
What Do the Sun and the Sky Tell Us About the Camera?

Jean-François Lalonde, Srinivasa G. Narasimhan, and Alexei A. Efros
School of Computer Science, Carnegie Mellon University

{jlalonde,srinivas,efros}@cs.cmu.edu
http://graphics.cs.cmu.edu/projects/sky

September 23, 2011

Abstract

As the main observed illuminant outdoors, the sky is a rich source of information about
the scene. However, it is yet to be fully explored in computer vision because its appearance
in an image depends on the sun position, weather conditions, photometric and geometric
parameters of the camera, and the location of capture. In this paper, we analyze two sources
of information available within the visible portion of the sky region: the sun position, and the
sky appearance. By fitting a model of the predicted sun position to an image sequence, we
show how to extract camera parameters such as the focal length, and the zenith and azimuth
angles. Similarly, we show how we can extract the same parameters by fitting a physically-
based sky model to the sky appearance. In short, the sun and the sky serve as geometric
calibration targets, which can be used to annotate a large database of image sequences.
We test our methods on a high-quality image sequence with known camera parameters,
and obtain errors of less that 1% for the focal length, 1◦ for azimuth angle and 3◦ for
zenith angle. We also use our methods to calibrate 22 real, low-quality webcam sequences
scattered throughout the continental US, and show deviations below 4% for focal length,
and 3◦ for the zenith and azimuth angles. Finally, we demonstrate that by combining the
information available within the sun position and the sky appearance, we can also estimate
the camera geolocation, as well as its geometric parameters. Our method achieves a mean
localization error of 110km on real, low-quality Internet webcams. The estimated viewing
and illumination geometry of the scene can be useful for a variety of vision and graphics
tasks such as relighting, appearance analysis and scene recovery.

Keywords: sky · camera calibration · physics-based vision · time-lapse video · camera
geolocation
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Figure 1: The sky appearance is a rich source of information about the scene illumination.

1 Introduction

When presented with an outdoor photograph (such as images on Fig. 1), an average person is
able to infer a good deal of information just by looking at the sky. Is it morning or afternoon?
Do I need to wear a sunhat? Is it likely to rain? A professional, such as a sailor or a pilot,
might be able to tell even more: time of day, temperature, wind conditions, likelihood of a
storm developing, etc. As the main observed illuminant in an outdoor image, the sky is a rich
source of information about the scene. However it is yet to be fully explored in computer vision.
The main obstacle is that the problem is woefully under-constrained. The appearance of the sky
depends on a host of factors such as the position of the sun, weather conditions, photometric and
geometric parameters of the camera, and location and direction of observation. Unfortunately,
most of these factors remain unobserved in a single photograph; the sun is not often visible in
the picture, the camera parameters and location are usually unknown, and worse yet, only a
small fraction of the full hemisphere of sky is actually seen.

However, if we observe the same small portion of the sky over time, we would see changes in
sky appearance due to the sun and weather that cannot be perceived within a single image. In
short, this is exactly the type of problem that might benefit from analyzing a time-lapse image
sequence, which is acquired by a static camera observing the same scene over a period of time.

The main contribution of this paper is to show what information about the camera is available
in the visible portion of the sky in a time-lapse image sequence, and how to extract it. For this,
we exploit two important cues – the sun position and the appearance of the sky. Our analysis
demonstrates that it is possible to recover the viewing and illumination geometry from an image
sequence, which is equivalent to estimating the focal length as well as the zenith (with respect
to vertical), and azimuth (with respect to North) angles of the camera. In short, we show how
the sky can be used as a calibration target for estimating camera orientation and focal length.
Additionally, we also show how the sun and the sky can be used to estimate the camera latitude
and longitude.

We present an overview of the 4 main results of this paper in Table 1. Algorithm 1, introduced
in Sec. 3, computes the camera focal length fc, zenith θc and azimuth φc angles given as input
the sun position in images, the GPS coordinates (latitude and longitude) of the camera, as well
as the date and time of capture of each image. This algorithm requires the sun to be manually
identified in a few frames throughout the entire sequence, a process which takes only a few
minutes per sequence. Note that the GPS coordinates and the date and time of capture are
commonly available in online webcams.

Algorithm 2, presented in Sec. 4, uses the sky appearance as its only input. From several

4



Algorithm Section Inputs Outputs

Alg. 1 Sec. 3
Sun position

GPS coordinates
Date and time

Camera parameters (fc, θc, φc)

Alg. 2 Sec. 4 Clear sky images Camera parameters (fc, θc)

Alg. 3 Sec. 4
Clear sky images
GPS coordinates
Date and time

Camera parameters (fc, θc, φc)

Alg. 4 Sec. 6
Clear sky images

Sun position
Date and time

Camera parameters (fc, θc, φc)
GPS coordinates

Table 1: Overview of the different algorithms introduced in this paper, which extract various
information about the camera from the sun and the sky.

images of the clear sky, it can be used to estimate the camera focal length and zenith angle. In
this case, GPS and time information are not required, therefore it can be applied to any set of
images captured by a static camera. Algorithm 3, also in Sec. 4, shows how knowledge of the
GPS coordinates and time and date of capture allows the recovery of the camera azimuth angle
φc as well. This can be obtained completely automatically.

Finally, Algorithm 4 from Sec. 6 demonstrates that by combining the sun position with the
sky appearance, the GPS coordinates can also be estimated, along with the camera focal length,
zenith and azimuth angles. In short, the sun and the sky can be used to locate and calibrate the
camera.

An immediate practical result of our work is the recovery of the camera orientation and zoom
level, even if we do not have physical access to the camera. We validate Algorithms 1, 2 and 3
on a sequence where the ground truth camera parameters are known, and demonstrate that our
methods make error of less that 1% in focal length, at most 3◦ in zenith angle, and at most 1◦

in azimuth angle. In addition, we also evaluate these algorithms on 22 real, low-quality webcam
sequences from the AMOS (Archive of Many Outdoor Scenes) database [15], which contains
image sequences taken by static webcams over more than a year. The selected sequences cover
a wide range of latitudes (28◦ – 48◦) and longitudes (74◦ – 124◦), and are composed of a total
of over a quarter of a million daytime images which were given as input to our algorithms.
Unfortunately, ground truth is not available for these sequences, and we do not have physical
access to the cameras. Instead, we analyze the consistency between parameters obtained from
Algorithms 1 and 3, and show that the mean deviation is 4% for the focal length, and less than
1.5◦ and 3◦ for the zenith and azimuth angles respectively. We also validate Algorithm 4 on 8
of these sequences, and report a mean localization error of 110km.

For all these algorithms, we assume that a static camera is observing the same scene over
time, with no roll angle (i.e. the horizon line is parallel to the image horizontal axis). We also
assume that the sky region has been segmented, either manually or automatically [15, 13], and
that the sun position has already been identified in images. For the algorithms that exploit the
sky appearance (2, 3 and 4), we also assume that the camera has been radiometrically calibrated,
for instance by adapting the method of Lin et al. [27] to operate on edges extracted over several
frames.
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Estimating the camera parameters effectively results in the recovery of the direction of main
illumination (the sun) with respect to the camera. Once these parameters are estimated, we also
show how we can estimate the atmospheric turbidity as well as the cloud layer from each image
in a sequence. The turbidity encodes the degree of scattering (from clear to hazy to overcast),
and can be of great use in outdoor illumination modeling. In addition to this application, this
can be used by many existing vision and graphics algorithms. In vision, photometric stereo [33],
image-based architectural modeling [42], and facial recognition [11] are well-known examples of
applications which either require knowledge of the relative viewing and illumination geometry,
or might greatly benefit from it. In graphics, appearance transfer of objects [23] and faces [1], as
well as object relighting [6] and manipulation [18] are all examples where illumination conditions
must be estimated. Now that illumination direction can be estimated in webcam sequences, it is
our hope that this approach will spur novel research that exploits this exciting new data source.
For example, the recent work of Lalonde et al. [26] propose appearance and illuminant transfer
applications based on a large dataset of webcams calibrated using this approach.

2 Related work

Our approach is based on the idea that multiple images acquired from the same position are
useful to observe the variations in illumination, while keeping everything else fixed. This insight
has been very popular to solve many problems, including background subtraction [38], shadow
detection and removal [41], video factorization and compression [36], radiometric calibration [19],
and camera geo-location [17]. In this paper, we will consider using this information for a novel
problem – understanding how we can recover camera parameters from the sun and the sky. The
most relevant previous work can be grouped into three general categories: outdoor illumination
modeling, sun and sky appearance analysis.

Outdoor illumination modeling Natural illumination is important to understand to accu-
rately model the appearance of objects in outdoor images, so it has received a lot of attention in
the computer vision community. One line of research aims to characterize the properties of out-
door illumination as a function of atmospheric conditions. For instance, Slater and Healey [34]
determined that a 7-dimensional PCA representation captures 99% of the variance of the spec-
tral distribution of natural illumination, based on a synthetically-generated dataset of spectral
lighting profiles. Dror et al. [9] performed a similar study by using a set of HDR environment
maps as input.

Another line of research analyzes the combined effect of scene reflectance and lighting by
looking at the appearance of scenes under natural light. For example, Chiao et al. [3] determined
that 3 linear bases are enough to represent the spectral composition of reflectance in forest images.
Sato and Ikeuchi [33] introduced a model of outdoor illumination that represents both sunlight
(directional), and skylight (hemispherical) separately, which is widely accepted now. These ideas
have found applications in outdoor color representation and classification [2], surveillance [40],
and robotics [28].

Narasimhan et al. [29] introduced a dataset of high quality registered and calibrated images
of a fixed outdoor scene captured every hour for a year. By fixing the scene and viewing ge-
ometry, it is possible to analyze the effect of illumination, weather and aging conditions more
directly. This idea has recently been exploited by several researchers. For example, Koppal and
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Narasimhan [21] showed that scene points can be clustered according to their surface normals,
irrespective of material and lighting, by observing their appearance over time, as illumination
changes. On a global scale, Jacobs et al. [15] observed that the main variations in scene ap-
pearance are common across scenes by applying PCA on a large dataset of webcam sequences.
Sunkavalli et al. [37] have also demonstrated impressive color constancy results, by fitting an
illumination model to such an image sequence.

In contrast, our work investigates a novel, tangential research direction by modeling the sky
appearance directly. The challenge is to infer information about the entire sky hemisphere when
only a small portion is visible. We will show that we can achieve that goal by using a physically-
based sky model, whose parameters can be recovered by fitting it to an image sequence where
the sky appearance changes over time.

Sun position analysis The sun position has been exploited mostly in the robotics community.
Cozman and Krotkov [5] extract sun altitudes from images and use them to estimate camera
latitude and longitude. Trebi-Ollennu et al. [39] describe a system that estimates camera orien-
tation in a celestial coordinate system, that is used to infer the attitude of a planetary rover.
Both these techniques yield precise estimates, but require expensive additional hardware (digital
inclinometer [5] and custom sun sensor [39]). In comparison, our method recovers the viewing
geometry from the sun position annotated in images captured by any ordinary camera.

Sky appearance analysis The sky appearance has long been studied by physicists. One of
the most popular physically-based sky model was introduced by Perez et al. [30], and was built
from measured sky luminances. This model has been used in graphics for relighting architec-
tural models [42], and for developing an efficient sky rendering algorithm [31]. Alternatively,
Stumpfel et al. [35] proposed to capture the sky directly into an HDR environment map format,
and used it for both rendering and relighting [8]. Surprisingly however, very little work has
been done on extracting information from the visible sky. One notable exception is the work
of Jacobs et al. [16] where they use the Perez sky model to infer the camera azimuth by using
a correlation-based approach. In our work, we address a broader question: what does the sky
tell us about the camera? We show how we can recover three camera extrinsic and intrinsic
geometric properties simultaneously, from the sun position and the sky appearance.
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3 Camera geometry from the sun position

We begin by introducing our sun-based algorithm, where the camera parameters are estimated
from the sun position in a sequence of images. For this section, we assume that the sun position
has already been identified in images.

3.1 Sun position model

Let us illustrate the geometry of the problem in Fig. 2. The sun, indicated by its zenith and
azimuth angles (θs, φs), is observed by a camera and its center is projected at pixels (us, vs)
in the image. The camera, whose local reference frame is denoted by (xc,yc, zc), is rotated
by angles (θc, φc) and centered at the world reference frame (xw,yw, zw). We assume that the
camera has no roll angle, i.e. its horizon line is parallel to the image u-axis.

The coordinates of the sun in the image (us, vs) can be obtained by multiplying its 3-D
coordinates s by the camera projection matrix M, where

s =


xs
ys
zs
1

 =


sin θs cosφs
sin θs sinφs

cos θs
1

 , (1)

in homogeneous coordinates and M has the form

M = K
[

R t
0T 1

]
. (2)

Here t = 0 =
[

0 0 0
]T since the center of projection is located at the origin. The rotation

matrix R is given by:

R =

 cos(θc − π
2 ) 0 − sin(θc − π

2 )
0 1 0

sin(θc − π
2 ) 0 cos(θc − π

2 )

 cosφc sinφc 0
− sinφc cosφc 0

0 0 1

 , (3)

and assuming a simple camera model (no skew, square pixels), we can express the intrinsic
parameters matrix K as:

K =

 0 −fc 0
0 0 fc
1 0 0

 . (4)

With these definitions in hand, we now see how we can recover the parameters (fc, θc, φc) of a
camera that is observing the sun over time.

3.2 Recovering camera parameters from the sun position

This process is akin to general camera calibration (see [10] for more details), except that M
is constrained to be of the form in (2). Suppose the sun is visible in N images taken from a
sequence, and that we know the coordinates p =

[
us vs

]T of its center in the images. From
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Figure 2: Geometry of the sun labeling problem. When the sun is visible in an image, its center
gets projected at coordinates (us, vs), which correspond to angles (θs, φs) with respect to the
world reference frame (xw,yw, zw). The camera has zenith and azimuth angles (θc, φc), and its
focal length fc, not shown here, is the distance between the origin (center of projection), and
the image center. The camera local reference frame is denoted by (xc,yc, zc) and is centered at
the world reference frame.

the GPS location and the time of capture of each image, we can also obtain the corresponding
sun angular positions (θs, φs) by using [32].

If mi is the ith row of M, then following the standard camera calibration procedure [10] we
get that each image defines two equations:(

m1 − u(i)
s m3

)
· s(i) = 0 ,(

m2 − v(i)
s m3

)
· s(i) = 0 .

(5)

As detailed in Appendix A, this results in a system of 2N equations and 8 unknowns. When
N ≥ 4, homogeneous linear least-squares can be used to compute the value of the matrix M as
the solution of an eigenvalue problem. The camera parameters can then be retrieved from the
individual entries of M (see Appendix A for details).

We observe that we can improve the results quality by using these estimates as initial guess
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in a non-linear minimization which optimizes the camera parameters directly:

min
fc,θc,φc

N∑
i=1

(
(m1 − u(i)

s m3) · s(i)
)2

+
(

(m2 − v(i)
s m3) · s(i)

)2

. (6)

This non-linear least-squares minimization can be solved iteratively using standard optimization
techniques such as Levenberg-Marquadt or fminsearch in Matlab.

The entire sun-based calibration process is summarized in Algorithm 1: from a set of sun
positions in images, with the corresponding GPS location and date and time of capture of each
image, the algorithm recovers the camera parameters (fc, θc, φc).

Algorithm 1: Camera geometry from the sun position
Input: Sun position in images: (us, vs);
Input: GPS location of the camera;
Input: Date and time of capture of each image.

Compute the sun angles (θs, φs) from the GPS, date and time of capture using [32];1

Build matrix M;2

Solve linear system (28);3

Refine estimate by minimizing (6).4

Output: Camera parameters: (fc, θc, φc).

3.3 Validation using synthetic data

In order to thoroughly validate our approach, we test it under a very wide variety of conditions
using synthetically-generated data.

3.3.1 Synthetic data generation

For a given set of camera parameters, sun coordinates p are generated by uniformly sampling
the visible sky area (above the horizon line). Their corresponding 3-D sun vectors s are then
found by applying the sequence of equations opposite to the one shown in the previous section.
Gaussian noise is added to p to simulate error in sun center detection. All images have dimension
320× 240 pixels.

We evaluate the influence of five variables on the quality of the results: the three camera
parameters (fc, θc, φc), the number of available images N , and the labeling noise variance σ2.
From this space of variables, we sample 213 different combinations by varying each one at a time,
while maintaining the others constant at a default value, shown in Table 2. The range of each
variable is also shown in that table. In order to account for the randomness in point selection,
each experiment is performed 20 times.

3.3.2 Quantitative evaluation

Fig. 3 shows error curves for 6 different scenarios, illustrating the effect of varying each parameter
presented in the previous section on estimating the camera parameters. Figs. 3a and 3b show
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Variable name Range Default value Comments
Focal length fc [100, 2000] px 1000 px 18◦ field of view
Zenith angle θc [80◦, 100◦] 90◦ Looking straight

Azimuth angle φc [−180◦, 180◦] 0◦ Facing North
Number of images N [5, 50] 20 –

Sun detection noise σ2 [0, 10] px – –

Table 2: Range and default values for each variable used in the experiments on synthetic data.
Note that the range for θc is limited such that the horizon line remains visible at the given focal
length.

that small focal lengths (or, alternatively, wide fields of view) result in larger estimation error,
although it still remains below 3% error for fc, and below 0.7◦ for θc, even in the high noise case
(σ2 = 10) Similar results are obtained for φc (not shown here). As expected, increasing N also
decreases estimation error, as shown in Fig. 3d and 3f.

Plots obtained from varying θc and φc are shown in Fig. 3c and 3e, and result in mostly
constant curves over the parameter range. θc is varied such that the horizon line remains visible
in the image at the given focal length (from Table 2). In short, Fig. 3 demonstrates that this
algorithm can simultaneously recover the focal length, zenith and azimuth angles of a very wide
set of cameras, given a sequence of sun positions.

3.4 Validation using ground truth camera geometry

In addition to synthetic data, we also evaluate our algorithm on a sequence of images of the sky,
captured by a calibrated camera with ground truth parameters: focal length, zenith and azimuth
angles. We first present the acquisition and calibration setup, then show that both algorithms
estimate camera parameters that are very close to ground truth.

3.4.1 Acquisition setup

We captured a high-quality sequence of the sky by placing a Canon Digital Rebel XT equipped
with a 18mm lens outdoors during an entire day (see Fig. 4a). Using a computer-controlled
script, the camera continuously captured images at 5-minute intervals between 10:45 until 20:25,
on April 17th, 2009. Fig. 4b shows example images from the resulting sequence. The camera was
placed at the GPS coordinates of 40.367◦ of latitude, and −80.057◦ of longitude. The images
were captured in RAW mode, which allows us to convert them to the JPEG format with a linear
response function. We kept 8-bit dynamic range to simulate the behavior of a typical webcam.

The intrinsic camera parameters were recovered using the Matlab R© camera calibration
toolbox. The ground truth focal length was determined to be 2854 pixels. To compute the
ground truth zenith angle, we placed a levelled calibration target in the field of view of the
camera, and computed the intersection of parallel lines from the target. This intersection point
indicates the horizon line in the image, from which the zenith angle can be computed using
(18). The resulting zenith angle is 71.3◦. The ground truth azimuth angle was computed using
a satellite map of the capture location and was found to be 93.5◦ West.
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(d) N → fc
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(e) φc → fc

5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of images

C
am

er
a 

ze
ni

th
 e

rr
or

 (
de

g)

Reprojection error in camera zenith estimation

 

 

σ2 = 0.0

σ2 = 5.0

σ2 = 10.0

(f) N → θc

Figure 3: Synthetic data evaluation of camera parameters estimation from the sun position. A
representative sample of the entire set of experiments performed is shown, the remaining plots
can be found in [24].
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(a) (b)

Figure 4: Ground truth data acquisition. (a) Acquisition setup. The calibration target, placed
on a tripod in front of the camera and levelled with the ground, is used to recover the camera
zenith angle. (b) Example images from 12:00 (top-left) to 20:00 (bottom-right), in one-hour
increments. The images are shown with a linear camera response function.

Parameter Ground truth Sun estimate Error
Focal length fc 2854 px 2881 px 0.9%
Zenith angle θc 71.3◦ 70.2◦ 1.1◦

Azimuth angle φc 93.5◦ W 94.3◦ W 0.8◦

Table 3: Comparison with ground truth.

3.4.2 Calibration results

After manually labeling the sun in all the frames in which it is visible, the sun-based calibration
algorithm was applied to recover the camera parameters. The results, shown in Table 3, demon-
strate that the focal length can be recovered within 0.9% of its true value, and the zenith and
azimuth angles are obtained within 1.1◦ and 0.8◦ of their true values respectively.
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4 Camera geometry from the sky appearance

Unfortunately, the sun might not always be visible in image sequences, so the previous algorithm
applicability might be limited in practice. Therefore, we now focus our attention on a different
source of information more widely available: the sky appearance. We will consider clear skies
only, and address the more complicated case of clouds at a later point in the paper.

4.1 Physically-based model of the sky appearance

First, we introduce the physically-based model of the sky that lies at the foundation of our
approach. We will first present the model in its general form, then in a useful simplified form,
and finally demonstrate how it can be written as a function of camera parameters.

4.1.1 Perez sky model

The Perez sky model [30] describes the luminance of any arbitrary sky element as a function of
its elevation, and its relative orientation with respect to the sun. It is a generalization of the
CIE standard clear sky formula [4], and it has been found to be more accurate for a wider range
of atmospheric conditions [14]. Consider the illustration in Fig. 5. The relative luminance lp of
a sky element is a function of its zenith angle θp and the angle γp with the sun:

lp = f(θp, γp) = [1 + a exp(b/ cos θp)]×
[
1 + c exp(dγp) + e cos2 γp

]
, (7)

where the 5 constants a, b, c, d, e specify the current atmospheric conditions, and all angles are
expressed in radians. As suggested in [31], those constants can also be approximated by a linear
function of a single parameter, the turbidity t. Intuitively, the turbidity encodes the amount of
scattering in the atmosphere, so the lower the t, the clearer the sky. For clear skies, the constants
take on the following values: a = −1, b = −0.32, c = 10, d = −3, e = 0.45, which corresponds
approximately to t = 2.17.

The model expresses the absolute luminance Lp of a sky element as a function of another
arbitrary reference sky element. For instance, if the zenith luminance Lz is known, then

Lp = Lz
f(θp, γp)
f(0, θs)

, (8)

where θs is the zenith angle of the sun. Fig. 6 illustrates the luminance predicted by the Perez
sky model for different values of t and θs.

4.1.2 Azimuth-independent sky model

By running synthetic experiments, we were able to determine that the influence of the second
factor in (7) becomes negligible when the sun is more than 100◦ away from a particular sky
element (see Appendix C). In this case, the sky appearance can be modeled by using only the
first term from (7):

l′p = f ′(θp) = 1 + a exp(b/ cos θp) . (9)
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Figure 5: Geometry of the problem when a camera is viewing a sky element (blue patch in the
upper-right). The sky element is imaged at pixel (up, vp) in the image, and the camera is rotated
by angles (θc, φc). The camera focal length fc, not shown here, is the distance between the
origin (center of projection), and the image center. The sun direction is given by (θs, φs), and
the angle between the sun and the sky element is γp. Here (up, vp) are known because the sky
is segmented.

This equation effectively models the sky gradient, which varies from light to dark from horizon
to zenith on a clear day. L′p is obtained in a similar fashion as in (8):

L′p = Lz
f ′(θp)
f ′(0)

. (10)

4.1.3 Expressing the sky model as a function of camera parameters

Now suppose a camera is looking at the sky, as in Fig. 5. We can express the general (7) and
azimuth-independent (9) models as functions of camera parameters. Let us start with the simpler
azimuth-independent model.

From (9), we see that we only need to find an expression for θp, since a and b are fixed. We
obtain the following relation (see Appendix B for the full derivation):

θp = arccos

vp sin θc + fc cos θc√
f2
c + u2

p + v2
p

 , (11)
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Figure 6: Perez sky model (7), plotted for different turbidities t (rows), for different sun positions
θs (columns). Each plot represents the entire hemisphere, centered at the zenith (i.e. looking
straight up). For example, the sun is at the horizon in the left-most column (θs = 90◦), and at
the zenith in the right-most column (θs = 0◦).

where up and vp are the image coordinates of a sky element, fc is the camera focal length,
and θc is its zenith angle (see Fig. 5). We substitute (11) into (9) to obtain the final equation.
Throughout this paper, we will refer to this model using:

l′p = g′(up, vp, fc, θc) . (12)

In the general sky model case (7), we also need to express γp as a function of camera parameters:

γp = arccos (cos θs cos θp + sin θs sin θp cos(φp − φs)) , (13)
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where θs and φs are the sun zenith and azimuth angles. We already found the expression for θp
in (11), so the only remaining unknown is φp, the azimuth angle of the sky element. Following
the derivation from Appendix B, we obtain:

φp = arctan
(
fc sinφc sin θc − up cosφc − vp sinφc cos θc
fc cosφc sin θc + up sinφc − vp cosφc cos θc

)
. (14)

We substitute (11), (13), and (14) into (7) to obtain the final equation. For succinctness, we
omit writing it in its entirety, but present its general form instead:

lp = g(up, vp, θc, φc, fc, θs, φs) . (15)

Before we present how we use the models presented above, recall that we are dealing with
ratios of sky luminance, and that a reference element is needed. Earlier, we used the zenith
luminance Lz as a reference in (8) and (10), which unfortunately is not always visible in images.
Instead, we can treat this as an additional unknown in the equations. Since the denominators in
(8) and (10) do not depend on camera parameters, we can combine them with Lz into a single
unknown scale factor k.

4.2 Recovering camera parameters from the sky appearance

In the previous section, we presented a physically-based model of the clear sky that can be
expressed as a function of camera parameters. Now, if we are given a set of images taken from a
static camera, can we use the clear sky as a calibration target and recover the camera parameters
from the sky appearance only?

4.2.1 Recovering the focal length and zenith angle

Let us first consider the simple azimuth-independent model (12). If we plot the predicted lu-
minance profile for different focal lengths as in Fig. 7a (or, equivalently, for different fields of
view), we can see that there is a strong dependence between the focal length fc and the shape
of the luminance gradient. Similarly, the camera azimuth θc dictates the vertical offset, as in
Fig. 7b. From this intuition, we devise a method of recovering the focal length and zenith angle
of a camera from a set of images where the sun is far away from its field of view (i.e. at least
100◦ away). Suppose we are given a set I of such images, in which the sky is visible at pixels in
set P, also given. We seek to find the camera parameters (θc, fc) that minimize

min
θc,fc,k(i)

∑
i∈I

∑
p∈P

(
y(i)
p − k(i)g′(up, vp, θc, fc)

)2

, (16)

where y(i)
p is the observed intensity of pixel p in image i, and k(i) are unknown scale factors

(Sec. 4.1.3), one per image. fc is initialized to a value corresponding to a 35◦ field of view, and
θc is set such that the horizon line is aligned with the lowest visible sky pixel. All k(i)’s are
initialized to 1. This process is summarized in Algorithm 2.

17



0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel height of sky element in the image (v
p
)

S
ca

le
d 

lu
m

in
an

ce

Luminance as a function of pixel height and field of view

 

 

fov = 40°

fov = 60°

fov = 80°

fov = 100°

fov = 120°

(a)

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel height of sky element in the image (v
p
)

S
ca

le
d 

lu
m

in
an

ce

Luminance as a function of pixel height and camera azimuth

 

 
θ

c
 = 70°

θ
c
 = 80°

θ
c
 = 90°

θ
c
 = 100°

θ
c
 = 110°

(b)

Figure 7: Luminance profiles predicted by the azimuth-independent model (12). For clear skies,
intensity diminishes as pixel height above the horizon (x-axis) increases. (a) The camera zenith
angle is kept constant at θc = 90◦, while the field of view is varied. (b) The field of view is
kept constant at 80◦, while the camera zenith angle is varied. Both parameters have a strong
influence on the shape and offset of the predicted sky gradient. Note that the curves in (b) are
not translations of the same curve along the x-axis, because they are expressed in pixels in the
image, not angles.

Algorithm 2: Camera zenith and focal length from the sky appearance
Input: Clear sky images.

Find set I of images where the sun is far away from the field of view;1

Solve the non-linear minimization (16).2

Output: Camera parameters: (fc, θc).

4.2.2 Recovering the azimuth angle

From the azimuth-independent model (12) and images where the sun is far from the camera
field of view, we were able to estimate the camera focal length fc and its zenith angle θc. If
we consider the general model (15) that depends on the sun position, we can also estimate the
camera azimuth angle using the same framework as before.

Suppose we are given a set of images J where the sky is clear, but where the sun is now
closer to the camera field of view. Similarly to (16), we seek to find the camera azimuth angle
which minimizes

min
φc,k(j)

∑
j∈J

∑
p∈P

(
y(j)
p − k(j)g(up, vp, θc, φc, fc, θs, φs)

)2

. (17)

We already know the values of fc and θc, so we do not need to optimize over them. Additionally,
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if the GPS coordinates of the camera and the time of capture of each image are known, the sun
zenith and azimuth (θs, φs) can be computed using [32]. Therefore, the only unknowns are k(j)

(one per image), and φc. Since this equation is highly non-linear, we have found that initializing
φc to several values over the [−π, π] interval and keeping the result that minimizes (17) works
the best. This process is summarized in Algorithm 3.

Algorithm 3: Camera geometry from the sky appearance
Input: Clear sky images;
Input: GPS location of the camera;
Input: Date and time of capture of each image.

Apply Algorithm 2 on clear sky images to recover fc and θc;1

Find set J of images where the sun is close to the field of view;2

Compute the sun angles (θs, φs) from the GPS, date and time of capture using [32];3

Solve the non-linear minimization (17).4

Output: Camera parameters: (fc, θc, φc).

4.3 Validation using synthetic data

In order to thoroughly evaluate our model, we have performed extensive tests on synthetic data
generated under a wide range of operating conditions. We now present our data generation
algorithm, followed by plots showing that we can effectively recover the parameters of a diverse
set of cameras.

4.3.1 Synthetic data generation

We evaluate the influence of seven variables on the quality of the results: the three camera
parameters (fc, θc, φc), the number of available clear sky images N , the sky visibility (percentage
of unoccluded sky above the horizon), the camera latitude, and the noise variance σ2. Given
a set of camera parameters and sun positions, we generate synthetic images by using our sky
model (15). Sun positions are generated by sampling every hour over an entire year at a given
latitude, and applying [32]. Note that longitude does not affect the results since daytime images
can be chosen such that θs < π

2 . We simulate limited visibility by occluding the sky from the
horizon line, one row at a time.

We build set I by randomly picking N sun positions that are at least 100◦ away from the
camera field of view. If no such point is available given the geometry, we select those that are
furthest away from the camera. We build set J by randomly selecting N sun positions. In both
cases, we make sure that the sun is never directly visible by the camera. 1000 points are then
randomly picked for each image, and used in the optimization. In order to evaluate the influence
of each variable independently, we vary one at a time, while keeping the others at their default
values shown in Table 4. Each experiment is performed 15 times to account for the randomness
in point and sun position selection.
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Variable name Symbol Default value Comments
Focal length fc 750 px 24◦ field of view
Zenith angle θc 90◦ Looking straight

Azimuth angle φc 0◦ Facing North
Number of images N 15

Sky visibility – 100% No occlusion
Latitude – 0◦ Equator

Table 4: Default values for each variable used in the experiments on synthetic data.

Figure 8: Graphical illustration of the influence of camera azimuth. If the camera is at the
Equator (latitude=0◦) and facing North (or South, equivalently), the sun path is further away
from the camera than if it was facing East (or West). Its influence is less noticeable, therefore
it is harder to recover the camera azimuth.

4.3.2 Quantitative evaluation

Fig. 9 shows the effect of varying the variables on the camera parameters estimation error. As
expected, Fig. 9a shows that increasing the visible portion of the sky decreases the estimation
error.

Fig. 9b represents the influence of the camera azimuth angle φc on the estimation error of the
same parameter, and shows that error is typically higher when φc = 0 (North) or φc = π (South)
in noisy conditions. In this configuration, the sun is always relatively far from the camera, so its
influence is not as visible, see Fig. 8 for a graphical illustration of the situation.

Figs 9c and 9d shows the effect of varying focal length fc on estimating fc and θc respectively.
We note the higher the fc (or, equivalently, the narrower the field of view), the larger error. In
this situation, the visible portion of the sky hemisphere is smaller, and variations in intensity
more subtle to capture.

Finally, we note that the latitude does not seem to affect the estimation error, as varying it
over the [0◦, 90◦] range yields mostly constant curves as shown in Fig. 9f. The same behavior is
also observed in Fig. 9e for θc, which is varied such that the horizon line remains visible in the
image at the given focal length.

20



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

Sky visibility (%)

F
oc

al
 le

ng
th

 e
rr

or
 (

%
)

Error in focal length estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(a) v → fc

−150 −100 −50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Azimuth angle (deg)

C
am

er
a 

az
im

ut
h 

er
ro

r 
(d

eg
)

Error in camera azimuth estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(b) φc → φc

200 400 600 800 1000 1200 1400

0

2

4

6

8

10

12

14

16

Focal length (px)

F
oc

al
 le

ng
th

 e
rr

or
 (

%
)

Error in focal length estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(c) fc → fc

200 400 600 800 1000 1200 1400

0

0.5

1

1.5

2

2.5

3

3.5

Focal length (px)

C
am

er
a 

az
im

ut
h 

er
ro

r 
(d

eg
)

Error in camera azimuth estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(d) fc → φc

82 84 86 88 90 92 94 96 98

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Zenith angle (deg)

F
oc

al
 le

ng
th

 e
rr

or
 (

%
)

Error in focal length estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(e) θc → fc

0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

2.5

3

3.5

Latitude (deg)

F
oc

al
 le

ng
th

 e
rr

or
 (

%
)

Error in focal length estimation

 

 

σ2 = 0.0

σ2 = 0.1

σ2 = 0.2

(f) latitude→ fc

Figure 9: Synthetic data evaluation of camera parameters estimation from the sky appearance.
Each of the 6 representative plots are shown at three different noise levels.
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Parameter Ground truth Sky estimate Error
Focal length fc 2854 px 2845 px 0.3%
Zenith angle θc 71.3◦ 74.4◦ 3.1◦

Azimuth angle φc 93.5◦ W 94.4◦ W 0.9◦

Table 5: Comparison with ground truth for the sky-based algorithm.

4.4 Validation using ground truth camera geometry

In addition to synthetic data, we also evaluate our algorithm on the same sequence of images of
the sky as in Sec. 3.4, captured by a calibrated camera with ground truth parameters.

After manually segmenting the sky, we applied our sky-based calibration algorithm which
yielded the camera parameters estimates shown in Table 5. The algorithm is able to recover,
entirely automatically : the focal length within 0.3% of the true value, the zenith angle within
3.1◦, and the azimuth angle within 0.9◦.
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5 Calibrating the webcams of the world

We have already shown that our algorithms achieve good estimation results on synthetic data and
on one set of high-quality images. In this section, we demonstrate how our algorithms perform
on a wide range of operating conditions, by testing them on a large set of real, typical low-
quality webcam data such as the ones found in the AMOS database [15]. We first evaluate each
technique independently, and then compare their results together to establish their consistency,
which confirms that both can reliably be used in a real application setting.

We test our algorithms on 22 webcam sequences from the AMOS database in which the sun
is visible, which amounts to a total of approximately a quarter of a million individual daytime
images. The selected webcams are located in the continental United States, their individual
GPS locations are shown in Fig. 10. Although they are all in the same country, they cover a
wide range of latitudes (28◦ – 48◦) and longitudes (74◦ – 124◦).

5.1 Using the sun position

We first present results obtained by using the sun position to recover the camera parameters.
Although no ground truth is available, we can assess the estimation quality by displaying the
predicted sun position on every image, as well as the estimated horizon line vh, and inspect the
results visually. vh is obtained by:

vh = −fc tan
(π

2
− θc

)
. (18)

Fig. 11 shows examples of sun position and horizon line prediction on several frames for different
image sequences, where the sun was not manually labeled. The predicted and actual sun positions
overlap, which indicates that the camera parameters are recovered successfully.

A useful by-product of our approach is that the sun position can be predicted for all frames
in the sequences, even if it is not visible. For example, in Fig. 11 Seq. 347, the sun position in
the second and fourth frames can be predicted even if it is occluded by the scene.

5.2 Using the sky appearance

We now present results obtained by using the sky appearance to recover the camera parameters
from real image sequences. Intensity information can be corrupted in several ways in low-quality
webcam sequences: non-Gaussian noise, slight variations in atmospheric conditions, vignetting,
saturation, under-exposure, etc. Most importantly however, the camera response function may
be non-linear, yielding significant distortions in the sky appearance, thus leading our estimation
process astray. We rely on [27] which estimates the inverse response function by using color
edges gathered from a single image. For additional robustness, we detect edges across several
frames.

Additionally, recall that the optimization procedures (16) and (17) require clear sky image
sets I and J , where the sun is far and close to the camera respectively. We first give more
details about how this is done, and then present results on real image sequences.
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Figure 10: Map of GPS coordinates of each webcam used in the consistency evaluation. Since
the sequences selected from the AMOS database come from the US, only this area of the world
is shown. However, as we have shown in the synthetic evaluation, the algorithms are not limited
to this area. Each webcam is represented by a different color.

5.2.1 Finding clear sky images automatically

The algorithm presented in Sec. 4.2 uses clear sky images as input. In order to avoid having to
painstakingly select such images by hand from a long image sequence, we propose an algorithm
which does not require any knowledge of the camera parameters to do so automatically.

To build set I, we mentioned that the sun should be at least 100◦ away from the camera
field of view. Unfortunately, this is impossible to know a priori, so we propose an algorithm that
finds clear sky images that do not seem affected by the sun. To do so, we approximate the sky
model (12) by a vertical quadratic of the form:

α(vp − vmin)2 + β = 0 , (19)

where vmin is the lowest visible sky pixel, and α and β are the quadratic coefficients. We then
fit this simple model to all the images in the sequence using linear least-squares. Images with
low residual error and α < 0 should exhibit a smooth vertical gradient that correspond to a clear
sky, since it varies from light to dark from horizon to zenith. We found that retaining the top
10% of images with α < 0 based on their residual error, and then keeping the top N by sorting
them in decreasing order of |α| yields consistently good results across image sequences. Note
that if the sun was close to the camera, it would most likely create a horizontal gradient in the
image, thereby reducing the quality of a fit to a vertical quadratic. We show example images
recovered by this algorithm in Fig. 12a.

Building set J requires finding images where the sun influence is visible at varying degrees.
This is a harder problem than before for three main reasons: 1) the sun might never be very close
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Figure 11: Visual evaluation of our camera calibration algorithm from the sun position. The
camera parameters determined by our method are used to predict where the sun (red star) and
the horizon (red line) will appear in images. Note that the sun position can be predicted even if
it is occluded by the scene protruding above the horizon. The images shown here were not used
in the optimization.

to the camera (see Fig. 8), so its influence might be subtle; 2) it is hard to model the appearance
of the sun influence on individual images because it may come from different directions, unlike
the sky gradient that is always vertical (19); and 3) J needs to contain images where the sun
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(a)

(b)

Figure 12: Clear sky images recovered automatically for sequence 414. Samples from the sets
(a) I, where the sun influence is not noticeable, and from (b) J , where the sun induces changes
in the sky appearance throughout the set. The actual sun position, relative to the camera, is
shown in the bottom rows. Note that the relative sun position is never explicitly known to our
image selection algorithm.

is at different positions to insure robustness in the estimation. Therefore, we must enforce that
the recovered images be taken at different times of day. Instead of trying to find individual clear
images, our strategy is to find clear days. We score each day in a sequence by counting how
many images with α < 0, and select the top 4 days, which should contain mostly clear skies. To
filter out clouds that may appear, we then select the N smoothest images, based on their average
u and v gradients (we use finite differences). Example images recovered by this algorithm are
shown in Fig. 12b.

5.2.2 Visualizing a webcam dataset

Since the sun position might not be visible in the sequence, we cannot apply the same method for
validation as we did when the sun is visible. Instead, we must rely on visible cues in the images,
such as the horizon line, shadows, differently-lit building surfaces, etc. Fig. 13 shows qualitative
results obtained by applying our method on 6 different sequences taken from AMOS database.
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The recovered camera parameters are consistent with the sky appearance. For instance, the sun
appears to be just to the right of the image in Fig. 13c-(e), which is reflected in the diagrams. In
Fig. 13d, the buildings are brightly lit, which indicates that the sun must be behind the camera.
Similarly, the tower in Fig. 13f is front-lit by the sun, but it has an orange hue, so the sun must
be near the horizon line, and behind the camera as well. Shadows also hint to the sun position:
right of the camera in Fig. 13a, and behind in Fig. 13b. We also note that the recovered horizon
lines are aligned with the real one when visible, as in Fig. 13e-(f). The horizon line position in
the image is predicted by (18).

5.3 Validation by consistency between the two approaches

When the sun is visible, we can run both algorithms on the same sequence and compare their
estimates. Since both methods rely on two different sources of data (sun position and sky
appearance), we quantify their performance by analyzing their consistency.

Numerical results of the estimates for the sun-based algorithm (fsun, θsun, φsun), the sky-
based algorithm (fsky, θsky, φsky), and their agreement (∆f,∆θ,∆φ) for all 22 sequences are
shown in Table 6. Results for sequences indicated by ∗∗ are obtained entirely automatically.
Automatic sky segmentation is performed by running the geometric context algorithm [13] on 40
randomly chosen images from the sequence, and averaging the sky probability map. The other
sequences require some degree of manual intervention, either for specifying the sky segmentation,
or for retrieving images for set J. In the latter case, the intervention consists of manually choosing
3 or 4 mostly clear days from the sequence (see Sec. 8 for more details).

Consistency in focal length is evaluated by using ∆f = |fsky−fsun|
fsun

× 100, and is found to be
at most 9.3%, but typical values range from 1.8% to 6.2%. Consistency in zenith and azimuth
angles is evaluated by computing the angular deviation. For the zenith angle, deviation is at
most 6.5◦, with typical values from 0.3◦ to 2.5◦. For the azimuth angle, it is at most 8.1◦, with
typical values ranging from 1.2◦ to 4.3◦.

Fig. 14 shows all the cameras drawn on the same plot, illustrating their difference in focal
length, zenith and azimuth angles. The horizontal plane is shown in brown, and crosses each
image at the horizon line. The parameters used to generate this drawing are recovered from the
sky appearance algorithm. Since the sun is visible in all of them, the cameras either face East
(sunrise) or West (sunset). This visualization provides an intuitive way to explore the cameras
of a large dataset.
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Sequence name
and location

Focal length fc (px) Zenith angle θc (◦) Azimuth angle φc (◦)
fsun fsky ∆f (%) θsun θsky ∆θ φsun φsky ∆φ

207
(Cherokee, KS) 447.1 430.2 3.8 97.9 97.6 0.3 88.8 90.5 1.7

257∗∗
(Riva, MD) 941 951.4 1.1 96.9 93.4 3.5 257.9 260.5 2.6

279
(Lafayette, MI) 713.4 684.9 4 91.5 91.7 0.2 114.7 118.3 3.6

291
(Minneapolis, MN) 356.8 338.7 5.1 88.8 90.3 1.5 38.9 32.3 6.6

305
(Neosho, MO) 1039.5 973.3 6.3 98.1 98.7 0.6 108.8 109.3 0.5

347∗∗
(Butler, NJ) 387.5 372.3 3.9 96.3 97.5 1.4 80.2 81.8 1.6

351∗∗
(New Milford, NJ) 381.7 393.9 3.2 97.4 97.2 0.2 104.7 107.4 2.7

414∗∗
(Elburz, NV) 1067.4 1032.4 3.3 95.9 97.1 1.2 240.6 239.1 1.5

455
(Marathon, NY) 757.3 816.3 7.8 98.3 95.8 2.5 134.1 131.8 2.3

466
(Elmira, NY) 651.6 669.4 1.1 1.45 -0.06 0.1 93.4 95.5 2.1

513
(Hunker, PA) 1204 1134 5.8 92.3 92 0.3 73 71.9 1.1

524
(N. Bloomfield, PA) 670.3 664.7 0.8 95.4 95.3 0.1 71.2 68.6 2.6

529
(Mifflinburg, PA) 884.9 918.9 3.9 89.9 90.5 0.6 56 60.3 4.3

569
(Rapid City, SD) 1389.1 1362.6 1.9 93.4 92.8 0.6 84.2 85.1 0.9

601
(Mesquite, TX) 442.8 484.3 9.3 93.3 94.1 0.8 105.8 109.4 3.6

608∗∗
(Tyler, TX) 355.9 357.4 0.4 95.3 97.5 2.4 47.6 52 4.4

630
(Pleasanton, TX) 474.7 473.6 0.2 90.5 91.9 1.4 100.9 102.1 1.2

634
(San Antonio, TX) 665.8 706.6 6.1 98.2 95.2 3 242.4 244.4 2

652
(Delta, UT) 363.6 395.5 8.8 103.6 100.7 2.9 265.2 265.3 0.1

655
(Tropic, UT) 1430.8 1363.6 4.7 94.2 95.4 1.2 289.9 292.2 2.3

695∗∗
(Danville, VA) 700 714.8 2.1 92.4 92.4 0 59.3 51.3 8

701
(Darrington, WA) 632.2 652.2 3.2 105.2 98.7 6.5 124.8 130.4 5.6

Table 6: Quantitative comparison of camera calibration results obtained by the two methods
presented in this paper: the sun position and the sky appearance. For each method, estimated
values for fc, θc and φc are shown and indicated by their corresponding subscripts. Consistency
is evaluated by comparing the values together and is indicated by ∆. Worst consistency results
are indicated in bold. All images have 320 × 240 pixels dimension. Results were automatically
recovered for sequences indicated by ∗∗, the others required manual intervention at some stage
in the process, either to define the sky region, or to select images for set J .
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(a) Seq. 257 (b) Seq. 351 (c) Seq. 466

(d) Seq. 569 (e) Seq. 601 (f) Seq. 634

Figure 13: Camera parameters recovered from the sky appearance. The horizon line is repre-
sented by the red line on the images. Below each image is a drawing illustrating the recovered
camera-sun geometry. The sun is drawn at the location corresponding to the date and time of
the image. The brown plane is horizontal, and intersects with the image plane at the horizon
line.

29



Figure 14: All the 22 cameras used in the consistency evaluation shown on the same display.
The parameters used to generate the figure were obtained by using the sky-based algorithm. All
cameras are either facing East or West, so the sun is visible at dawn or dusk respectively. The
inset shows a top-down view for better visualization of the cameras azimuths.
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6 Geolocating the camera using the sun and the sky

The techniques presented so far have been considering either the sun position or the sky ap-
pearance as two independent sources of information that could be used to recover the camera
parameters. We now demonstrate that, by combining them, we can avoid the requirement of
having to know the GPS location of the camera, and also estimate it.

Recovery of the GPS location, or geolocation, has been explored in a variety of scientific
fields. In biology, scientists are tracking many marine animals using light sensors. The sunset
and sunrise times are found by analyzing the light intensity profiles captured by these sensors,
which are then used to geolocate the animals and track them [12]. In robotics, altimeters are used
on outdoor mobile robots to accurately detect the sun position, and compute the GPS location
from several observations [5]. In computer vision, Jacobs et al.[17] determine the position of
webcams by correlating their intensity variations computed over several months with sunlight
satellite images of the same period.

6.1 Algorithm

In our work, we show how we can estimate the latitude and longitude of the camera, as well
as its geometric parameters, from an image sequence in which the sun and sky are visible. We
introduce the following algorithm:

Algorithm 4: Camera localization from the sun and the sky
Input: Sun position in images: (us, vs);
Input: Clear sky images;
Input: Date and time of capture of each image.

Apply Algorithm 2 on clear sky images to recover fc and θc;1

Compute the sun angles (θsi, φsi) from (fc, θc) and the sun labels (us, vs) using (22);2

Solve the non-linear minimization (23) to estimate the latitude l and longitude L;3

Solve the non-linear minimization (17) to recover the camera azimuth φc.4

Output: Camera parameters: (fc, θc, φc);
Output: Camera latitude and longitude: (l, L).

We now detail lines 2 and 3 of Algorithm 4: how to recover the latitude l and longitude L of
the camera given the date and time of capture, the camera zenith angle θc and focal length fc,
as well as the sun position in images (us, vs). Our approach relies on an equation expressing the
sun zenith and azimuth angles θsg and φsg, as a function of time, date, latitude and longitude
on Earth [31]:

θsg =
π

2
− arcsin

(
sin l sin δ − cos l cos δ cos

πt

12

)
φsg = arctan

( − cos δ sin πt
12

cos l sin δ − sin l cos δ cos πt12

)
,

(20)

where δ is the solar declination in radians, and t is solar time in decimal hours. δ and t are given
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by:

δ = 0.4093 sin
(

2π(J − 81)
368

)
,

t = ts + 0.17 sin
(

4π(J − 80)
373

)
− 0.129 sin

(
2π(J − 8)

355

)
+

12L
π

,

(21)

where ts is standard time in UTC coordinates in decimal hours, and J is the julian date (the
day of the year as an integer in the range 1 to 365).

The relationship between the sun pixel coordinates (us, vs) in the images and its zenith and
azimuth angles θsi and φsi is the following:

θsi = arccos

(
vs sin θc + fc cos θc√

f2
c + u2

s + v2
s

)

φsi = arctan
(
fc sinφc sin θc − us cosφc − vs sinφc cos θc
fc cosφc sin θc + us sinφc − vs cosφc cos θc

)
,

(22)

see Appendix B for the derivation.
Note that at the ground truth GPS location, θsg = θsi and φsg = φsi. We can therefore

recover the GPS location by solving the following least-squares minimization problem:

min
l,L

N∑
k=1

6 (−→s (θ(k)sg , φ
(k)
sg ),−→s (θ(k)si , φ

(k)
si ))2 , (23)

where N is the number of images where the sun has been labeled, 6 (·) denotes the angular
difference, and −→s (θ, φ) is the vector obtained by expressing the angles (θ, φ) in Cartesian coor-
dinates. A solution in l and L can be recovered using a non-linear least-squares optimizer. We
have experimentally found that first minimizing the error on zenith angles 6 (θsg, θsi) and using
its solution to initialize (23) resulted in greater stability. This entire process is summarized in
Algorithm 4.

6.2 Camera localization results

To evaluate the precision of our algorithm, we tested it over a large set of conditions using
synthetic data, as well as on our ground truth sequence.

6.2.1 Synthetic data

We evaluated the performance of our algorithm on synthetic data, obtained by varying the
latitude l, longitude L, camera azimuth angle φc, and number of available images n. The
resulting 4-dimensional parameter space was discretized the following way: 9◦ increments for
both l and L, 23◦ increments for φc, and n = 20, 50, 100. For each point in the that parameter
space, n sun positions are randomly generated according to (20) and (22) with gaussian noise of
variance σ2 = 5px. Each experiment is repeated 15 times to account for randomness, and the
mean over all these tries are reported. Fig. 15 shows the errors (in km) obtained by our algorithm
at every point in this parameter space. Since longitude does not seem to affect the precision of
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(c) n = 100

Figure 15: Error in GPS coordinates estimation, in km, for different values of n: (a) 20, (b) 50,
and (c). Since longitude does not seem to affect the precision of the results, the errors shown
here are averaged over all longitudes. The white cells indicate configurations where the sun is
never visible.

the results, the errors shown are averaged over all values of longitude. The white cells indicate
configurations where the sun is never visible, so the GPS position cannot be recovered. When
n = 100, the mean error is 25km.
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Sequence Ground truth Estimated Error (km)name Latitude (◦) Longitude (◦) Latitude (◦) Longitude (◦)
257 38.97 -76.61 38.47 -76.40 58.44
279 43.32 -84.60 42.06 -84.13 145.82
513 40.20 -79.61 39.42 -80.61 122.25
524 40.41 -77.13 40.09 -77.66 56.72
569 44.00 -103.24 45.21 -103.54 136.65
601 32.69 -96.62 31.72 -95.50 150.78
630 28.98 -98.50 28.58 -97.79 81.53
695 36.60 -79.38 37.77 -79.25 129.84

Table 7: Detail of localization results for 8 sequences taken from the AMOS dataset. On average,
our method makes a localization error of 110km.

6.2.2 Ground truth results

We also applied our technique on 8 sequences from the AMOS database [15], where the ground
truth GPS positions are known. We obtain a mean localization error of 110km (straight-line
distance on the surface of the Earth), and the results for each individual sequence are shown in
Table 7. On average, each sequence was localized by using 48 images as input.

34



7 Application: estimating clouds and sky turbidity

Now that we have recovered camera parameters, either from the sun position or sky appearance,
we demonstrate how to use the same physically-based model to handle challenging weather
conditions. Until now, we have only dealt with clear skies, but alas, this is not always true! In
this section, we present a novel cloud segmentation algorithm which will allow us to deal with
any type of weather.

Clouds exhibit a wide range of textures, colors, shapes, and even transparencies. Segmenting
the clouds from the sky cannot be achieved with simple heuristics such as color-based threshold-
ing as they are easily confounded by the variation in their appearances. On the other hand, our
physically-based model predicts the sky appearance, so any pixel that differs from it is an outlier
and is likely to correspond to a cloud. Using this intuition, we now consider two ways of fitting
our model to skies that may contain clouds. We perform all processing in the xyY color space
because it was determined that it offers the best agreement with the Perez sky model in [31].

7.1 Least-squares fitting

The first idea is to follow a similar approach as we did previously and fit the model (15) in a non-
linear least-squares fashion by adjusting the coefficients a, b, c, d, e and the unknown scale factor
k independently in each color channel. This approach was proposed in [42], and works quite well
in the absence of clouds. When clouds are present, we observe that fitting 5 coefficients gives too
much freedom to the model, so we constrain the optimization and reduce the number of variables
by following [31] and expressing the five weather coefficients as a linear function of a single value,
the turbidity t. Strictly speaking, this means minimizing over x =

[
t k(1) k(2) k(3)

]
:

min
x

3∑
l=1

∑
p∈P

(
y(l)
p − k(l)g(up, vp, θs, φs, τ (l)(t))

)2

, (24)

where l indexes the color channel. Here the camera parameters are fixed, so we omit them
for clarity. The vector τ (l)(t) represents the coefficients (a, . . . , e) obtained by multiplying the
turbidity t with the linear transformation M (l): τ (l)(t) = M (l)

[
t 1

]T. The entries of M (l)

for the xyY space are given in the appendix in [31]. The k(l) are initialized to 1, and t to 2
(low turbidity). Unfortunately, solving this simplified minimization problem yields unsatisfying
results. The L2-norm is not robust to outliers, so even a small amount of clouds will bias the
results.

7.2 Regularized fitting

In order to increase robustness to outliers, we compute a data-driven prior model of clear skies
xc, which we use to add 2 terms to (24): 1) we assign more weight to pixels we believe are part
of the sky; and 2) we penalize parameters with a large L2 divergence from the prior. Equation
(24) becomes

min
x

3∑
l=1

∑
p∈P

wp

(
y(l)
p − k(l)g(up, vp, θs, φs, τ (l)(t))

)2

+ β‖x− xc‖2 , (25)
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Figure 16: Sky-cloud separation example results. First row : input images (radiometrically
corrected). Second row : sky layer. Third row : cloud segmentation. The clouds are color-coded
by weight: 0 (blue) to 1 (red). Our fitting algorithm is able to faithfully extract the two layers
in all these cases.

where, wp ∈ [0, 1] is a weight given to each pixel, and β = 0.05 controls the importance of the
prior term in the optimization. We initialize x to the prior xc.

Let us now look at how xc is obtained. We make the following observation: clear skies should
have low turbidities, and they should be smooth (i.e. no patchy clouds). Using this insight, if
minimizing (24) on a given image yields low residual error and turbidity, then the sky must be
clear. We compute a database of clear skies by keeping all images with turbidity less than a
threshold (we use 2.5), and then keep the best 200 images, sorted by residual error. Given an
image, we compute xc by taking the mean over the K nearest neighbors in the clear sky database,
using the angular deviation between sun positions as a distance measure (we use K = 2). This
allows us to obtain a prior model of what the clear sky should look like at the current sun
position. Note that we simply could have used the values for (a, . . . , e) from Sec. 4.1.1 and fit
only the scale factors k(l), but this tends to over-constrain, so we fit t as well to remain as faithful
to the data as possible. For example, the mean estimated turbidity is t = 2.06 for Sequence 257,
very close to the clear sky model t = 2.17 used in Sec. 4.1.1.

To obtain the weights wp in (25), the color distance λ between each pixel and the prior model
is computed and mapped to the [0, 1] interval with an inverse exponential: wp = exp{−λ2/σ2}
(we use σ2 = 0.01 throughout this paper). After the optimization is over, we re-estimate wp
based on the new parameters x, and repeat the process until convergence, or until a maximum
number of iterations is reached. The process typically converges in 3 iterations, and the final
value for wp is used as the cloud segmentation. Cloud coverage is then computed as 1

|P|
∑
p∈P wp.
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Figure 17: More challenging cases for the sky-cloud separation, and failure cases. First row :
input images (radiometrically corrected). Second row : sky layer. Third row : cloud layer. The
clouds are color-coded by weight: 0 (blue) to 1 (red). Even though the sky is more than 50%
occluded in the input images, our algorithm is able to recover a good estimate of both layers.
The last two columns illustrate a failure case: the sun (either when very close or in the camera
field of view) significantly alters the appearance of the pixels such that they are labeled as clouds.

7.3 Results

Fig. 16 shows typical results of cloud layers extracted using our approach. Note that unweighted
least-squares (24) fails on all these examples because the clouds occupy a large portion of the
sky, and the optimization tries to fit them as much as possible, since the quadratic loss function
is not robust to outliers. A robust loss function behaves poorly because it treats the sky pixels as
outliers in the case of highly-covered skies, such as the examples shown in the first two columns
of Fig. 17. Our approach injects domain knowledge into the optimization by using a data-driven
sky prior, forcing it to fit the visible sky. Unfortunately, since we do not model sunlight, the
estimation does not converge to a correct segmentation when the sun is very close to the camera,
as illustrated in the last two columns of Fig. 17.
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8 Discussion

Before concluding, we discuss three important problems related to the sky-based calibration
algorithm that arise in practice, namely radiometric issues, varying weather conditions, and the
need for date and time of capture. It is important to understand the various elements other
than the camera parameters that may also affect the sky appearance, in order to factor out their
influence and isolate the effects solely due to camera parameters.

8.1 Radiometric issues

Our sky-based algorithm relies on the sky pixel intensities and assumes that they faithfully
represent the real sky radiance. Unfortunately, radiance undergoes a series of unknown trans-
formations [20] before being observed as pixel intensities. In particular, we must consider gain,
dynamic range, camera response function, vignetting, and sensor noise. In this section, we
discuss how each one of these unknown transformations are dealt with in this paper.

Gain is an unknown scale factor which is applied to radiance, and can vary from one image
to the next because of Automatic Gain Control (AGC). Our approach is insensitive to AGC
because it estimates an unknown scale factor k at each image (see Sec. 4.1.3), in which the gain
gets incorporated.

The exposure controls the amount of light that is captured by the camera, and may or may not
vary across images depending on the camera. A particular exposure may result in under-exposed
or saturated pixels when the corresponding scene is too dark or too bright, respectively. These
incorrectly-exposed pixel values have been truncated to fit the dynamic range of the camera,
therefore are not accurate representations of the scene radiance. This problem can be solved by
ignoring pixels that have intensity less than 2/255 or higher than 254/255 in the optimizations.

The camera response function is a (typically non-linear) transformation that maps radiance
values to pixel intensities. This is usually computed by acquiring several images of the same
scene at different exposures [7]. Unfortunately, we cannot assume this is the case in an image
sequence because the frequency of acquisition might be too low, and illumination conditions
might be different from one frame to the next which breaks the constant radiance assumption
of such methods. Instead, we mentioned that we rely on [27], which estimates the response
function from color edges computed over several images. This method suffers from two important
drawbacks: 1) selection of the weight λ, which controls the relative importance between the data
and prior terms in the optimization, has to be done empirically; and 2) the images might not
have enough different colors to cover the entire RGB cube, so the set of available edges might
be restricted to a small region in the color space. Future work includes recovering the camera
response function from techniques which are geared towards using multiple images from the
same [19] or different [22] scenes as input.

Vignetting is a common issue that arises when dealing with low-quality, wide-angle lenses
typical of webcams. It can significantly alter the intensity of pixels located near the corners of
the image. Although elegant vignetting removal solutions have been proposed [20, 22, 43], we
simply ignore pixels that are far from the image center (e.g. 120 pixels for a 320 × 240 pixel
image), and have found this approximation to be sufficient with our test sequences.

The last issue is the one of sensor noise, which can be significant in low-quality webcam
images. Because our algorithm operates on several randomly-chosen sky pixels gathered across
many images, and the Gaussian noise assumption underlying our least-squares minimization ap-
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proach, we have found our algorithm to be robust to the noise level present in our test sequences,
which is also confirmed by the synthetic experiments performed in Sec. 4.3.2.

8.2 Weather conditions

Although we already presented in Sec. 7 how we can represent challenging weather conditions
once the camera parameters have been recovered, recall that finding these very parameters
relied on clear sky images in the first place. We presented in Sec. 5.2.1 two algorithms that
automatically select clear skies to build sets I and J from a large set of images. Unfortunately,
because camera parameters are unknown initially, we had to rely on image-based heuristics to
guide these algorithms. We now discuss how these algorithms are affected by slight variations in
weather conditions, which in turn has an effect on the camera parameters estimation. Luckily,
both of them need not be perfect, and we observe that they are robust to clouds being present
in roughly 10− 15% of their respective input image sets.

Empirically, we observe that building set I (clear skies where the sun does not affect the sky
appearance) succeeds in approximately 90% of the time. The main failure case is when a thin
layer of semi-transparent clouds cover the entire image, and smoothly modify the vertical sky
gradient. Additionally, presence of large amounts of haze close to the horizon is another source
of noise because it is not predicted by the clear sky model. For the set J (clear skies where the
moving sun effect is visible), performance decreases and the automatic method is used in only
25% of the sequences in Table 6. The algorithm typically fails when the sun is very close to the
camera field of view, and induces very large changes in the sky appearance. Unfortunately, these
failure cases can only be detected by manually inspecting the resulting images, so future work
includes determining a better way of finding clear sky images that is more robust to stronger
variations in weather.

8.3 Are date and time of capture necessary?

We have shown in Algorithm 2 that, given only clear sky images, it is possible to estimate the
camera focal length and zenith angle. But can we go further? Could we also recover the azimuth
angle, and even GPS coordinates, given just the images as input?

One possibility would be to have a webcam which captures at precise regular intervals, closely
spaced in time (e.g. every minute), over a very long period of time (e.g. one year). In short,
this regular time spacing gives their time of capture up to translation and scale. From only the
images of such a webcam, it should be possible to track the sun position and get a good estimate
of sunset and sunrise (i.e. when the predicted θs given θc and fc is equal to 90◦). Given many
sunset or sunrise estimates, it might be possible to recover the time translation and scale factor
by correlating their relative sunset/sunrise times with real times gathered from an astronomical
almanac. This could be used to recover the actual date and time of capture of each image.

Unfortunately, real webcams are not so regular: their capture frequency may vary slightly,
they might become unavailable for a period of time, etc. Dropping a single frame would adversely
effect the algorithm, so the feasibility of such an approach imposes undue restrictions on data
capture. The date and time of capture are stored with virtually all captured images and hence
can be exploited, thus avoiding such restrictions on image acquisition.

39



9 Summary

In this paper, we analyze two sources of information available within the visible portion of the
sky region: the sun position, and the sky appearance. From the sun coordinates in images, we
show how we can extract the camera focal length and its zenith and azimuth angles. For the
sky appearance, we express a well-known physically-based sky model in terms of these camera
parameters and fit it to clear sky images using standard minimization techniques. We test our
methods on a high-quality image sequence with known camera parameters, and obtain errors
of less that 1% for the focal length, 1◦ for azimuth angle and 3◦ for zenith angle. We then
show that both these techniques consistently recover the same parameters on synthetic and
real image sequences. We evaluate their performance by calibrating 22 real, low-quality image
sequences distributed over a wide range of latitudes and longitudes. Finally, we demonstrate
that by combining the information available within the sun position and the sky appearance,
we can also estimate the camera geolocation, as well as its geometric parameters. Our method
achieves a mean localization error of 110km on real, low-quality Internet webcams. Once the
camera parameters are estimated, we show how we can use the same model to segment out
clouds from sky and build a novel bi-layered representation. We now plan to use the proposed
sky illumination model to see how it can help us predict the illumination of the scene.

Acknowledgements

The authors would like to thank Nathan Jacobs for sharing his webcam dataset and for fruitful
discussions. We would also like to thank Tom Stepleton, and especially Mohit Gupta for very
helpful suggestions in reviewing this paper. This research is supported in parts by an ONR grant
N00014-08-1-0330 and NSF grants IIS-0643628, CCF-0541307 and CCF-0541230. A. Efros is
grateful to the WILLOW team at ENS Paris for their hospitality. Parts of the results presented
in this paper have previously appeared in [25].

A Calibrating the camera from the sun position: deriva-
tion of the linear system of equations

In Sect. 3, we presented an overview of the method employed to find an initial estimate of the
camera parameters from the sun position gathered over several frames. For completeness, we
now present all the details of the derivation.

Recall the following goal: we wish to recover the projection matrix M, which we constrain

to be of the form M = K
[

R t
0 1

]
, where R and K are defined in (3) and (4) respectively.

Written explicitely, we have:

M =

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 =

 fc sinφc −fc cosφc 0 0
−fc cosφc cos θc −fc sinφc cos θc fc sin θc 0

cosφc sin θc sinφc sin θc cos θc 0

 .
(26)
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Each observation is a pair of sun 3-D coordinates p, and its corresponding location in an image
(us, vs). If mi is the ith row of M, then each observation defines two equations (following [10]):

(m1 − usm3) · s = 0 ,

(m2 − vsm3) · s = 0 .
(27)

If we have N such observations, we can write the linear system of equations from (27) directly
in matrix notation with the form Pm = 0:


x

(1)
w y

(1)
w 0 0 0 −u(1)

s x
(1)
w −u(1)

s y
(1)
w −u(1)

s z
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w

0 0 x
(1)
w y

(1)
w z

(1)
w −v(1)
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s y
(N)
w −v(N)

s z
(N)
w





m11

m12

m21

m22

m23

m31

m32

m33


= 0.

(28)
This is a system of 2N equations and 8 unknowns. When N ≥ 4, homogeneous linear least-
squares can be used to compute the value of the vector m that minimizes |Pm|2 as the solution
of an eigenvalue problem.

Because M is rank-deficient (rank = 2), it can only be recovered up to an unknown scale
factor. However, observe that the third row in M must have unit length [10], so we normalize m
by ε = ±

√
m2

31 +m2
32 +m3

33 before applying (29). After normalization, the camera parameters
(fc, θc, φc) can be recovered by:

θc = arctan

(√
m2

31 +m2
32

m33

)
fc =

√
m2

11 +m2
12

φc = arctan
(
m11

−m12

)
.

(29)

The sign of ε is chosen such that the points s lie in front of the camera (i.e. have positive x
coordinates).

B Expressing the sky model as a function of camera pa-
rameters: full derivation

In Sect. 4.1.3, we presented a way to express the sky model as a function of camera parameters,
which made the assumption that the camera zenith and azimuth angles were independent in
order to come up with a simpler model. In this appendix, we derive the exact expressions for
θp and φp, the zenith and azimuth angles corresponding to a pixel at coordinates (up, vp) in the
image, as illustrated in Fig. 5.
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We first convert the (up, vp) coordinates to a point s′ in the 3-D camera reference frame
(xc,yc, zc), and then rotate it to align it with the global reference frame (xw,yw, zw). The
coordinates of the point in the camera reference frame are

s′ =

 x′s
y′s
z′s

 =

 fc
−up
vp

 . (30)

The rotation that maps the point s′ in the camera reference frame to a point s in the world
reference frame is given by R−1, where R has already been defined in (3). We apply the rotation
to express the point in the world reference frame:

s =

 xs
ys
zs

 = R−1s′ . (31)

Finally, the angles are obtained by converting into spherical coordinates:

θp = arccos

(
zs√

x2
s + y2

s + z2
s

)
, φp = arctan

(
ys
xs

)
. (32)

We obtain the final, exact equations for θp and φp by substituting (30) into (31), and the
resulting expression into (32):

θp = arccos

vp sin θc + fc cos θc√
f2
c + u2

p + v2
p

 (33)

φp = arctan
(
fc sinφc sin θc − up cosφc − vp sinφc cos θc
fc cosφc sin θc + up sinφc − vp cosφc cos θc

)
. (34)

C Determination of minimum angular difference for the
azimuth-independent sky model

In this appendix, we elaborate on the synthetic experiments that are performed in order to
evaluate the conditions in which our azimuth-independent sky model (9) introduced in Sect. 4.1.2
is valid. As in Sect. 4, we consider only clear skies where turbidity t = 2.17 (see the first row of
Fig. 6 for a visualization of the Perez sky model (7) at that particular turbidity).

We proceed to evaluate the influence of the azimuth-dependent component of the Perez sky
model (second factor in (7)). Our goal is to determine sun-camera configurations where that
influence is mostly constant over the image. Given the field of view of the camera, we generate
synthetic sky images over all possible sun positions. More precisely, we generate images that
cover the sun zenith angle θs ∈ [0, π2 ], and the sun relative azimuth angle ∆φs = φs − φc with
respect to the camera ∆φs ∈ [−π, π]. For each synthetic image, we then compute:

r =
max(c∗)
min(c∗)

, (35)
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where c∗ is the mean column in the image, computed over the visible sky region only. In other
words, we summarize the effect of the sun on an image by a single value r, which captures how
the sky columns are affected. When r = 1, the sun has no effect on the sky. Unfortunately, this
is never the case, as the sun will always have some effect on the sky when it is clear. Therefore,
we approximate that the sun has little effect when r ≤ 1.1. In Fig. 18, we plot r over the entire
(θs,∆φs) space. The white lines are the r = 1.1 isocontours, and the shaded regions indicate
configurations where r < 1.1.

For the typical case of 35◦ field of view shown in Fig. 18b, we can safely affirm that when
the sun is at least 100◦ away from the camera field of view, then r ≤ 1.1, except in a region
located immediately behind the camera where it rises up to r = 1.2. When the field of view
diminishes to 20◦ as in Fig. 18a, then the number of sun-camera configurations where r ≤ 1.1 is
much larger, as the sun has to be closer to the camera to induce a noticeable influence on the
sky appearance. The opposite effect is observed in the case of a larger field of view, as shown in
Fig. 18c.

In conclusion, we used synthetic experiments to explore the validity of our azimuth-independent
sky model (9), and we showed that for standard cameras, the sun has little influence on the sky
when it is at least 100◦ away from the camera field of view.
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