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Abstract

In recent years, much progress has been made in outdoor autosarawvigation. However, safe navigation
is still a daunting challenge in terrain containing vegetation. In this paperpatesfon the segmentation of ladar
data into three classes using local three-dimensional point cloud stati$tiesclasses are: "scatter” to represent
porous volumes such as grass and tree canopy, "linear” to capturedjieicts like wires or tree branches, and finally
"surface” to capture solid objects like ground surface, rocks or laigeks. We present the details of the proposed
method, and the modifications we made to implement it on-board an autarsognound vehicle for real-time data
processing. Finally, we present results produced from differetibstay laser sensors and from field tests using an
unmanned ground vehicle.

1 Introduction

Autonomous robot navigation in terrain containing vegetatemains a considerable challenge because of the diffi-
culty in capturing and representing the variability of thrvieonment. Although it is not a trivial task, it is possible

to build reliable models of smooth three-dimensional (3t&}ain of bare ground as demonstrated in the context of
planetary or desert exploration (Goldberg, 2002). It is &éosv much more difficult to cope with areas that cannot
be described by piecewise smooth surfaces like grass, $ushthe tree canopy. Because such areas exhibit porous
surfaces that surround scattered data, they are more iateacribed by 3-D point clouds rather than by smooth
surfaces. Reliable sensing, reconstruction, modellinfiaterpretation capabilities of such environments argcai

for off-road navigation of unmanned ground vehicles (UGMsks include reliably recovering of vegetation-covered
ground for mobility analysis, detecting rocks or tree sterhjulden in grass, and discriminating dense foliage against
solid obstacles such as trees.

In this paper, we address the problem of 3-D point cloud msiog to support ground vehicle mobility. We present an
approach that was demonstrated in real-time on-board aaumed ground vehicle (Bornstein, 2003). This approach
is decomposed into three main steps: classification, segimmand semantic interpretation. Point-wise clasgifica

is based on local point cloud geometric analysis. The 3-Dtpdoud produced incrementally as the robot traverses
the environment is segmented into three classes: surfgomsnd surface, rocks, large tree trunk), linear strusture
(wires, thin branches, small tree trunks) and porous votuffadiage, grass). Those three classes correspond to three
low-level geometric primitives that can capture the vatighof natural environments. The features used are based o
local spatial statistics extracted over a fixed-size suppmume. For each class, the features distribution is k@rn
prior to the robot mission using labelled data from repréesére terrains. During the mission, Bayesian classifizati

is used to label the incoming ladar data. The second stepstemd the extraction of connected components that
group together the individual 3-D points based on the looabktstency of various features. The third step consists of
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the geometric analysis of those components to refine theifitagion in order to further discriminate similar objects
such as wires against branches.

One additional step, high-level geometric primitive mdidg|, is performed off-line. This final step consists of fitfi
geometric primitives to the different components extrdctdlowing a compact and accurate representation of the
environment that preserves the geometric and semantiepiepof the scene. This is used for visualization purposes
and illustrated in Figure 1.

Figure 1: Real-time data processing for scene interpagtata) Unmanned vehicle used. (b) Automatically extracted
geometric model.

The method presented is sensor independent and relies walymall number of parameters. Almost all parameters
are learned during a training phase that implicitly capube sensor characteristics, the scanning patterns and the
influence of the environment. In addition, the efficient dafaresentation developed allows real-time data proogssin
on-board the vehicle, that has been tested extensively.

This paper presents an extension and improvement over theprweviously published in (Hebert, 2003) and (Van-
dapel, 2004a). In (Hebert, 2003), we presented resultaupsstoff-line using data coming from different laser radar
sensorsin a variety of environments. In (Vandapel, 2004a) preliamjnresults from on-board processing on an un-
manned vehicle, as well as additional results from statipsensors, were presented. Although the core of the method
is similar, this paper introduces previously unpublished developments (scale selection, efficient data strudilre
tering, semantic interpretation, high-level geometriadelbng), and a new data analysis (evaluation of the classifi
against ground truth). Results from a larger corpus of fietdimgs and an in-depth analysis of the limitation of the
current approach are also reported.

The state of art of scene interpretation for off-road navigausing 3-D information is presented in Section 2. Then,
Section 3 details the approach proposed in this paper anb8dcevaluates the approach using data from static laser
radar. Section 5 focuses on the implementation of our agpréa live data processing on-board a ground mobile
robot. In Section 6, results from several field tests coretliat Central Pennsylvania are presented. Finally, Section
7, discusses the approach’s key limitations and how theyeaddressed.

2 State of the art

Because of its importance for obstacle detection and emviemt modelling, the issue of detecting and segmenting
vegetation has been explored in the past. The use of spdeathas received much more attention than the use of
geometric information.

In natural environment, numerous hazards threaten thelityadfirobots such as terrain obstacles: step-like, nggati
(ditch), or slopes. Methods based on the convolution of atrotodel with a 2D-1/2 grid map or in range images have
been successfully applied for outdoor robot navigationweler these approaches are better suited for bare ground-
like environment such as planetary terrain, open roads sertlenvironments, rather than for terrain with vegetation

1in this paper, we use ladar, laser radar, laser scannecliaegeably.



Efforts have been made with some success to cope with vegehatt it still remains in the 2D-1/2 domain, not in 3-D
like this paper proposes. Terrains with sparse vegetativercthat allow perception of the load-bearing surface =
reduced to the aforementioned class by recovering the grsuriace as proposed in (Vandapel, 2003). Nevertheless,
such approach cannot handle complex 3-D scenes contalmimgttuctures (branches), overhanging vegetation, or
obstacles in vegetation.

Terrain classification for vegetation detection has sonseess using color images, texture information and ladar dat
(Belluta, 2000) (Rasmussen, 2001) (Rasmussen, 2002) (l2@@%) (Dima, 2004). These techniques perform 2-D
classification in image space and results are back-prajéct®8-D from a calibrated sensor suite. Vegetation cannot
be systematically labelled as obstacle. Otherwise, aroastry navigation, that requires driving over vegetatioiti

be impossible. On the other hand, this paper proposes a thigtiandle general 3-D scenes using a purely geometric
approach.

A few approaches, pioneered by Huagigal. (Huang, 2000), considered single point statistics of rantgges of
natural environments. However, to characterize textweallstatistics on range, derivatives of range and frequenc
components are needed. Macedo (Macedo, 2000) presentdid @s single point statistics computed on data from
a single point laser range finder that showed differentiabetween vegetation and solid surfaces like rocks. In
(Castano, 2003), he presented a more geometric approabistproblem. The latter work relies on the use of a
narrow beam, low elevation laser looking with a normal araglehort range obstacles for a small scale robot. In our
case, we deal with a robot of larger size where the laser &docabove ground level, introducing perspective effects,
at longer range of up to 50-60 meters. We are interested $sifying the data into three basic classes. Depending on
the laser performance and the vegetation permeabilityapproach will also recover obstacles within the vegetation

The idea of using vegetation permeability has been usedveraeprojects. The idea is to keep track of how many
times a laser beam can traverse voxels of a 3-D grid repras@emiof the environment. The ratio of traverse versus
hits is an indicator of the presence of solid surfaces or pabite volumes such as vegetation. Lacaze presented
this approach in (Lacaze, 2002). Along with other methodsalar approach is used in (Wellington, 2003) and in
(Kelly, 2004) to recover the load bearing surface.

In (Anguelov, 2005), the authors use a Markov Random FielRyframework to classify laser data collected from
a ground vehicle into four classes (ground, trees, grasbuaitiding). The features used are the Principal Components
on the local anisotropic points distribution, the pointtdimition within vertical columns and the maximum local
elevation. Processing was performed off-board. Wolf (\Wal#05) uses a Hidden Markov Model to classify the
terrain as traversable or non-traversable. He then usesR &pRroach as an off-line segmentation step to further
refine results. The classification is performed on-boardhbutming is reported.

In a recent paper (Manduchi, 2005), Manduchi reports omaiterclassification and obstacle detection using stereo,
laser and color camera from a large and small unmanned eehiithout however reporting any timing information.In

a related field, a large literature exists on the recovenhefground terrain surface from airborne laser sensor, see
(Sithole, 2004) for a review and comparison of the methodsis includes the filtering of the vegetation and the
interpolation of the terrain surface.

3 Approach

Our approach is based on 3-D point cloud statistics usedrtguate saliency features that capture the spatial distri-
bution of points in a local neighborhood. The saliency fesdudistribution is automatically captured by a Gaussian
Mixture Model (GMM) using the Expectation Maximization (BMlgorithm. Given such a model, trained off-line,
new data can be classified on-line with a Bayesian classidied#, 2000).

3.1 Local point statistics

The saliency features used are inspired by the tensor vappgoach of Medioni (Medioni, 2000). Instead of using
the distribution of the estimated normals, the distributid the 3-D points are used directly. The local spatial point
distribution, over some neighboring area, is captured byldttomposition into principal components of the covaganc
matrix of the 3-D points position. The size of the neighbadh@onsidered, the support region, defines the scale of



the features (see Section 4.1 for experimental evaluatidrSaction 7 for further discussion on this matter).

The symmetric positive definite covariance matrix for a $etl@-D points{X;} = {(x,i,z)" } with X = %zi’ilxi
is defined in Equation 1.

X —=X)(X—X)T ()

Zl -
Mz

The matrix is decomposed into principal components ordeyedcreasing eigenvaluesg, €1, & are the eigenvectors
corresponding to the eigenvalugg A1, A2 respectively, wher@g > A1 > A,. Figure 2 illustrates the three features
used.

In the case of scattered points, we hage~ A1 -« A and no dominant direction can be found. In the case of a linear
structure, the principal direction will be the tangent a tlurve, withAg > A1,A2. Finally, in the case of a solid
surface, the principal direction is aligned with the suefaormal withAg,A1 > A» and &, € span the local plane of
observations.

AN~ A Ao > A=A A~ AL> Ao

Sscatter: )\0 _S)Iinear = ()\O - M)Q gsurface: (7\1 - >\2)€2>

Figure 2: lllustration of the saliency features.

As is shown in Figure 2, the three saliency features, nasvadter-nesslinear-nessand surface-nessare linear
combinations of the eigenvalues.

In practice, it is not feasible nor desirable to hand-turregholds directly to perform classification because those
values may vary considerably depending on the type of terthe type of sensor, and the point density. A standard
way of automating this process is to train a classifier thatimizes the probability of correct classification on a
training data set. This is the object of the next two sections

3.2 Classification
3.2.1 Training model

A parametric model of the saliency features distributiole@ned by fitting a Gaussian Mixture Model (GMM) using
the Expectation-Maximization (EM) algorithm on a hand Rexktraining data set. This approach is retained because
its properties are well-known and it is suitable for fasedatocessing with only three features. See (Bilmes, 1997) fo
practical details on the EM algorithm and (Duda, 2000) fasslfication using GMM. The resulting density probability
model for each class is the summfGaussians with weight, mean and covariance matfi¢es p,-,zi)}i:l_,ng.

In order to capture the variability of the terrain, the tiagnhset must contain data from flat surfaces, rough bare
surfaces and short grass terrains, from thin branches amdrgime wires, from dense and sparse tree canopy and
finally tall grass. The labelling process is performed usingraphical interface which allows the selection of 3-D
points individually or in groups. We enforce a balanced ligldedataset between the three different classes. In order
to capture the influence of surrounding clutter, salienatufees are computed only at points for which it is visually
easy to confidently determine their class, but the suppgidmencludes all the points. This causes saliency features
of branches to capture the influence of the leaves, for exampl



This labelling and model fitting is performed off-line andlypmwnce for each sensor. Once a model is obtained,
previously unseen data points can be efficiently labelléts i€ the focus of the next section.

3.2.2 Classifier

Let MK = {(@,H!‘,Z}‘)}izlmné be the GMM of thek™" class. LetS= (Sscatter Sinear> Ssurface) be the saliency features
of a new point to be classified. The conditional probabilitgtithe point belongs to tHd class is given by
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whered is the number of saliency features. The class is chosen as

Kmax = argma{ p(SM*)} ®)
The normalized classification confidence is defined as

p(SMkma)
ax) — k
p(SMF) — max (S}

(4)

3.3 Filtering

The features used and the parametric data modelling agphase expected limitations in capturing the scene geome-
try for classification. This section presents four diffdreasic filtering methods to remove spurious misclassificeti
that occur in particular circumstances: edge effect, dgnsiriation, lack of support data and isolated results. All
filters are implemented as point-wise and one-pass localystheme, and performed after classification.

For each point initially classified as linear, tadgefilter determines a neighborhood of fixed size around it. énth
computes the most frequent class among all points presém imeighborhood, and changes the interest point’s class
to this value. This allows the removal of isolated linearr®j which often happens at the edges of surfaces. The
isolated surfacdilter performs a similar operation, on points that are &iiyi classified as surface.

Theisolated densitfilter allows for the removal of isolated points in low degsiegions. It loops over all the points
and removes a point from the dataset if the number of poinits ineighborhood is below a fixed threshold. From
testing, five neighbors is sufficient to yield satisfyinguis.

The groundfilter is somewhat different because it attempts to idergifyund points. Based on the observation that

the volume below a ground point should be empty, the filtemasfihe neighborhood region of each point as a cone
with its opening pointing downwards, centered at the pofrinterest. The filter then counts the number of points

lying in that cone, and changes the class to “surface” if thvlper is below a threshold, typically three points. See
(Vandapel, 2003) for more details. The four filters are sunimed in Table 1. Results of the application of such filters

are shown in Section 4.4.

Filter name | Affects | Effect
Edge linear | Change class to most frequent class among neighbors
Isolated surface surface| Change class to most frequent class among neighbors
Isolated density]  all Discard point if number of neighbors is smaller than thrédho
Ground all Downward cone, change class to “surface” if number of neighlis
smaller than threshold

Table 1: Summary of the different point-wise, one-passllacting filters implemented.



3.4 Grouping

In the next two sections, we show that point-wise classificatesults can be used to obtain a semantic description of
the environment. The first step consists in grouping polesghare similar characteristics into connected compenen
The connected component algorithm employs a one-passdeegien growing algorithm, akin to standard image
processing methods, which exploits class, direction aatiagonnectivity attributes of neighboring points.

A point is first chosen at random (tlseed, and a new empty component is created. The algorithm vesiall the
points in a neighborhood of fixed size around it. All neigtsare analyzed to determine if they have the same class as
the seed and if the angular separation between their diregéictor & for the “linear” class o for the “surface”
class) and the seed’s lies below a fixed threshold. Thisdastig not performed for the “scatter” class because there
is no dominant direction (see Figure 2). Neighbors thasBathese conditions are added to the component and to a
temporary queue. The algorithm then loops over all the paimthe queue, and performs the same procedure. Once
the queue is empty, a point that has not been visited yet doraly selected as a seed, and the same operations are
repeated until all points are visited. Results of the apyili; of the algorithm are shown in Sections 4.3 and 4.4.

3.5 Semantic interpretation

The last step performs a geometric analysis on the compstierhselves to distinguish between different types of ob-
jects such as branches, tree trunks, ground, wires andat&getor example. To distinguish between wires, branches,
and tree trunks, the principal directia;componemof the linear object is estimated by computing the covaeanatrix
over all the points of that component, and by extracting igerevector associated to the largest eigenvalue. This is
similar to the local point statistics presented in Sectidn But it is performed at the component level rather thaheat t
point level. The diameter is also estimated by projectirghint centers to the plane perpendicular to the direction
E)componem and by computing the average distance between each mojpoints and their centroid. Simple tests
based on these values allow us to reliably discriminate &éetwdifferent objects. Depending on their size, some tree
trunks might also appear as surface patches. In this caisepkedest measuring the angular deviation from the vdrtica
direction is used to discriminate with the ground. Finatlgjects with “scatter” class are identified as vegetation.

In addition, we create a high-level scene model by fittingedengeometric primitives to each of the identified objects
(Lukacs, 1998). For instance, wires, branches and tre&drare represented by cylinders, vegetation is modeled by
ellipsoids and the ground is a digital elevation mesh. Tlsalteng scene model is very simple, intuitive to under-
stand and can easily be visualized using traditional 3-deeng techniques. Examples of such results are shown in
Section 6.5.

4 Evaluation

This section presents an evaluation of the approach prdpisaeve using data collected by three stationary ground
sensors: an actuated SICK laser, a high resolution and heghity Zoller-Fbhlich (Z+F) laser, and a long range
Riegl scanner. First the sensors used are presented, &dlldy classification results for two forest scenes, two
scenes containing linear wires, and an open space. Nextgrevement in classification due to the post-processing
methods is evaluated, before quantitatively comparingréisellts against manually labelled data. Throughout this
section, we show that our approach is efficient with diffésemsors and versatile when tested against different kinds
of environments.

4.1 Model parameters

The results presented in this section use a discretize@ sppresentation made of 10 cm edge voxels (see Section 5.2.1
for more details). The optimal number of Gaussiaggecessary to capture the saliency features distributitimowi

1The figures in this paper are best viewed in color. Unlessatdd otherwise, we use the red/blue/green colors (oratmiker/light grey) to
display information concerning surface/linear/scattassification results or features. The saturation of colepsasents class confidence. Points
are enlarged to assure proper rendering in a printed veo$ite paper.



over-fitting the training data was determined experiméntaf cross-validation. This procedure involved testing fo
values ofng ranging from one to six in a variety of different training atedt sets. The best results were achieved by
usingng = 3, and this number is used in the experiments presentedhontithis paper. In each of these experiments,
the correct convergence of the EM algorithm was observedipfaart region size of 45 cm radius has been determined
to be optimal using a similar procedure.

4.2 Static sensors characteristics

Some of the data presented in this section was collected as8iCK LMS291 attached to a custom made scanning
mount similar to the sensor found in (Wellington, 2003). Taser can be seen in the bottom-right of Figure 4-(a).
The laser collects 60,000 points per scan. The angularagpabetween laser beams%lisjegree over a 10(ield of
view (FOV). The angular separation between laser swee%osisa degree over 115

Figure 3 presents results produced using data from a Zettgrlich (Z+F) LARA 21400 3-D imaging sensor. It has a
maximum range of 21.4 m with millimeter accuracy, a 360-35° FOV; it produces 8008 1400 range and intensity
measurements per scan (Langer, 2000).

Figure 8 presents results produced using data from a Rie@-?10 3-D imaging sensor. The maximum range is
350 m with 2.5 cm resolution. The laser records the first asidalse, but only the first pulse is used here. Each scan
produces 444 x 740 points.

4.3 Examples of classification results
4.3.1 Forest environment

For this first example, data was acquired by positioning thE Iaser on a trail in a densely vegetated terrain: flat
ground was covered by thick vegetation and a trail crossexhaealy forested area. Figure 3-(a) shows a picture of the
scene. Figure 3-(b) shows the 3-D data where the elevatiooldas-coded from blue to red for low to high elevation.
The circular hole is due to the self-occlusion of the laseégufe 3-(c) shows a close-up view of the segmentation
results of one the scene areas. In this first example, thé&téstand "linear” class are fused together and the ground
surface class points are separated from other surfacepéa#s using a geometric method presented in (Vandapel,
2003). One can note that the tree trunk, even though surealimg vegetation, is correctly classified.

: (é) SR EER (b) ;

Figure 3: Example of classification results with the Z+F fag®) Scene. (b) 3-D point cloud with the elevation color-
coded. (c) Segmented scene. Points in red, blue, green (kiddeker/light grey) represent non-ground surfaces,
ground surface, scatter structures respectively.

Figure 4 shows an example with data obtained with the adualt€K laser from a forest scene. The laser was on a
flat and bare ground trail in a wooded area with large treess the keywordlat will be used to refer to this dataset.
The terrain trail and the side slope, as well as large tregsiuthin branches, and smaller tree trunks, are recovered
correctly. In this example, there are three different caudenisclassification: edge effect (at the border of surface
areas), presence of several surfaces (junction of trekgmuith ground surface) and fixed-scale neighborhoods éat th
end of the trail, due to the slant angle effect of the laser).



(b)

Figure 4. Example of classification results with the actds&8éCK laser flat dataset). (a) Scene. (b) Classification
results. See footnote page 6 for color code.

Figure 5 shows another example produced using the actub@di&ser. In this case, the scene has a larger depth than
before and it includes a terrain slope with a rough surfacgaining thinner structures. It is identified by the keyword
rough Again, the errors are caused by edges, scale and multipidotus.

(a) (b)

Figure 5: Example of classification results with the actd&#&CK laser foughdataset). (a) Scene. (b) Classification
results. See footnote page 6.

4.3.2 Thin linear structures segmentation

The next two examples show linear structure classificaésnlts of wires. Even though they are not natural features,
wires can constitute major obstacles for ground robot nitglkahd also for unmanned aircraft flying at low altitude.
In Figure 6, we present a classification result for isolat@@svirom a power line. The wires are correctly recovered
as linear features even though they are close to each other.

The example from Figure 7 is even more challenging becauss\aie cluttered by surrounding foliage. The power
line is located in the vicinity of a tree line. Note that thdgsupporting the cables is correctly classified.

4.3.3 Open space environment

Figure 8-(a)/(b) shows the classification result and thgelstr connected components for a scene containing a grassy
terrain, short trees and a chain-link fence covered by adiget Some of the ground points are misclassified as linear
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Figure 6: Example of classification with the SICK laser. #&et wires. (a) Scene. (b) Classification results. See
footnote page 6 for color code.

(@) (b)

Figure 7: Example of classification with the SICK laser. Wiagljacent to clutter. (a) Scene. (b) Classification results
See footnote page 6 for color code.

because of the scanning pattern of the sensor. Specifisathyconsecutive scan lines project far from each other in
one dimension, but the spacing between laser points witith ecanline remains close to each other. Currently, this
approach cannot deal with such artifacts, but Section Tdss a geometric method we introduced recently based on
automatic scale selection to address that problem.

4.4 Post-processing

Section 3.3 introduced several one-pass post-proceskarg that were implemented in order to reduce the effects of
some sources mentioned. The approach relies on ensurialclassification consistency based on class assignment
and geometric relationship between a specific point anceighivors through a majority voting scheme.

Figures 9 and 10 show classification results forftieandrough datasets respectively (see Figures 4 and 5). Each
figure includes the raw classification results (a), the edgstg filtered (b), the isolated surface point filtered (c),
the isolated 3-D points (d). Figure 9-(e) illustrates theumd surface filtering results while Figure 10-(e) shows the
connected components.

The next example (Figure 11) shows the use of the salienegtitin to connect elements from the same class. This
allows the separation of the side terrain slope and tre&srtrom the ground, the load bearing surface.
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Figure 8: Example of classification results with the Riegkla (a)-(b) Open space with chain-link fence:(a) Classifi-
cation, (b) Connected components, each component is myegsby a different color (or grey tone). (c)-(d) Dense
vegetation: (c) Classification, (d) Close-up view. Seerioté page 6 for color code.

4.5 Classification evaluation

To evaluate the accuracy of the classification results, tifatine results obtained by comparing the output of the
classifier with hand-labeled data are presented, fofl#tt@ndrough datasets (see Figures 4 and 5). Those data sets
were not part of the training data set.

The labeling method requires manual identification of goihat belong to each of the three classes. However, because
of varying point density, clutter and occlusions, it is seéimes very hard to determine visually the true nature of a
group of points. When the true class is too ambiguous and tdenidentified by a human expert, the corresponding
points are set as “undetermined” and are not used in the amc@omputation. For theugh dataset, 320 points
(0.97%) were undetermined, as opposed to 1997 (5.7%) fdtatdataset.

Classification accuracy for theugh dataset varies from 71.85% for the raw classification regolt79.38% when
applying the isolated density filter (see Table 2). The csioiu matrices for each filtering method are shown in
Table 3. Generally, classification accuracy is very goodsfafaces, with values between 83% and 93%. However,
this is not the case for the linear and scatter classes, Wheagcuracy is lower, especially for scatter. This is beeau
scattered points are very difficult to segment manually, lddden linear structures or surfaces may appear as clutter
to the human expert eye. This explains the high percentageattier points classified as linear (around 45%).

Filtering methods improve the accuracy in classificatioawfaces and scatter points. However, because of the voting
nature of the filtering methods and the fact that linear stimés are often surrounded by vegetation or surfacesiriidter
decreases classification accuracy for the linear classe$&ie number of linear points in a scene is always much lower
than the two other classes, a global increase in accuratil Eserved, as shown in Table 2.

Classification accuracy for thiéat dataset is somewhat lower than in the previous example. eTalghows that

10
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Figure 9: Example of data post-processing for fila¢ dataset. (a) Raw classification. (b) Edge effect filtered. (c
Isolated surface class points filtered. (d) Isolated 3-Disdiltered. (e) Ground filtered. See footnote page 6 forrcolo
code.

classification accuracy varies from 55.84% for the raw di@ssion results to 61.94% after applying the ground
filtering method. However, after closer inspection, thefasion matrices for thdlat dataset in Table 6 are very
similar to the matrices for theough dataset shown above. The difference is that the global perge of scattered
points (55.29%, see Table 7) is much higher than in the pusviase (21.95%, see Table 4). Thus the behavior of our
approach is similar in both cases, the difference in the rarrablow accuracy scattered points explains the difference
in global accuracy.

11
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Figure 10: Example of data post-processing forrthegh dataset. (a) Raw classification. (b) Edge effect filtereyl. (c
Isolated surface class points filtered. (d) Isolated 3-Dhzdiltered. (e) Connected components. Each color (or grey
tone) represents one connected component. See footnatd fagcolor code.

4.6 Off-line performance

To evaluate the performance of the current approach, iosssary to estimate how fast the data structure can integrat
new points coming from the laser into voxels as well as evalttae two principal operations: saliency computation

(computation of the covariance matrix and extraction opiiacipal components, see Section 3.1) and classification
(computation of the conditional probabilities, see SecBd2.2). Table 8 shows the off-line timing results averaged

12
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Figure 11: Example of post-processing for fteg dataset Connected components without (a) and with (b) feature
direction. Each color (or grey tone) represents one cordezmtmponent. Only the largest components are displayed.

| Initial | Edge | Isolated surface| Isolated density

total # of pts misclassified 9065 | 8198 7806 6061

total # of pts verified 32204 | 32641 32641 29405

misclassification rate (%)| 28.14 | 25.11 23.91 20.61

accuracy (%) 71.85 | 74.88 76.08 79.38

Table 2: Overall statistics for theughdataset
Initial Edge Isolated surface Isolated density
scatter linear surface scatter linear surface scatter linear surface scatter surface

scatter | 38.35  48.76 12.88| 38.65 44.57 16.77| 46.18 45.60 8.20 | 45.29 8.58
linear | 20.95 70.76 8.28 | 32.83 56.35 10.81| 35.28 58.35 6.35 | 35.79 6.75
surface | 3.89 12.78 83.32| 4.15 5.98 89.86| 5.45 5.77 88.76 | 3.12 92.93

Table 3: Confusion matrices (in %) for theughdataset. Rows are ground truth and columns are computeskslas

Initial | Edge | Isolate surface Isolated density
scatter | 23.05 | 23.54 23.54 21.98
linear | 8.77 | 8.72 8.72 8.66
surface| 68.16 | 67.72 67.72 69.34

Table 4: Number of points per class (in %) for floeigh dataset.

Initial | Edge | Isolated surface| Isolated density] Ground

total # of pts misclassified 14376 | 14454 12980 11472 11433
total # of pts verified 32555 | 33011 33011 30046 30046
misclassification rate (%)| 44.15 | 43.78 39.32 38.18 38.05
accuracy (%) 55.84 | 56.21 60.67 61.81 61.94

Table 5: Overall statistics for théat dataset

Initial Edge Isolated surface Isolated density Ground
scatter linear surfacescatter linear surfacescatter linear surfacescatter linear surfacescatter linear surface
scatter| 39.53 44.65 15.80[ 40.07 35.48 24.43] 47.80 36.84 15.35 47.19 36.49 16.30| 45.11 33.70 21.17
linear | 23.49 62.91 1358 32.11 49.11 18.76| 35.29 51.54 13.16| 35.42 50.44 14.13| 31.32 44.26 24.40
surface| 2.74 1425 82.99| 290 7.18 89.90| 350 7.37 89.12| 258 563 91.77| 0.88 0.84 98.26

Table 6: Confusion matrices (in %) for tifiat dataset. Rows are ground truth and columns are computeskslas

over 6 datasets of different sizes and composition. On geei@ur method is able to process 6800 voxels per second
on a Pentium IV at 3 GHz. While this measure is suitable follioff-performance evaluation, we show in Section 6.3
a more appropriate method of reporting on-line timing.
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Initial | Edge | Isolated surface Isolated density] Ground
scatter | 56.31 | 56.67 56.67 55.29 55.29
linear | 13.35| 13.36 13.36 12.83 12.83
surface| 30.33 | 29.95 29.95 31.87 31.87

Table 7: Number of points per class (in %) for tiegt dataset.

Insertion | Saliency | Classification | Saliency & classification combined
1.7 x 10P points/sec| 9000 voxels/se¢ 29000 voxels/se¢ 6800 voxels/sec

Table 8: Timing results for off-line batch processing.

5 Rover implementation

This section discusses computational issues related tionflementation of our approach on-board a mobile robot.
Unfortunately, the method presented above cannot be ugbdwimodification for that purpose. After justifying
this claim and detailing the necessary modifications toeaehfast processing of the information on-board a ground
mobile robot, we finally introduce the data flow implementadize autonomous unmanned vehicle used.

5.1 Issues
Several issues arise with the implementation of the prevégpproach on-board a mobile robot:

e The mobility laser on the robot has a very high acquisitide,ra excess of 100,000 points per second.

e Because the turret, on which the laser is mounted, and thet syb in motion, the same area of the scene is
perceived several times under different viewpoints andftgrdnt distances. This is an advantage in term of
coverage of the environment, but it implies incorporatimgnew data continuously in the existing data structure
and recomputing the classification for already perceivetis@areas.

¢ If the robot is stationary for some time, there is no need tmawlate a huge amount of data of the scene from
the same viewpoint.

e The method requires the use of data in a support region artherbint of interest considered, which is a time
consuming range search procedure.

e For each new laser data point added, the saliency featurkslassification need to be recomputed for the
prototype point at that location. Furthermore, they mus &le recomputed for every other prototype point that
has new laser data in its neighborhood.

¢ As the robot moves in the environment, the data need to begocated into a global map or in a smaller map
that needs to be scrolled.

In the rest of this section, we describe the solutions thabhawe implemented to deal with these problems.

5.2 Practical implementation
5.2.1 Data structure

In (Hebert, 2003) we directly use the points produced bydker stored in a dense data representation. This approach
is too expensive for on-board processing because of the euafbndividual 3-D points to consider for update and
classification, and also because of the size of the datasteun maintain while the robot is in motion. Using the data
collected during our experiments, it is estimated that #re@ntage of voxels occupied in a dense data representation
varies between 2 % and 12 % when the voxel size varies betwemBnd 1 m in edge length. As a result, a sparse
voxel data representation was chosen. Each basic elenmiiteaf 10 cm edge, is callepeototype point The 10 cm
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Figure 12: Flowchart of the current system implementation

size was chosen as a compromise between computationageéfjcimemory management, and scene reconstruction
accuracy. Note that 45 cm is the radius used for the suppgidrréo compute the features. Instead of storing all raw
3-D points in memory, each prototype point maintains onéyghfficient statistics for the covariance matrix of the raw
points that fall inside its bounds. This allows efficient neynusage and exact feature computation. In order to take
advantage of the incremental computation of the salieheycontribution of the points based on their distance to the
point of interest is not weighted. Similarly, data aging wassidered too costly to implement. The complete set of
prototype points is stored in a structure callgot@totype volumelt allows efficient access to the prototype points via
a hashing function to do range searches. The hash key is $4bbgd and made of the concatenated index value of
the Z,Y and X coordinates. The length of the key ensures igagfobal map is large enough and does not need to be
scrolled. The X,Y coordinates indices are 20 bits long ardaltomponent 14 bits long.

5.2.2 Update and classification

The flowchart of the current system is shown in Figure 12. dtudes two sequential processes: the update of the
intermediate saliency features (performed continuoushg the classification of the data (performed on request or
at regular intervals). The update consists in incorpogathe new 3-D point either by creating a new prototype
point or by updating an existing one. The classification sitem computes the local saliency features in the support
region by performing a range search operation and combihi@gnformation stored in each neighboring prototype
point. Classification is done as described in Section 3Th2.update and classification steps are currently performed
sequentially. Five ladar frames are accumulated, thentagdda newly created prototype points are classified.

Raw data points are incorporated into the data structureateaof one million points per second. The classification
is performed at the rate of 6,600 prototype points per seéamal 45 cm radius support region. This approach allows
incorporation of the data in real time as it comes from thatad

5.2.3 Speed-up

Several additions are necessary to improve classificatieadsand to allow real-time processing. First, the number of
prototype points to be processed is greatly reduced byitignitlassification to an interest area around the robot. This
is justified because it is typically more important to prect®e data lying at close range, in front of the robot. Unless
otherwise specified, an area of 220 m in front of the robot is used.

In addition, a partial update strategy is implemented tddhue-classifying the same prototype point multiple times.
Ideally, one would want to (re)compute the saliency feateach time a new prototype point is either created or
updated. However, because of the small size of the protqigpd, this step can be skipped with an acceptable loss

15



VxWorks On-board linux computer (1GB RAM, P4, 3 GHz)

| |

! NML | _ . e |
i LADARdata ' __ " _ ! .3 ]?pomt classified . @ HD Log !
, I ! regions segmented |
; 25
| |

|
| World model ! NML
|
************ { (pt_id,x,y,z,label_pt,confidence,object_id) }

@)
o Linux computer (I GB RAM, P4, 3 GHz) _
HD

‘

|
eedFW NML ] i i

O T tavaran M [Cusiienion | - SPRomclinifiad

I regions segmented I

Data Log

{ (pt_id,x,y,z,label_pt,confidence,object_id) }

3-D Obstacle Map Viewer

(b)

Figure 13: Data flow diagram. (a) Live data processing. (yPck data processing

of classification performances compared to the gain in [mging time. In the worst case scenario, the classification
error rate increases by 15% but the processing time is relduca factor of ten.

We also use two other parameters that indicate whether atppet point should be classified again or not. The
following tests are performed after classification for epadtotype point:

e m: The number of times each prototype point has been classiffeith > myax the point is never classified
again. Typically, a value afax= 10 is used. This prevents performing unnecessary claggific&the robot
is standing still.

e r: The likelihood ratio. Ifk; satisfies Equation 3 ark} represents the second most likely class, then, from
Equation 2,

_ p(sm)

(= —— 7

p(§Mie)

If r > rmax the current classification is considered accurate andriftetype point is marked to prevent further
processing, although it is still updated by new points. itively, this corresponds to the moment when the
classifier is sufficiently confident about the current clisaiion result. Throughout the experimentgax = 2
unless otherwise reported.

5.3 Interface

The architecture of the robot is the NIST 4D/RCS (Albus, 2f)(@nd the communication between processes is per-
formed using the Neutral Message Language (NML) (Gazi, R0DHe ladar data is stored and continuously updated
in an NML buffer, on one of the robot boards running VxWorkair@ode runs on a Linux computer, either a VME
board part of the robot computer boards, or a stand-alon@etanthat is fitted inside the robot, and it communicates
with the robot using NML buffers via Ethernet. Currently, @amputer with a Pentium IV processor at 3 GHz, with
1 GB of RAM is used.

Playback tools that read laser data in a native file formatpartdhem into a NML buffer were first developed. The
code can then read from the NML buffer, incorporate the delissify it, and send the results into another NML
buffer. This last NML buffer is used by other robot procesgesipdate the obstacle map or perform higher level
scene interpretation. There is no additional effort to iigesame code on-board of the robot. Only one configuration
file, containing information about the shared memory bufferme, computer host), needs to be updated. Figure 13
illustrates the resemblance between the data flow for thdplk and live data processing configuration.
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The classification results are sent back to the vehicle a#ieig systems to be incorporated into an obstacle map and to
be used by other sub-systems such as one evaluating theatynobihe terrain based on the ground surface recovered.
Such integration is underway.

6 On-line classification field tests results

Since 2003, a series of field tests were performed with a gronobile robot to demonstrate the feasibility of our
approach. This section first presents the vehicle and thestege used for experimentation. It then shows classifinati
and high-level scene modelling results obtained by runtiiegalgorithms on the vehicle.

6.1 Unmanned vehicle and test area

As mentioned earlier, our goal is to have the method predeatieve running on-board the eXperimental Unmanned
Vehicle (XUV) while the robot is navigating in natural ermitrments. A similar platform was used in the Demo-ll|
program (Albus, 2002a). The robot is equipped with the GDR#Bitity laser. This rugged laser radar provides range
images of 18& 32 pixels resolution at 20 Hz, with a maximum range up to 80 the Taser is mounted on a turret
controlled by the navigation system to build a terrain magseld for local obstacle avoidance. Additional information
on the laser can be found in (Shneier, 2003).

Field tests were conducted in Central Pennsylvania. Thraiters several square kilometers in size and includes
various natural features such as open space meadows, watex] rough bare ground and ponds, and is traversed by
a network of trails. The terrain elevation varies signifitabetween different areas. In total, over half a dozen field
tests were conducted over a two-year period.

6.2 Terrain classification

In Figure 14, two examples of terrain classification are ghown the first case, the robot traveled below the tree
canopy along a 200 m long trajectory at a speed between 1.3.8md/s. In the second case, the robot is on a trail
bordered by foliage and moves at a similar speed.

For each prototype point in the data structure, the time &etwits creation and its classification is recorded, and the
results are presented in cumulative histograms (see 8e@t2 for a more detailed explanation). Approximately
90% of the prototype points are classified less than 1 sedterdtlaeir creation.

(@) (b)

Figure 14: On-board terrain classification. (a) From a wooaea. (b) From a trail. See footnote page 6 for color
code.
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6.3 Comparison against batch processing
6.3.1 Classification accuracy

A more complete model can be constructed as data is accladwaer time. For example, previously occluded areas
get filled in as they appear in the robot’s field of view due te tehicle motion. As a consequence, the occupancy
of any given point varies over time, changing the salieneyuees. Thus, classification results obtained from partial
versus full model might differ. In order to evaluate the eliince, data was recorded while the robot was driving
through an outdoor scene. We used the playback data progesaia flow (see Figure 13) because it allows the
execution of different experiments on the same data. By ewimg the classification results point-wise, we observed
a difference up to 15% between the live and static processing

6.3.2 On-line Timing

It is generally hard to quantify timing performances of 3-idgessing techniques for perception, because it depends
on a variety of parameters, such as the sensor’s chardicteribe area of interest processed, the speed of the robot,
data density and distribution, and others, such as thosemted in Section 5.2.3. The traditional way of reporting
the number of processed prototype points per second isficisut, as this does not take the dynamic nature of the
process into account.

We introduce a different way of reporting timing performanwhich is more appropriate for prototype point-based
perception approaches. The idea is to compute, for eacbtppet point, the delay between the time of its creation (the
first time a point in inserted in that prototype point), and time at which its class is known with sufficient confidence.
By analogy, we are computing the delay between the time that first “sees” an object and the time it “knows” what
type of object it is.

Figure 15 shows an example of cumulative histograms oldaoyecomputing the time between prototype point
creation and classification, for two different sets of pagters. The faster the curve reaches 1 (100% of prototype
points classified) the better. This data was obtained byrdyithe robot over 10 m in a rough forest environment, at
walking speed. As illustrated in Figure 15-(a), 90% of thetptype points are classified at most 847 ms after their
creation. In Figure 15-(b), the increasenipax (Maximum number of times a prototype point is to be classittadise

the first 90% of prototype points to be classified within at 223 ms after their creation. In the figuregaxis the
maximum likelihood ratio.
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Figure 15: Cumulative histograms of the time between vosediton and classification obtained using playback. The
same dataset is used in the two figures. (a) Using paramgigrs 2 andmpax= 5 (b) rmax= 2 andmmyax= 10 (see
Section 5.2.3).
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6.4 Wire segmentation

As explained in Section 4.3.2, wire segmentation is a usgbplication and it has been tested on-board a ground
vehicle extensively. Figure 16-(a) shows a typical sceresl der testing. In this example, a wire is hung between

two trees at a height of approximately 2 m. The robot is théeofeerated to drive 10 m towards the wire at a slow

walking pace and stop 2 m in front of it. While driving, the d#igation is performed, and the wire extraction process
is executed afterwards. A live display application is usedisualize the reconstructed 3-D points. The points are
colored in blue if part of a wire, and in yellow otherwise. &ig 16-(b) shows an actual screen capture of the live
display. The wire is correctly segmented from the rest ofsitene.

@) (b)

Figure 16: Wire segmentation. (a) Accumulated 3-D datagroobded by elevation. With in red (or ligh grey) high
elevation and in blue (or darker grey) low elevation. (b)d.display screen capture. Wire points are colored in blue
(or dark grey), the non-wire points in yellow (or light grey)

6.5 High-level scene modelling

The high-level scene modelling step reported in Sectiom&salso been implemented and tested on-board the vehicle,
and Figure 17 reports results from these experiments. éntdlsit, some wires are hung between trees at an average
height of 2 m. Thicker branches are also present at the saigleth&he robot is teleoperated in an alpha-shape loop
in the woods. The classification and high-level scene etttra@re performed on-line, as the robot was driving at a
slow walking speed. Although all 3-D points are recorded,glocessing is done only on a;220 m area of interest

in front of the robot, which explains the missing data in Fegul17-(b) and (c).

Figure 17-(f) and (g) illustrates how our approach can dfisicrate between branches and wires based on object
diameter. In this example, a wire is hung between two treegh@right hand-side of the figures), close to a horizontal
branch (on the left hand-side). In the model, the branchasgees a horizontal yellow cylinder and the wire is the blue
cylinder, which confirms the segmentation is correct. Rrwtd such as overlapping primitives and better geometric
fitting are subject of our current research work.

7 Discussion

Until now, this paper presented methods that were impleeteatd tested on-board an unmanned ground vehicle. We
now report on many of the on-going efforts to improve soméeffundamental issues previously described.

Data structures As presented in Section 3.1, the classification technigliesren the computation of local features
defined over a neighborhood of fixed size. Since data is vwe@tnd point density is sufficiently high, a large majority
of these neighborhoods overlap. To take advantage of thiat&in, we have introduced in (Lalonde, 2005b) a data
structure that allows efficient range search operationgbging pre-computed partial results. In off-line expenitsge
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(b) (c)

Figure 17: Results of high-level scene modelling, on-bdledvehicle. (a) Raw 3-D points, color-coded by elevation.
With in red (or ligh grey) high elevation and in blue (or darlgrey) low elevation. (b/d/f) Classification results,
see footnote page 6 for color code. (c/e/g) Correspondiagesmodel. Yellow (or light grey) cylinders represent
tree trunks, blue (or darker grey) cylinders representsyitiee ground is modeled as a red (or dark grey) mesh, and

vegetation as semi-transparent green (light grey) eligsso

we have reported a decrease of up to 400% in saliency congutate over the implementation presented in this
paper (see Table 8). This technique is currently being implged for on-board testing.
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Automatic scale selection Although it allows fast computation, our approach suffeosrf the fact that the size of
the support region (scale) is kept to a fixed value for eachtpnithe dataset. The choice of scale is a compromise
between noise sensibility (small value) and the abilitydptare relevant details in the scene (optimal value), witho
encompassing too much clutter (too large of a value). Thaevaf 0.4 m for the radius used in the experiments (c.f.
Section 3.1) was shown experimentally to yield the bestsdfiaation results on average over a large data set from a
variety of terrains.

In (Lalonde, 2005a), we have introduced a scale selectidghadehat automatically determines the best support region
size for each point independently. It iteratively computesal approximations of the curvature, density and noise
level, then estimates the scale based on an equation dérbradcan eigen-analysis of the scatter matrix. Currently,

the approach is designed for surfaces only, and we havetegpimrcrease in classification accuracy of 30% for the

previously misclassified points. We are now interested iereding this approach to handle the scatter and linear
classes, and are looking at ways to port such approach au-dwaground vehicle.

Context The ad hoc filtering techniques presented in Section 3.3 uszd as a simple and fast way to use context
to improve classification results. The advantage is thatthe easily be used for on-line computation. However, they
are not based on any theoretical guarantees and need thalmadjustment of several thresholds.

We propose to model the relationship between features tistniglarkov Random Field (MRF) framework (Li, 1995),
which enforces spatial consistency, or the preferencatighboring 3-D points have the same label. This technique
iteratively builds a graph connecting neighboring poimd assign weights to the edges such that the minimum cut
will correspond to the minimum of an energy function (Kolneogv, 2004). This technique is compared against the
one introduced in Section 3.3, using the data from the exammpFigure 11. The classification accuracy is 55.82%
without filtering, 61.81 % with simple filtering, and 71.86 %tlvMRF filtering.

Although it yields better accuracy and is based on strongréiieal background, MRF filtering is currently unsuitable
for on-line processing because it requires time-consurpegations, such as graph building and min-cut, to be run
multiple times. We are now addressing this problem.

Features The second-order features used to describe the local rasigbdd of each point are sometimes insufficient
and cannot model correctly some of the true underlying gédorgtructure. This results in classification errors, no-
tably at edges and junctions (c.f. Section 4.3). The usedifiadal features could also help train a more discrimireti
classifier. For example, first-order features used by MedifMedioni, 2000) are currently being integrated.

Learning algorithm  The current approach to perform classification is not séaleba higher number of features,
because EM typically experiences convergence issues asuthber of parameters to estimate grows. Alternative
methods based on Support-Vector Machine are also beingrexpl

8 Summary and future work

In this paper, we present a method to perform 3-D data segti@mfor terrain classification in vegetated environment.
To our knowledge, it is the first time that full 3-D data prosieg (from data acquisition to results representation) is
performed live on-board an unmanned vehicle. Previousoampies have certainly used 3-d sensors (stereo, laser) but
have processed the data sequentially in the range image atahthen projected them into a 2D-1/2 representation.
Instead, we maintain all the processing in the 3-D spaceafraolated data.

To summarize, our method uses local point distributiorisgttes to produce saliency features that capture the seifac
ness, linear-ness and scatter-ness of local area. faltidassification techniques are used to capture the \fityaif

the scenes and the sensor characteristics (scanningnpattege resolution, noise level). A Gaussian mixture model
is then fitted to a training data set and this parametric misdeded to perform Bayesian classification. This approach
is validated using data from static Z+F, SICK and Riegl lasefhe implementation of our approach on-board an
autonomous mobile robot, the DEMO-III XUV, was presentethaly, off-line batch and on-board real-time results
were used to demonstrate the versatility but also the ltroita of the approach and its current implementation.
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Some of limitations are currently addressed such as autos@te selection (Lalonde, 2005a), efficient data strectu
design to speed-up computations (Lalonde, 2005b) and gloind filtering to remove laser artifacts (Tuley, 2005). But
those approaches have not yet been ported on-board théevebit-going work also includes semantic interpretation
of segmented point cloud to discriminate wires from braschégh level scene modelling for efficient environment
representation, context modelling to capture more comgtexe geometry, and detection and segmentation of com-
plex porous structures (Vandapel, 2004b). Another asgetteoon-going work is to tie the classification results to
other existing modules on-board the vehicle such as mylalialuation or obstacle detection.
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