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Abstract

In this paper, we consider the problem of the dynamic processing of large amounts
of sparse three-dimensional data. It is assumed that computations are performed in a
neighborhood defined around each point in order to retrieve local properties. This gen-
eral kind of processing can be applied to a wide variety of applications. We propose a
new, efficient data structure and corresponding algorithm that significantly improve the
speed of the range search operation and that are suitable for on-line operation, where
data is accumulated dynamically. The method relies on taking advantage of overlap-
ping neighborhoods and the reuse of previously computed data as the algorithm scans
each data point. To demonstrate the dynamic capabilities of the data structure, we use
data obtained from a laser radar mounted on a ground mobile robot operating in com-
plex, outdoor environments. We show that this approach considerably improves the
speed of an established 3-D perception processing algorithm.

Prepared through collaborative participation in the Robotics Consortium sponsored
by the U.S Army Research Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-209912.

Thesis supervisor: Prof. Martial Hebert
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1 Introduction

The problem of processing large amounts of dynamic, sparse three-dimensional data
is very challenging because computations must keep up with the continuous flow of
data coming in at a high rate. Traditional algorithms and data structures designed for
batch processing are inadequate in that particular setting because they cannot handle
dynamic data efficiently.

An example of such situation arises in the domain of perception for ground mobile
robots. Recent advances in sensor design have enabled the use of laser radars (or ladars)
to improve the three-dimensional (3-D) perception capabilities of outdoor robots [18,
4]. These sensors provide up to one hundred thousand 3-D points per second, with
range resolution on the order of one centimeter. For example, Figure1 shows a typical
3-D point cloud obtained from a ladar sensor1. As the input data rate increases, it is
critical to design data structures that can efficiently store large amounts of data and
quickly perform basic operations such as insertion, memory access, and range search.

Figure 1: Example of raw 3-D point cloud from a ladar. The points are color-coded
by elevation, from blue (low) to red (high), and are enlarged for clarity. This dataset is
made of 259,528 points.

In this paper, we present a new approach for handling 3-D data for processing of
dynamic data. The data processing we are concerned with are local methods, where for
a given point, some operations are performed using a support volume centered around
that particular point. The core of the approach is to minimize computation by re-using
previously computed intermediate results. The approach is demonstrated with data
from a ground mobile robot, the Demo III XUV [2], for ladar-based terrain classifica-
tion [19]. Instead of using different data structures for different types of terrain, the
approach presented in this paperautomatically adaptsto the environment by analyzing
the local distribution around each point. We review the method, previously introduced

1The figures in this paper are best viewed in color.
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in [9], that was suitable only for static data, extend the approach to handle dynamic
data, and present results obtained by performing live experiments that simulate the
conditions on-board the robot.

The remainder of the paper is divided as follows. First, Section2 presents related
work, mainly in robotics and efficient data structures. Then, Section3 presents the
generic category of 3-D processing methods suitable to our method, which is then pre-
sented in details in Section4. We then present the implementation details in Section5,
followed by experiments on static and dynamic data in Section6.

2 Related work

In this section, we review related work in efficient data structures as well as in ground
mobile robotics.

2.1 Data structures

Traditional pre-computed tree-based data structures (Kd-tree, range tree) are efficient
for performing range search. Unfortunately, because there is a large processing over-
head due to their initialization, their performance rapidly degrades as additional data
is inserted after construction [15]. In [11], Lersch presents a data structure for struc-
tural segmentation of 3-D point-cloud data, called the windowed priority queue. The
approach focuses on the indexing of the data for fast retrieval. The computation per-
formed is similar to the one used in our work [19] but it is performed off-line. Approx-
imate search is sometimes proposed, but it is not considered here because we aim to
obtain exact results.

Gao proposes an interesting work on efficient proximity search in 3-D for kinetic
data [6]. The author extends Voronoi diagram and Delaunay triangulation to an envi-
ronment made of 3-D voxels. A simple example is provided. However, it is unclear
how this can be scaled efficiently to handle higher point density.

Machine learning and statistical methods require efficient data structures for nearest
neighbor search, range search, regression or kernel operations [12, 7]. However, most
of the attention is focused on high dimensional data sets rather than dynamic data sets
of low dimensionality.

2.2 Robotics

Three-dimensional data has been extensively used for outdoor robot navigation, using
stereo cameras or laser radars. If the obstacles are expected to lie on the ground (in
desert or planetary environments, for example), one common approach is to create
a 2D grid of the terrain that stores projected classification results in each cell. The
processing can take place in the sensor reference frame (range image) and the results
are then back-projected in that 2D grid. An alternative is to create an intermediate
digital elevation map by projecting the 3-D data into a 2D-1/2 map and then doing
some processing, convolving a robot model with the terrain for example [18]. In both
cases, processing is not performed in 3-D.
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If the terrain contains vegetation such as trees, grass or bushes, the previous ap-
proach is not sufficient. A full 3-D representation is necessary to represent the envi-
ronment and to produce a better and higher level of scene interpretation. One such
approach has been demonstrated for vegetation detection and ground surface recovery
in [8, 4]. In both cases, a dense 3-D grid representation of the environment is main-
tained around the robot and scrolled as it moves. A ray tracing algorithm updates each
voxel by counting the number of times it has been traversed by or stopped a laser ray.
Such statistics are then used to determine if the voxel is likely to be the load bearing
surface or vegetation. The data processing requires data insertion and retrieval, but no
range search.

Similarly, 3-D occupancy grid approaches create a voxelized 3-D model by per-
forming insertion and access but are not optimized for range search [14]. Operations
in 3-D can sometimes be reduced to 2-D operations as shown in [13] for natural envi-
ronment navigation in specific cases. Unfortunately, in general, we cannot follow such
an approach.

3 Nature of the computation

The focus of the analysis is directed toward a generic category of 3-D processing meth-
ods that possess similar characteristics. In this section, we first present these character-
istics, show examples of techniques that possess such attributes, then discuss important
aspects related to dynamic processing.

3.1 Admissible conditions

The computations performed belong to a general class of processing methods that re-
quire the retrieval and the use of the data within a support volume around a point of
interest. To help formalize the problem, a specific notation is introduced:

• PCD = {p1, p2, ..., pm}: point cloud data, a set ofm unorganized 3-D points;

• pk = (xk, yk, zk): a 3-D point inPCD;

• N(pi, s): the set of points around a given pointpi, within a volume of radius
(also referred to asscale) s, such that‖ pi − pk ‖∞≤ s with i 6= k;

• F (N(pi, s)): a function over the neighborhood points.

An admissible 3-D processing technique must define the functionF (N(pi, s)),
with constants.

In addition, the approach proposed in Section4 is suitable for voxelized data only,
that is 3-D data that has been binned into discrete containers (the 3-D analogy to pix-
els). Voxels are used to reduce the amount of memory needed to store the data and
to simplify computations. The local support volume is therefore defined in number of
voxels around a voxel of interest.



4 3 NATURE OF THE COMPUTATION

3.2 Examples

Many well-known 3-D processing techniques obey the conditions presented in the pre-
vious section. We now present four of them, along with their correspondingF , and
show in Section5.3how they can each be implemented within our framework.

1. Possibly the simplest computation would be to simply recover the number of
neighbors within a support region. Using the notation previously introduced,
this is represented byF1(N(pi, s)) = |N(pi, s)|.

2. A slightly more complex procedure would be the retrieval of the neighboring
points themselves. This requires the knowledge of each of thepk individually.
F2 is represented by the set of points{pk} such thatpk ∈ N(pi, s).

3. One popular processing technique is the extraction of the principal components
of a region by Principal Components Analysis (PCA). This requires the compu-
tation of the local covariance matrix and the extraction of its eigenvectors and
corresponding eigenvalues. We can represent this by

F3(N(pi, s)) =
∑

p∈N(pi,s)

(p− p̄)T (p− p̄) (1)

wherep̄ = 1
|N(pi,s)|

∑
p∈N(pi,s)

p.

4. A final example is kernel density estimation [3], which can also be used in 3-D
data processing (see [17] for instance). Its local neighborhood function is given
by

F4(N(pi, s)) =
1

|N(pi, s)|hθ

∑
p∈N(pi,s)

κ

(
pT

i θ − p

hθ

)
(2)

with κ a kernel function scaled to the bandwidthhθ, and θ is a direction in
R3. The optimization then consists in finding the directionθ that maximizes
Equation2.

3.3 Dynamic aspects

We also restrict our analysis to dynamic data that is produced sequentially by a single
source (a mobile sensor, for example). As we mentioned in Section2.1, traditional
efficient data structures are ill-suited for this kind of data, because the bounds are un-
known a priori, and might grow as more data is inserted in the data structure. Figure2
shows an example of data accumulated from a ladar sensor placed on a ground mobile
robot. Since the data boundaries might grow arbitrarily large, it will be assumed that
the dynamic data comes from a single source that is moving in an environment, and that
we are interested in performing local point-wise computations on a restricted volume
that is following the sensor as it moves. As the sensor moves, the data is assumed to be
co-registered in a common reference frame.
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(a) (b) (c)

Figure 2: Top-down view of an example of dynamic data, as it is accumulated from a
robot driving through the woods. Snapshots of the data are shown at (a)t = 2.5 s, (b)
t = 12.5 s and (c)t = 25 s. The raw data is color-coded by elevation, from blue (low)
to red (high).

4 Approach

In this section, we first present the general idea used to increase the processing speed
of the general class of techniques presented in the previous section. We then compare
various approaches that exploit this idea.

4.1 General principle

The approach draws its inspiration from the 2-D image processing domain. Real-time
area-based correlation stereo algorithms take advantage of the overlap in computations
and reuse previously-computed data to achieve greater execution speed. For example,
in [5], Faugeras et al. decompose the zero mean normalized correlation score into par-
tial sums, and add/remove only columns contribution as the epipolar line is scanned. A
similar approach is used to handle change of line by removing/adding line contribution
at the image borders. We apply the same principle to a voxel representation in 3-D.

However, there are two fundamental differences between the 2-D and 3-D cases
that justify the need for a novel approach. First, in stereo, correlation is performed
along the epipolar line, resulting in a unidirectional scanning. However, many differ-
ent strategies exist to scan the 3-D space (obtained by permuting the order of axes).
Figure3 illustrates two examples. Second and most importantly, 3-D data is usually
very sparse, that is, a large number of voxels are empty. In fact, it is estimated that the
percentage of occupied voxels varies between 2 % and 12 % for voxel sizes of 10 cm to
1 m of edge length respectively. This contrasts with images in which each pixel contain
information that can easily be retrieved in a subsequent step.

First, we introduce some notation. Given a volumeV subdivided into voxels, let:

• n = nx × ny × nz the total number of voxels in the volume;

• v be the number of occupied (non-empty) voxels in the volume;
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Figure 3: 2 possible scanning strategies in 3-D

• k = (2r + 1) the neighborhood size (for range search), wherer is the radius,
in number of voxels. The neighborhood (also referred to assupport region) is
rectangular as opposed to spherical.

We derive the following equations to compute the number of voxels that need to
be visited for range search computation. To simplify the expressions, we do not take
into account the differences that may arise at the boundaries of the volume: for a large
volume, they are assumed to be negligible. We also assume that the support region is
isotropic, that is,k is equal in each dimension.

4.2 Direct computation approach

Typical implementations usually rely on an exhaustive approach that visit everyk3

voxels in every neighborhood each time (see [19] for example), without data reuse.
By assuming that the occupied voxels can be retrieved directly (in a lookup table, for
example), the total number of visited voxels is simply

tdirect = vk3 (3)

This method takes advantage of the sparseness of the data: only occupied voxels
are visited. A suitable data structure for this approach is a sparse voxel representation,
where only the occupied voxels are stored, and accessed via a hash table [19]. However,
on the dense regions, much of the computations are repeated many times because of
overlapping neighborhoods.

4.3 Naive approach

A naive approach would be to act as if the volume was densely populated, that is, to
scan the whole volume in an ordered way while executing neighborhood computation
for every voxel, even the empty ones. This is the direct translation of the 2-D approach
for dense correlation using 3-D data, see Figure4 for a graphical example.

An appropriate data structure is the dense voxel representation, in which memory
space is reserved for each voxel of the volume at the beginning. The drawback of this



4.4 Optimized scan approach 7

x

y

Figure 4: Illustration of naive approach in 2-D. Each square is a voxel, and dots indicate
occupied voxels. The shaded area represents the local support region defined for the
leftmost occupied voxel (dotted). The dashed outline is the support region of the middle
voxel, computed even though the voxel contains no data.

choice is that memory usage is mostly inefficient, thus limiting the volume of interest.
However, it allows the efficient and ordered traversal of the volume.

Since it re-uses previously-computed data and recomputes neighborhood slices
each time, the number of visited voxels at each step is2k2. Since it is done over
the whole volume,n = v, the total number of visited voxel is

tnaive = 2nk2

This method does not take advantage of the sparseness of the data, and must scan
the whole volume each time. The condition fortnaive to be less thantdirect is :

tnaive < tdirect : 2nk2 < vk3

v

n
>

2
k

(4)

If k = 9, thenv/n > 0.23. At least 23% of the voxels in the volume must be valid
for the naive method to be faster than the exhaustive one. As our experimental results
show (Section6), thev/n ratio tends to be very low, typically under 2%, justifying the
need for a better approach.

4.4 Optimized scan approach

This method takes advantage of the dense regions in the volume, but also avoids un-
necessary loops over large portions of empty space. The principle is the same as in
Section4.3, but the computations are done only on the occupied voxels. Therefore,
this algorithm will need to find theprevious occupied voxeland determine if it is close
enough. This concept is related to the volume traversal order because it directly de-
pends on the scanning direction.

Since this approach requires the voxels to be scanned in predetermined order, let
d be the distance (in number of voxels) between the current voxel and the previous
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occupied voxel in the volume, along the scanning direction.d is a random variable,
with an unknown distribution that depends only on the data.

We note that reusing data implies that2dk2 voxels must be visited (instead ofk3

otherwise). Therefore,

2dk2 < k3 =⇒ d <
k

2
(5)

which is the criterion that indicates if previous data should be reused. Figure5
illustrates the situation in 2-D. In this example,d = 2 so the two rightmost columns
are added to the neighborhood of the voxel at(2, 2), and the two leftmost columns are
subtracted. In total, 20 voxels (instead of 25) must be visited.

x

y

d

Figure 5: Illustration of data reuse with sparse 2-D data withk = 5. Each square
is a voxel, and dots indicate occupied voxels. The shaded area represents the local
support area defined for the leftmost occupied voxel (dotted). The outlined area is the
support area of same dimensions for the other occupied voxel. This approach takes
advantage of the overlap (3 central columns) in the support areas. As opposed to the
naive approach (c.f. Section4.3), this approach performs range search only at voxels
that contain data.

Since the number of visited voxels depends ond, its expected value is used in the
analysis to derive an expected bound. We defined̄ as the expected value ofd over the
voxels for whichd < k

2 :

d̄ =
b k

2 c∑
i=1

i
P (d = i)
P (d < k

2 )

toptimized is then computed as the expected number of visited voxels:

toptimized = v

(
2d̄k2P [d <

k

2
] + k3P [d ≥ k

2
]
)

+ n

= v

(
2d̄k2P [d <

k

2
] + k3(1− P [d <

k

2
])

)
+ n

= v

(
(2d̄k2 − k3)P [d <

k

2
] + k3

)
+ n

(6)
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The condition fortoptimized to require less operations thantdirect becomes:

vk3 > v

(
(2d̄k2 − k3)P [d <

k

2
] + k3

)
+ n

v

n
>

1(
k3 − 2d̄k2

)
P [d < k

2 ]
(7)

In the worst case,P [d < k
2 ] = 0, Equation6 becomestoptimized = vk3 +n, which

is equivalent totoptimized = tdirect + n. The only difference with the exhaustive
method is the need to visit each voxel in the volume.

As shown in Section6.2.1, Equation7 is a lower limit on which we can guarantee
a lower number of visited voxels, which in turns results in a decrease in computation
time.

5 Implementation

The approach described in the previous section derives bounds on the expected number
of visited voxels for different range search techniques. We now describe the algorithm
itself, and the corresponding data structure implemented to test it. We also show im-
plementation ideas for the examples presented in Section3.2, and finally introduce the
application used to evaluate the algorithm on real data.

5.1 Algorithm

The proposed algorithm implementing the approach described in Section4.4 is illus-
trated in pseudo-code by Algorithm1. The algorithm automatically determines in what
direction it should look for re-usable data.

Depending on the type of processing used in a particular application, thenp, sp, sc

andnc from Algorithm1 are defined differently (see Section5.3for the implementation
of the examples introduced in Section3.2). The rest of the algorithm is exactly the
same, which makes it suitable for a large variety of 3-D processing algorithms.

5.2 Data structure for efficient range search

We now present a data structure that supports the range search technique described by
Algorithm 1. We first describe its static implementation, then proceed to the dynamic
version, suitable for on-line applications.

5.2.1 Static case

A static dense voxel grid representation, as used in Section4.3 is insufficient for the
needs of Algorithm1. We therefore propose a variant of the dense voxel representation
that maintains an array of pointers to previously visited occupied voxels in memory.
Figure6 illustrates the principle in 2-D, but it is easily generalizable to three dimen-
sions. The5× 4 grid is the original dense voxel representation, and the two additional
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Algorithm 1 : General scanning algorithm
Input : V the voxelized volume and its boundaries

for every occupied voxel inV do1

vc ← V (x, y, z), the current occupied voxel2

Retrieved, the distance to the closest occupied voxel that has already been3

visited, anddir, the direction associated with it
if d ≥ k

2 then4

nc ← the wholek3 neighborhood{There’s no sufficiently close5

occupied voxel}
else6

Retrievevp, the previous occupied voxel located at distanced in7

directiondir of vc

np ← neighborhood computation ofvp8

sp ← thed rightmost (alongdir) slices ofvp9

sc ← thed leftmost (alongdir) slices ofvc10

nc ← np − sp + sc11

end12

end13

arrays are pointers to previously-visited, occupied voxels in memory. In this example,
the scanning order isx theny, and the current voxelvc is filled in blue, whereas the
previously visited voxels are drawn in a lighter shade of blue. The occupied voxels are
dotted. The algorithm has access to the nearest previously visited occupied voxel just
by looking at the cells in red, which correspond to the(x, y) position ofvc. vp (position
(2, 0) in this example), can then easily be retrieved.

y

x

Figure 6: 2-D example of the proposed data structure. Dense voxel representation aug-
mented with additional side vectors that store the location of the previously computed
results, in each dimension. The dotted squares represent occupied voxels. The dark
blue square represent the current voxel, and the previously scanned voxels are shown
in light blue. The algorithm examines the cells in red, which point (illustrated by the
arrows) to previously computed range search results. It then chooses the closest results
for vp (c.f. line7 in Algorithm 1.



5.3 Examples, revisited 11

A 3-D version of the data structure illustrated in Figure6 is implemented in C++ for
Linux OS. It is templatized and can be used for a wide variety of applications without
having to change its core implementation. Basic optimization rules are followed for
efficiency. For example, run-time operations such as polymorphism are avoided and
data is accessed using references only.

Since it is expected that the majority of the voxels in the data structure will be
empty, each voxel is initialized to aNULL pointer, and memory is allocated each time a
voxel is created. In this static version of the data structure, memory is freed only when
the program terminates.

5.2.2 Dynamic case

When dynamic data is used, the data structure presented in the previous section is in-
adequate because data might appear outside the volume defined by the dense voxel
representation. However, the volume cannot be made arbitrarily large because of pro-
hibitive memory requirements. Therefore, a limited volume is used, and it is scrolled
as the sensor moves in the environment.

To scroll the volume, the modulo operator (% in C++) is necessary but can be
efficiently implemented using a logical AND operator (& in C++), as long as the data
structure’s dimensions are a power of two. For example,5%22 = 5&(22 − 1) = 1.
No integer division is thus needed, making memory access a very fast operation. In
addition, when the volume is scrolled in one dimension, a 2-D slice of voxels must
be invalidated. To avoid filling memory over time as the volume is scrolled multiple
times, invalidated memory is freed and the pointers reset toNULL .

5.3 Examples, revisited

We now show the implementation of the various examples introduced in Section3.2.
For each of them, we need to define what is stored in thenc, sp andsc variables intro-
duced in lines5, 9 and10 respectively in Algorithm1. We also need to define how to
add and subtract the partial results, as required in line11.

1. To recover the number of neighbors, recall thatF1(N(pi, s)) = |N(pi, s)|.
Therefore, we simply need to count the number of occupied voxels in each slice
and store that number as an integer. It can then be added and subtracted straight-
forwardly.

2. The retrieval of the points within the neighborhood (F2(N(pi, s)) = N(pi, s))
requires a more complex implementation, since it requires spatial information
about the points, which was not the case in the previous example. Although it
has not yet been implemented,nc can be a binary search tree (BST) storing the
memory addresses of the points. The addition of the partial results is simply the
insertion of new points in the BST. The subtraction operator needs to find each
of the points (O(log n) operation in a BST) and remove them. Since it requires
additional operations, the lower bound derived in Equation7 is not applicable.
This is the object of our current work.
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3. The covariance matrix can be computed from Equation1. However, it can be
shown that the matrix can be decomposed in terms of sums, sums of squared and
sums of pairwise cross products of the 3-D point coordinates. This information is
stored in a vector of nine floating point elementsvsums, which definenc. The ad-
dition and subtraction are performed element-wise on that vector. Therefore, the
local covariance matrix computation does not require spatial information about
each of the individual points and the partial sums vector can be computed di-
rectly. The extraction of the eigenvectors and corresponding eigenvalues can be
performed once the complete neighborhood has been scanned.

4. Equation2 shows that the kernel function depends on the distance between the
current pointpi and the mean of the points in the neighborhoodp̄, therefore it
also requires spatial information. It is thus impossible to re-use the previous
results directly, because the kernel functions do not overlap between two neigh-
boring points. In that situation, the best option is to use the implementation
presented in example2 and retrieve the neighbors efficiently, and to apply the
kernel function afterwards. It cannot be computed directly, as in example3.

5.4 Application of interest

An interesting application of 3-D processing based on local computations it point-wise
classification to improve the perception capabilities of ground mobile robots, as shown
in [19, 10]. We now proceed to describe this application in greater details, as it will be
used for evaluating the performances of the data structure and algorithm in Section6.

5.4.1 Voxel-wise classification

Using 3-D ladar data as input, we perform voxel-wise classification to detect vegeta-
tion, thin structures and solid surfaces. The method relies on the use of the covariance
matrix to extract features via PCA. For each voxels, the approach computes the matrix
within a support volume and then extracts its principal components (eigenvalues). A
linear combination of the components, and the associated principal directions define
the features. A model of the features distribution is learned off-line, prior to the mis-
sion, from labeled data. As the robot traverses a terrain, data is accumulated, features
computed and maximum likelihood classification performed on-line. Figure7 presents
an example of such terrain classification. For additional information about the classifi-
cation process details please see [19, 10].

5.4.2 Voxelization process

In order to handle the high data rate coming from the laser sensor (roughly one hundred-
thousand points per second), we previously implemented a compression process that
dramatically reduces the amount of data to handle without compromising the features
computation accuracy [19]. The compression scheme relies on a voxelization of the
data at a specific scale (typically, 10 cm side voxels are used). As explained in exam-
ple3 in Section5.3, the covariance matrix can be recovered from a partial sums vector
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Figure 7: Example of terrain classification. Surfaces, linear structures and scattered
points are colored in red, blue and green respectively.

vsums. Each voxel stores such a vector, that represents the partial sums of all the raw
points that fall into it. Therefore, storing the location of each 3-D point is not needed,
resulting in significant data compression while keeping all the information necessary
to recover the true covariance matrix. To compute the saliency features for a given
voxel, range search is performed and the neighboring voxels’vsums are added together
to recover the scatter matrix.

5.4.3 Previous implementation

An earlier data structure using the voxelization scheme presented in the previous sec-
tion has been implemented and its capabilities demonstrated in [19]. This previous
data structure is a sparse voxel representation: it stores only the occupied voxels in
a continuous vector in memory. The memory index can then be reconstructed via a
hash-map, the key being constructed from the voxel’s 3-D coordinates. The hash key
is 64 bits long and made of the concatenated index value of thez, y andx coordinates.
The length of the key ensures that the global map is large enough and does not need
to be scrolled. Because it is not suitable to implement Algorithm1, it uses thedirect
computationrange search technique presented in Section4.2.

This approach has been extensively tested on-board a ground mobile robot. The
processing time on current hardware (Pentium IV at 3GHz, with 3 GB of RAM) allows
operation at slow speed (1-2 m/s) with a hundred-thousand input points per second, de-
pending on the complexity of the terrain. The motivation behind the new data structure
introduced in this paper is to increase the processing speed to handle higher terrain rep-
resentation resolution and enable faster robot navigation speed. The next section shows
comparative experiments of the two data structures that both implement the voxeliza-
tion process described earlier, using static and dynamic data collected from a ground
mobile robot.
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6 Experiments

This section presents experiments performed on static and dynamic data. First, we
present the data collection procedure, then show results that demonstrate the superi-
ority of the new data structure (which will be identified asoptimized scan) over the
previous implementation (direct computation) using static data. Then, we show that
the approach is suitable for live processing by presenting results obtained with play-
back data, simulating the conditions on-board the robot.

6.1 Data collection

The data used in the following experiments were collected using the GDRS eXperi-
mental Unmanned Vehicle (XUV, [8]). A similar platform was used in the Demo-III
program [1]. This car-sized autonomous vehicle, shown in Figure8, is equipped with
a high-speed rugged range sensor that produces more than 100,000 3-D points per sec-
ond with cm range resolution and a maximum range up to 80 m. The laser is mounted
on a turret scanning the ground surface. Additional information on this specific version
of the laser used can be found in [16].

Figure 8: The GDRS eXperimental Unmanned Vehicle (XUV) used to acquire data for
the experiments presented in this section.

Field tests were conducted in Central Pennsylvania, USA. The terrain used is sev-
eral square kilometers in size and includes various natural features such as open space
meadows, wooded areas, rough bare ground and ponds, and is traversed by a network
of trails. The terrain elevation varies significantly between different areas.

For the experiments on static data, the 3-D points are first accumulated then se-
quentially stored in a file in random order for batch processing, without any time infor-
mation.

The algorithm then reads all the points in the data set, inserts them in the data
structure, and the experiment is performed. For the dynamic data case, the laser range
and robot navigation data are stored on disk in the laser native file format, which can be
used for playback and re-create the conditions on-board the robot. The computations
are performed using an off-the-shelf computer (Intel Xeon, 2.8 GHz, 1.5 GB RAM).
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Table 1: Statistics for the different terrains with 10 cm voxels.
Terrain Sizen (cells) Raw data v v

n d̄ P [d < k
2 ]

Flat ground 200x200x30 2.0× 106 59,275 0.049 1.0263 0.9917
Forest 160x250x40 1.7× 106 112,001 0.070 1.0519 0.9923
Tall grass 200x300x30 1.2× 106 117,756 0.065 1.0678 0.9856

6.2 Static data experiments

The data structure version used in this section is the one introduced in Section5.2.1,
and is suitable only for static data. This data structure was also used in [9].

6.2.1 Validation of theoretical results

To validate Equation7, a set of synthetic random data is generated over a volume of
interest with various point density. The values ofd̄ andP [d < k

2 ] are then computed
on the voxelized data.

First, with k = 9 and a volume occupancy of 18%, we obtaind̄ = 1.81 and
P [d < k

2 ] = 0.8973. Because Equation7 predicts a minimum occupancy of 0.2%, the
inequality is satisfied, meaning that we should observe some improvement in execution
speed. Indeed, we experimentally observe a speedup of 4.92 over the previous method.

With a volume occupancy of 1%, we obtain̄d = 2.48 andP [d < k
2 ] = 0.11.

This leads to a minimum occupancy of 2.6%, which doesn’t satisfy the inequality of
Equation7. However, the new method is still faster than the first by a factor of 1.34.

These results emphasize the fact that if Equation7 is satisfied, the new method is
guaranteed to be faster than the first. Under this limit, there is no guarantee because
the analysis is only considering the average over the whole volume and not taking into
account the local clustering of the data.

6.2.2 Comparison for different terrain types

In this section, we compare and analyze the performance of our approach for different
types of terrain: bare ground (Figure9-(a)), highly cluttered forest (Figure9-(b)) and
an open space with vegetation cover (Figure9-(c)). The bare ground scene includes a
gravel trail bordered by a jersey barrier. A concertina wire is laid across the trail. The
forest scene is made of large tree trunks scattered over a rough terrain covered with
short grass and debris. The last terrain is a side slope covered by dense, dry, waist-high
grass, with some large poles. The statistics relative to each data set are presented in
Table1, and results are presented in Figure10. The initial results seem to show that
the type of terrain does not influencēd andP [d < k

2 ]. All these data set have very high
point density, which probably leveled the results.

The center column of Figure10 illustrates the histograms of the distribution ofX
for different strategies. The strategies illustrated represent the direction in which the
previous occupied voxel is searched (top-right:x, bottom-left:y, bottom-right:z, top-
left: best of the three, from theoptimized scanmethod). As expected, the optimal
strategy always shows the highest peak at 1, whereas thez strategy always gives the
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(a) (b) (c)

Figure 9: Illustration of the three data sets taken over three different terrains to evaluate
their influence on the algorithm. (a) Flat ground, (b) Forest and (c) Tall grass

lowest. This is because the ground plane is roughly aligned with thexy-plane, so
adjacent occupied voxel are more likely to be on that plane than along thez direction.

The speed improvement over the previous implementation presented in Section5.4.3
is illustrated by the third column of Figure10. The blue curve indicates the perfor-
mance (in ms per occupied voxel) of the previous method and the red curve shows the
performance of the new method. The speedup is substantial, and increases with the
radiusr used for range search. For example, at the current voxel size used on-board of
the robot andr = 0.4 m, the new method is 4.6 times faster on the flat ground exam-
ple, 5.5 times on the forest example, and 3.6 times on the tall grass, which results in an
average speedup of approximately 4.5 over the three examples.

6.2.3 Parameters influence

In this section, we analyze the influence of two important parameters. The first is the
point density, which depends on a variety of factors, such as the sensor’s characteristics,
vehicle speed, turret motion and the environment’s geometry. The second is the voxel
size, which is determined manually.

Point density Intuitively, denser data means a larger number of occupied voxels,
which in turn implies a higher probability of overlapping neighborhoods. This is con-
firmed by experimental results obtained by artificially varying point density by sub-
sampling the original data set 10 and 100 times. Timing results for the tall grass ex-
ample are shown in Figure11. We observe that the new method performs faster with
denser data. In addition, Table2 shows relevant statistics for those three examples. We
note thatP [d < k

2 ] increases and̄d decrease with higher point density, which confirms
the intuition.

On the other hand, it is interesting to note that the previous method (from [19])
runsslowerwith denser data. This is explained by the fact that, for each voxel, the
neighborhood is likely to contain more points than with sparser data. Therefore, the
number of visited voxel per occupied voxel is higher, hence the increase in computation
time.

Voxel size We observe that, for a smaller voxel size, the number of voxels must be
greater to keep the same range search radiusr. For example, ifr = 4 with voxel size of
10 cm, thenr = 8 with voxel size of 5 cm, so 8 times more voxels must be visited than
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Figure 10: Terrain influence for the static case. Each line corresponds to a terrain or en-
vironment type: flat, forest and tall grass (see Figure9 for illustration of corresponding
data sets). The first column contains a snapshot of a 3-D model of the scene, the eleva-
tion is color coded. The second column contains histograms of distribution of distances
between current voxel and previous occupied voxel, for different scanning directions.
Thex (y) axis is the distance in number of voxel (the number of voxels). The rightmost
peak represents infinite distance, that is, there is no previous occupied voxel in that
direction. It is positioned at an arbitrary distance in the graph. The last column shows
a comparison of speed of execution of the original versus the new method, with voxel
size of 0.1 m.
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Figure 11: Point density influence for the tall grass data set. (a) With raw data (117,000
occupied voxels). (b) With data sub-sampled 10 times (55,000 occupied voxels). (c)
With data sub-sampled 100 times (9500 valid voxels).

Table 2: Results statistics for the point density influence.
Sub-sampling Raw points Occupied voxelsv d̄ P [d < k

2 ]
0 (raw data) 1,251,402 117,756 1.06 0.9856
10 114,161 54,808 1.2 0.9617
100 10,390 9,469 1.97 0.6926

before. More generally, ifvsize is the voxel size andnneigh the number of neighbors
of a voxel, then withvsize/k we getk3nneigh neighbors. Moreover, smaller voxel
size increases the number of holes in the data, which in turn increasesd̄ and decreases
P [d < k

2 ], as shown in Table3. Figure12 shows timing results obtained by running
the previous and new method on the same full resolution data set and varying only the
voxel size. The running time is indeed much slower with a voxel size of 5 cm versus
10 cm. Interestingly, the difference is not as obvious when comparing 10 and 20 cm.

These results show the important compromise relative to this parameter. An in-
creasingly large voxel size will result in faster performance, but also in a loss of preci-
sion in scene details. Indeed, much of the high frequency content of the scene will be
lost. On the other hand, if the voxel size is too low, the details will be preserved, but
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Table 3: Statistics for the voxel size influence. 2,046,123 raw data points
Voxel size Sizen (in cells) Occupied voxelsv d̄ P [d < k

2 ]
5 cm 400x400x60 359,327 1.1063 0.993
10 cm 200x200x30 59,275 1.0263 0.991
20 cm 100x100x15 14,485 1.00 0.986
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Figure 12: Voxel size influence for the flat terrain data set at full density. (a) 5 cm voxel
size. (b) 10 cm voxel size. (c) 20 cm voxel size.

the running time will be much slower. The best parameter (10 cm in our case) is found
by running benchmark tests on typical examples.

6.3 Dynamic data experiments

We now present experiments performed with the dynamic version of the data structure
presented in Section5.2.2.

6.3.1 Live parameters

Several additions are necessary to improve classification speed and to allow real-time
processing. First, the number of voxels to be processed is greatly reduced by limiting
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Figure 13: Top-down view of the parameter choice for live processing. The robot
(XUV) is located at the center of the data structure that covers an area of50 × 50 m
around the robot (illustrated in gray). The interest region, where the processing is
performed, is a20× 20 m area in front of the robot, and is illustrated in red. Note that
the interest region rotates with the robot, whereas the data storage region does not and
stays aligned with the global reference frame.

classification to an interest area around the robot. Since it is typically more important
to process the data lying at close range, in front of the robot, an area of20 × 20 m, as
shown in Figure13 is used in the following experiments. The size of the data structure
is 50 × 50 m, centered around the robot. See Figure13 for an illustration of these
parameters.

In addition, a partial update strategy is implemented to avoid re-classifying the
same voxel multiple times. Ideally, one would want to (re)compute the saliency fea-
tures each time a new voxel is either created or updated, or when one of its neighbors is
created or updated. However, because of the small voxel size, this step can be skipped
with an acceptable loss of classification performances compared to the gain in process-
ing time. In the worst case scenario, the classification error rate increases by 15% but
the processing time is reduced by a factor of ten.

We also use two other parameters that indicate whether a voxel should be classified
again or not. The following tests are performed after classification for each voxel:

• m: The number of times each voxel has been classified. Ifm > mmax, the
current voxel is never classified again. This prevents performing unnecessary
classification if the robot is standing still.

• r: The likelihood ratio. We define the conditional probability of a voxel to pertain
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to thekth class given a modelM by P (S|Mk). If k1 is the most likely class,
andk2 the second most likely, then:

r =
P (S|Mk1)
P (S|Mk2)

If r > rmax, the current classification is considered accurate and the voxel is
marked to prevent further processing, although it is still updated by new points.
Intuitively, this corresponds to the moment when the classifier is sufficiently con-
fident about the current classification result.

6.3.2 On-line timing

It is generally hard to quantify timing performances of 3-D processing techniques for
perception, because it depends on a variety of parameters, such as the sensor’s char-
acteristics, the area of interest processed, the speed of the robot, data density and dis-
tribution, and others, such as those presented in Section6.3.1. The traditional way of
reporting the number of processed voxels per second is insufficient, as this does not
take the dynamic nature of the process into account and is independent from the task at
hand.

We introduce a different way of reporting timing performance, appropriate for
voxel-based perception approaches. The idea is to compute, for each voxel, the de-
lay between the time of its creation (first time a point is inserted in that voxel), and
the time at which its class is known with sufficient confidence. By analogy, we are
computing the time it takes for the robot to “see” an object, and “know” what type of
object it is.

6.3.3 Comparison for different terrain types

We now compare and analyze the performance of the dynamic version of our approach
for the same types of terrain listed in Section6.2.2. The cumulative histograms ob-
tained by computing the time between voxel creation and classification for different
environments are shown in Figure14. The faster the curve reaches 100 (100% of the
voxels classified) the better. These data sets were obtained by manually driving the
robot over 10 m in the different environments, at walking speed. As in the static case,
there is no apparent difference between the different environments, the general behav-
ior seems to be similar.

Using the previous approach, 90% of the voxels are classified within at most 550 ms,
825 ms and 625 ms for the flat, forest and tall grass data sets respectively. Even though
the new data structure improves only the range search part of the algorithm, it allows
a decrease of 27%, 41.8% and 36% respectively for each data set following the same
order of presentation.

In these live timing results, overhead sources due to voxel creation, data insertion
and classification that contribute to the decrease in speedup observed in the static case,
where none of these were included. However, these timings reflect the true decrease in
processing time due to the new data structure, and cannot be compared directly with
those reported in Section6.2for batch processing.
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Figure 14: Terrain influence for the dynamic case. (a) is obtained with the flat terrain,
(b) with the forest and (c) with the tall grass examples (see Figure9 for illustrations of
corresponding data sets). This shows the cumulative histogram of the time between a
voxel is inserted and is classified with sufficient confidence. The blue curve represents
the previous implementation, described in Section5.4.3. The red curve is obtained with
the new data structure introduced in this paper. The parameters used arermax = 2 and
mmax = 5.

6.3.4 Parameters influence

We now evaluate the influence of the two most important parameters related to live
processing:rmax andmmax (see Section6.3.1). The results shown in this section are
obtained with theoptimized scanalgorithm on the dynamic version of our proposed
data structure.

Maximum likelihood ratio As is shown in Figure15, thermax parameter affects the
classification timing by shifting the curve to the right. The effect is shown for different
values ofrmax, ranging from 2 to 8. The results are shown for the new data structure
only, on the three terrains previously described.

Again, the three different data sets seem to display a similar behavior. The increase
in rmax slightly increase the time between voxel creation and classification, which
shows that a majority of voxels are classified with good accuracy as soon as there are
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Figure 15: Effect of the maximum likelihood ratio parameterrmax on the time between
voxel creation and classification with sufficient confidence for the (a) flat ground, (b)
forest and (c) tall grass data sets (see Figure9 for illustrations of corresponding data
sets). A value ofmmax = 5 is used.

enough points in their neighborhood to allow classification. Only the voxels that have
low confidence contribute to the increase in classification time.

Maximum number of times to reclassify Similarly to the effect ofrmax, an increase
in the parametermmax results in an increase in processing time, as shown in Figure16.
However, its effect is more important than that ofrmax because its increase results in a
higher number of voxels to reclassify at each iteration, independent of the classification
results. As the curves formmax = 50 andmmax = 100 show, the processing is not
able to keep up with the large number of voxels to re-classify, and the performance
degrades rapidly.

7 Conclusion

This paper deals with the challenging problem of processing large amounts of dynamic,
sparse three-dimensional data. We present a data structure and algorithm that improve
the speed of range search for 3-D point-cloud processing. The data structure can then
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Figure 16: Effect of the maximum number of times to reclassifymmax parameter on
the time between voxel creation and classification with sufficient confidence for the
(a) flat ground, (b) forest and (c) tall grass data sets (see Figure9 for illustrations of
corresponding data sets). A value ofrmax = 2 is used.

be used in a wide class of computations based on the extraction of features defined over
a local support volume around each point. The approach takes advantage of the overlap
in computation by reusing previously computed results. We show significant speed-up
on an application of this technique for classification in the context of perception for
ground mobile robots. The approach is validated on ladar data obtained in various
environments using the Demo III XUV, both in the static and dynamic data cases.

For the three typical datasets analyzed, we observe considerable improvement in
execution speed without noticeable differences between the various terrain types stud-
ied. On the static data, we achieve on average a 4.5 fold speedup with a voxel size of
0.1 m and a range search radius of 0.4 m. Those parameters are shown to be suitable
to improve ground robot mobility [19, 10]. For the dynamic case, this data structure is
able to reach improvements of up to 40% in speed, even though other time-consuming
operations such as classification are not affected and are included in the timing reports.

We are currently working on the testing of methods such as Kernel Density Estima-
tion (KDE), that require the recovery of the location of every point in the neighborhood.
Although we presented an idea for the implementation, there is a need for a more ex-
tensive evaluation to understand the implication of such additional computations.
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