observed in an
image are a complex function of scene geometry, materials
properties, illumination, the imaging device, and subsequent
post-processing. Disentangling one of these factors from an-
other is an ill-posed inverse problem. This is especially hard
from a single limited field-of-view image, since many of the
factors that contribute to the scene illumination are not even di-

Method Stability 45% occlusion Fast speed
t (mm) r (◦) t (mm) r (◦) t (mm) r (◦)

Ours 0.56 0.52 12.5 10.0 11.1 3.6
[2] 1.20 1.30 138 70.3 10.7 8.1

TABLE I
QUANTITATIVE PERFORMANCE OF OUR TRACKER, COMPARED TO

PREVIOUS WORK [2]. OUR METHOD ACHIEVES SUPERIOR TRANSLATION
(T) AND ROTATION (R) MEAN ERROR, IN TERMS OF STABILITY,

OCCLUSION, AND FAST OBJECT MOTION.

rectly observed in the photo (fig. 2). This problem is typically
addressed in two ways: first, by assuming that scene geometry
(and/or reflectance properties) is given (either measured using
depth sensors, reconstructed using other methods, or annotated
by a user), and second, by imposing strong low-dimensional
models on the lighting.

In this work, we propose a method to infer high dynamic
range (HDR) illumination from a single, limited field-of-
view, low dynamic range (LDR) photograph of an indoor
scene. Our goal is to be able to model the range of typical
indoor light sources, and choose a spherical environment
map representation that is often used to represent real-world
illumination [6]. We also want to make this inference robust to
errors in geometry, surface reflectance, and scene appearance
models. To this end, we introduce an end-to-end learning based
approach, that takes images as input and predicts illumination
using a deep neural network.

We use a convolutional neural network that takes the photo
as input, produces a low-dimensional encoding of the input
through a series of convolutions downstream and splits into
two upstream expansions, with two distinct tasks: (1) light
intensity estimation, and (2) RGB panorama prediction. To
train the network, we rely on a large dataset of panoramas [7].
Given a panorama, we extract a regular image assuming a
perspective camera model with randomly-sampled parameters,
and use it as input to the neural network.

We evaluate our technique through a user study, in which
participants were asked to choose which of two images was
the most realistic: the image containing a virtual object relit
with 1) the ground truth illumination, and 2) the estimated
illumination conditions. The results indicate that renderings
obtained with our estimated illumination were considered as



or more realistic than the ground truth result in 41.8% of
the responses, which is a significant improvement over the
previous work that reached, at most, a performance of 27.7%.
More details about this work, as well as variants that are
adapted to outdoor lighting, can be found in [8]–[10].

IV. DISCUSSION

In this paper, we presented techniques which rely on deep
learning to solve two challenging computer vision problems,
namely 6-DOF object tracking and illumination estimation. In
both cases, deep convolutional neural networks are trained on
large amounts of data, and achieve state-of-the-art results. We
believe that such solutions should enable much more realistic
AR applications, which will be able to adapt to rapid scene
changes and to challenging illumination conditions.

ACKNOWLEDGEMENTS

The author wishes to thank his students (Mathieu Garon,
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Sunkavalli, Sunil Hadap, Emiliano Gambaretto, Ersin Yumer,
and Xiaohui Shen) who have all contributed to this work.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[2] D. J. Tan, F. Tombari, S. Ilic, and N. Navab, “A versatile learning-based
3D temporal tracker: Scalable, robust, online,” in IEEE International
Conference on Computer Vision, 2015.

[3] D. J. Tan, N. Navab, and F. Tombari, “Looking beyond the simple
scenarios: Combining learners and optimizers in 3D temporal tracking,”
IEEE transactions on visualization and computer graphics, vol. 23,
no. 11, pp. 2399–2409, 2017.

[4] M. Garon and J.-F. Lalonde, “Deep 6-DOF tracking,” IEEE Transactions
on Computer Graphics and Visualization, vol. 23, no. 11, 2017.

[5] M. Garon, D. Laurendeau, and J.-F. Lalonde, “A framework for eval-
uating 6-DOF object trackers,” in European Conference on Computer
Vision (ECCV), 2018.

[6] P. Debevec, “Rendering synthetic objects into real scenes : Bridging
traditional and image-based graphics with global illumination and high
dynamic range photography,” in Proceedings of ACM SIGGRAPH, 1998.

[7] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, “Recognizing scene
viewpoint using panoramic place representation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2012.

[8] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto,
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