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Abstract

Why does placing an object from one photograph into
another often make the colors of that object suddenly look
wrong? One possibility is that humans prefer distributions
of colors that are often found in nature; that is, we find
pleasing these color combinations that we see often. An-
other possibility is that humans simply prefer colors to be
consistent within an image, regardless of what they are. In
this paper, we explore some of these issues by studying the
color statistics of a large dataset of natural images, and
by looking at differences in color distribution in realistic
and unrealistic images. We apply our findings to two prob-
lems: 1) classifying composite images into realistic vs. non-
realistic, and 2) recoloring image regions for realistic com-
positing.

1. Introduction
Consider the images shown on Figure 1. Only two of

them are real. The rest are composite images – created by
taking an object from one image and pasting it into a dif-
ferent one. The four synthetic images have been picked
from a set of automatically generated composites and, as
you can see, some look reasonably real while others appear
quite fake. What is it, then, that makes a composite image
appear real? Clearly, scene semantics and geometry play
a key role [2] – a car floating in midair or twice as big as
other cars would instantly appear out of place. In this paper,
we will assume that these high-level scene structural issues
have been dealt with (for an example of a user-guided ap-
proach, see [10]). Here, we are interested in investigating
the more subtle artifacts that appear even if the semantic
composition of the scene is correct (e.g. right column of
Figure 1).

Difference in scene lighting between the source and des-
tination images is one important consideration. The same
object photographed under two different types of illumina-
tion (in a thick forest vs. a sunny beach) will usually have
a strikingly different appearance. But does this mean that
differently lit objects when placed in the same image will

Figure 1. There are only two real images in this montage. Can you
identify them?

always appear inconsistent to a human observer? Not nec-
essarily. Cavanagh [3] uses examples from art to demon-
strate that humans are curiously unaware of the great liber-
ties that artists often take with physics, including impossi-
ble lighting, inconsistent shadows, and incorrect reflections.
Actually, this is not too surprising, considering that it is ex-
tremely difficult for both human and computers to estimate
the true lighting environment map from a single image. But
one important component of lighting that is readily avail-
able in an image is color. Indeed, the experience of Photo-
shop artists confirms that “getting color right” is one of the
most important tasks for good image composites [1]. There-
fore, in this paper, we have chosen to concentrate on the role
of color in image compositing.

1.1. The Role of Color

The first question one must ask is whether color itself is
the important cue for visual compatibility or just a manifes-
tation of some higher-order semantic relationships? Do we
prefer certain shades of green with certain shades of blue, or
do we just like to see grass and sky together? This is a very
difficult question. While the experience of graphic design-
ers as well as recent work on color harmony [5] suggests
that humans do prefer palettes of certain colors over others,
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it is likely that object identity also plays a role. In this pa-
per, we plan to investigate how far we can get without the
use of explicit semantic information.

Our second question relates to the nature of color com-
patibility. Do different pairs of colors simply appear to be
more or less compatible with each other? Or perhaps com-
patibility is evaluated over entire color distributions rather
than individual colors? In this paper, we will take a first step
in trying to answer some of these questions.

1.2. Prior Work

In computer graphics, people have long been interested
in methods for adjusting the colors of one image to make it
match the “color mood” of another image. In a much-cited
work, Reinhard et al. [16] propose a very simple technique
based on matching the means and variances of marginal
color distributions between images using the Lαβ color
space. The central assumption of the method is that the
marginal color distributions of the object and its background
should match. This technique was applied to compositing of
synthetic objects into real videos [15], although no quantita-
tive evaluation of the method’s effectiveness was presented.
While this makes sense for some cases, often you find an
object becoming very greenish due to being pasted into a
forest scene. To address this problem, Chang et al. [4] pro-
posed to first assign each pixel to one of 11 “basic color
categories” obtained from psycho-physical experiments and
relating to universal color naming in languages. The color
adjustment is then performed only within each category.
This method produces much more pleasing results (on the
7 images shown) but, again, no quantitative evaluation is
performed. The Color Harmonization approach [5] adjusts
the hue values of the image color-map according to a pre-
defined set of templates that are thought to encode color
harmony. Alternatively, Pérez et al. [14] propose to copy
the object gradients and reintegrate to get the colors. While
this approach results in a seamless insertion, it often gen-
erates noticeable artifacts such as color bleeding or severe
discoloration when the object and background have dissim-
ilar color distributions (again, these works are difficult to
evaluate since no quantitative results are shown).

Computer vision researchers are more interested in the
task of classifying images based on various characteris-
tics. Farid and colleagues have done extensive work on
using higher-order image statistics for a variety of tasks,
including distinguishing between computer renderings and
photographs [12], detecting digital tampering, finding art
fakes [13], etc. However, their efforts are directed towards
detecting differences that are not perceptible to a human ob-
server, whereas our goals are the opposite. Cutzu et al. [6]
present a neat technique for distinguishing paintings from
photographs based on the color distribution of the image.
Their insight is that paintings are likely to exhibit more

color variation than photographs because it is difficult to
mix paints that have the same chromaticity but different in-
tensity. Ke et al. [9] propose a set of high-level image fea-
tures for assessing the perceived artistic quality of a photo-
graph. Their color features include a measure of histogram
similarity to a set of high-quality photographs, as well as an
estimate of hue variation in the image (apparently, profes-
sional photos have fewer hues).

The classic paper by Forsyth [8] has spawned a large
body of work in color constancy. However, their goals
are different: retrieve the illuminant under which a given
scene was lit, from a list of known illuminants. One method
related to the present work has been introduced by Fin-
layson et al. [7], in which they determine the illumination
based on nearest-neighbor matching to a set of illumination
palettes. More recently, Lalonde et al. [10] presented a data-
driven technique for image compositing that uses a coarse
illumination context descriptor to find scenes with similar
lighting in a large database.

1.3. Overview

In this paper, our goal is to use color information to au-
tomatically predict whether a composite image such as the
ones in Figure 1 will look realistic or not to a human ob-
server. In the pursuit of this endeavor, two different and
complementary approaches are evaluated.

The first approach utilizes the fact that phenomena that
happen in the real world are, by definition, natural. This
translates to the hypothesis that colors in an image will look
realistic if they appear in real images with high probabil-
ity [11]. We pose the problem as follows: given a set of
colors (a palette), what are the other color palettes that are
likely to co-occur in the same image? In Section 3, we pro-
pose several ways to estimate color palette co-occurences.

Our second approach does not consider global color
statistics and makes the assumption that a composite image
will look realistic if the object and background colors have
similar distributions. This idea is directly inspired by the
work of Reinhard et al. [15], which has never been evalu-
ated rigorously on a large number of examples. We propose
to extend the work using a better color representation and
provide an extensive comparative evaluation in Section 4.

Finally, from the intuitions gathered while evaluating the
global and local approaches, we suggest a way of combin-
ing them into a single classifier. Section 5 presents this com-
bined approach and compares it to using either technique by
itself. As an additional application, we show in Section 6
how to automatically shift the colors of an unrealistic ob-
ject to make it look more realistic in its new scene.

2. Generating the Composite Image Dataset
In order to compare the different approaches pro-

posed, a dataset of synthetic images was generated semi-



Figure 2. Example images randomly selected from our test set. Top row: Real images. Middle row: Realistic synthetic images. Bottom
row: Unrealistic synthetic images. The entire test database used to produce the results presented in this paper contains a total of 1000
images and was semi-automatically generated from images taken from the LabelMe database [18].

automatically1.
Since the process of manual image compositing can be

long and tedious, we seek to automatically generate com-
posite images that will look right semantically, i.e. objects
should be at the appropriate locations in the resulting im-
ages. We propose a very simple algorithm to generate se-
mantically correct images by utilizing a large segmentation
dataset. We use the popular LabelMe image database [18]
which contains roughly 170,000 labeled objects. We first
remove all incomplete objects by searching the label strings
for words “part”, “occlude”, “regions” and “crop”. We
then manually group objects that have similar labels, and
end up with the following 15 most frequently-occurring
objects in the dataset: “building”, “bush”, “car”, “field”,
“foliage”, “house”, “mountain”, “person”, “road”, “rock”,
“sand”, “sky”, “snow”, “tree”, and “water”.

Because segmentations are available, we can create a
synthetic composite by starting with an image, and replac-
ing one of its objects by another one of the same semantic
type and shape. The algorithm only selects the objects that
occupy at least 5% and at most 60% of their corresponding
image area. The shape matching is done by computing the
SSD over blurred and subsampled object masks, allowing
for translations. Once the best matching object is found, we
paste it onto the original image and apply linear feathering
along the border to mask out potential seams. Even though
this algorithm is very simple, it performs surprisingly well
(see Figures 1 and 2), because it exploits the richness of the
dataset.

1The dataset is publicly available online.

Some of the automatically generated composite images
happen to have matching colors and appear quite realistic,
while others have color distributions that make them look
unrealistic. Sometimes, however, the automatic procedure
fails completely, producing results that are structurally in-
consistent and obviously wrong. We label those as unsuc-
cessful and manually remove from the test data. We asked
three human observers with normal color vision to label the
remaining images as either realistic or unrealistic. The real-
istic class is augmented with randomly selected real images
from the dataset. For real images, a random object in that
image is selected to be the tested inserted object. Our fi-
nal test set is composed of 360 unrealistic, 180 real, and
180 realistic images. Figure 2 shows examples of typical
real and synthetic (realistic and unrealistic) images in our
test set, which remained identical for all the experiments
performed in this paper. We also employ a much larger
and non-overlapping part of the LabelMe dataset contain-
ing 20,000 images to compute the natural color statistics in
the following experiments.

3. Global Natural Color Statistics
In this section, our aim is to find a way to test the natural-

ness of colors in a given image by computing their similarity
with global color statistics accumulated over a large set of
real images. We propose three ways of doing so.

3.1. Universal Color Palette

The simplest way of modeling the joint natural color
distribution is to assume that an image is generated ac-



Figure 3. Most and least realistic images ranked by the universal palette algorithm. Top row: 7 most realistic images in the test database.
Bottom row: 7 least realistic images. Note that this first-order analysis is completely unable to tell apart realistic images from unrealistic
ones.

cording to a single, global distribution, which is the same
for all images. This assumes the existence of a universal
palette, from which all natural images are generated. While
this first-order assumption is restrictive, we can easily esti-
mate the joint distribution of all training images by comput-
ing a global 3-dimensional joint histogram in CIE L*a*b*
color space. Given a new image, we compute its color his-
togram, and compare it to the global model. Unless other-
wise noted, all experiments in this paper are performed in
the CIE L*a*b* color space using 3-D joint histograms with
1003 bins. Figure 3 presents images that are close (top row)
and far (bottom row) from this global distribution, using the
χ2-distance metric for histogram comparison. It illustrates
that the universal palette has the tendency to (falsely) pre-
dict that images with a single, saturated color are less likely
to be realistic. Whereas this approach is clearly not use-
ful in our image realism classification setting, it might still
have interesting applications, such as finding striking and
unusual color photographs in a large dataset (see Figure 3,
bottom row).

3.2. Expected Color Palette

While the universal palette is easy to compute, it appears
not to be powerful enough to model the complexity of natu-
ral images because it only models first-order color statistics.
A better approach would be to consider pairs of colors that
appear together in the same image. Given a 3-dimensional
color space, this is a 6-dimensional function that represents
the probability of observing a color distribution given a sin-
gle color. Stated differently, it is modeling the palette that is
likely to co-occur together with a particular color in a real
image.

We represent this distribution by a 6-dimensional his-
togram of 166 bins. For every color in every object in the
entire training dataset, we compute the histogram of all the
colors occurring in that objet’s background region. For test-
ing: given a composite image composed of an object and its

background, we sample the 6-D histogram by marginaliz-
ing over all the colors in the object and compare it with the
histogram of the background.

Unfortunately, this method performs only marginally
better than the first-order approximation, and still does not
yield satisfying results on our test dataset. To quantitatively
compare the different techniques, we use the χ2-distance
metric to assign a realism score to every image in our test
dataset and construct ROC curves; the same procedure is
used in the remainder of the paper. In our experiments,
the area under the ROC curve for the universal palette is
0.59, and 0.61 for the second-order. Several reasons ex-
plain this poor performance: the 6-dimensional histogram is
likely too coarse and smoothes over important color shades.
More importantly, this model only represents a single ex-
pected palette given a single color, which is not enough to
capture the complexity of our visual world. For instance,
blue sky co-occurs with grass, roads, seas, cities, etc. each
of which might exhibit very different color palettes. Since
this method is computing the average over all observed in-
stances, it is not powerful enough to model each of them
jointly.

3.3. Data-Driven Color Palette

To address the limitations of the previous method, we
would ideally need to know the co-occurences of all pos-
sible color palettes. Since this number is huge, we would
require a prohibitively large number of images and comput-
ing power to compute them.

Although it might be possible to employ the recent
method of Yang et al. [19] to extract a more powerful co-
occurence feature, we note instead that because we have
large amounts of real data with labelled objects, we can use
a nearest-neighbor approach to approximate this distribu-
tion directly. Given the object color palette, we find a set of
k most similar-looking objects based on color (k-NN), and
approximate its expected co-occurring palette by the best-



α 0 0.25 0.5 0.75 1
ROC AUC 0.59 0.69 0.74 0.79 0.74

Table 1. Influence of color and texture on the nearest-neighbor re-
trieval. Using texton only (α = 0) fails to return good nearest
neighbors, and maximum performance is obtained when α = 0.75
(in bold). Scores are obtained by computing the ROC area under
the curve (AUC) on our test set.

matching background in this k set. This method yields an
area under the ROC curve of 0.74, a significant improve-
ment over the previous techniques.

Can we improve its performance further? Let’s consider
an example. When determining if a tree matches a particu-
lar forest scene, it might be more important to look for simi-
lar forest images, which typically have very consistent color
palettes, than for green buildings which might exhibit dif-
ferent shades of green and still look realistic. Clearly, incor-
porating object recognition could greatly help in matching
similar scenes. Here, we experiment with a weak recogni-
tion cue by using texture matching between images.

First, a texton dictionary of 1000 instances is learned by
clustering 32-dimensional oriented filter responses on our
20,000 training images. A texton histogram can then be
computed for each object and associated background in the
training data and be used in the k-NN process.

To evaluate the distance between two objects, we take
a linear combination of their color and texton histograms
χ2-distances. A parameter α is used to control the relative
importance of color and texture, where α = 0 indicates only
texture, and α = 1 means only color. In Table 1, we provide
a comparative evaluation using α = {0, 0.25, 0.5, 0.75, 1},
progressively increasing the influence of color. We ob-
serve that texture information improves upon results ob-
tained with color only, but is ineffective when used alone,
which seems to confirm our intuition.

The limitations of such an approach is that it wholly de-
pends on the training data. Given the huge dimensional-
ity of the space of all scenes, we cannot expect to find a
matching scene for any given image, even with a dataset of
20,000 images. We will now investigate a different, more
local class of techniques, which can hopefully compensate
when the training data cannot help.

4. Local Color Statistics
Reinhard et al. [15] have demonstrated a very simple

way of making an object match its background by shifting
its colors to make them closer to the background colors. The
intuition behind this idea is that this shift appears to be in-
creasing the correlation between the object and background
illuminants. For example, the reddish hue of a sunset sky
should appear on all objects in the scene. An object taken
from a bright day scene can be made to look better in the

technique marginals joint joint with texture
ROC AUC 0.66 0.76 0.78

Table 2. Summary of local techniques. The best performance
(bold) is obtained by combining a joint histogram representation
with texture matching using texton histograms. Scores are ob-
tained by computing the ROC area under the curve (AUC) on our
test set.

new sunset background by shifting its colors towards red.
While their application is in image recoloring, it can also be
used in our context by computing the distance between the
object and its new background colors.

The color description used in [15] is a simple marginal
histogram in Lαβ color space. A straightforward improve-
ment is to use the full 3-D joint histograms instead of
marginals because color components are still quite corre-
lated even in Lαβ. Interestingly, this yields substantial im-
provement, going from an area under the ROC curve of 0.66
for marginals to 0.76 for joint on our test data, at the cost
of a higher-dimensional representation. The same intuition
of using texture as mentioned in the previous section also
applies here, and improves performance as well, as shown
in Table 2.

5. Combining Global and Local Statistics
Let us consider for a moment the two techniques intro-

duced in the previous sections. When the global method
yields a high realism score, we can be confident that it is
correct because it relies on matches to actual real scenes.
However, when it is uncertain, it means that no good match
was found, and the results are not reliable. We can then only
rely on the local approach. This suggests that we can com-
bine both global and local ideas into one coherent classifier.

We propose a two-stage cascade. First, the algorithm
computes the distance to the nearest-neighbor according to
the best global measure from Section 3. If the match is
good enough (as determined by a threshold τ ), it classifies
this image as realistic. Otherwise, it uses the local method
from Section 4 to assign a realism score. We use 10-fold
cross-validation on our labeled dataset to determine the best
parameter τ (0.35 in our case) which will maximize the area
under the ROC curve.

Figure 4 shows the ROC curves for the best techniques
presented in this paper. We compare our techniques against
the baseline proposed by Reinhard et al. [15]. The results
clearly show that combining the global and local techniques
results in performance superior to any single one. In another
paper [16], they make a point of using Lαβ color space. We
performed each experiment by using the Lαβ, CIE L*a*b*,
HSV and RGB color spaces and found that the CIE L*a*b*
color space performs the best, closely followed by Lαβ.

In Figure 5, we show a visual representation of the rank-



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC curve comparison, overview

 

 

Combination of local and global (0.81)
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Figure 4. The ROC curves comparing the best approaches of the
global and local categories, as well as the combination of both,
shown against the baseline method, suggested by Reinhard et
al. [15]. The combination of both local and global methods outper-
forms any single method taken independently, and is significantly
better than the baseline approach.

ings produced by our combined classifier on our test set.
Images are shown ranging from least (top) to most (bottom)
realistic. Ground truth labels are illustrated by color bor-
ders: a red border indicates an unrealistic image, green and
blue indicates realistic and real respectively. It is interesting
to observe the output of the algorithm at mid-range where
confusion is higher: even for humans, assessing image re-
alism is much less obvious and requires a more careful in-
spection than for images at both ends of the spectrum.

6. Application to Automatic Image Recoloring
An interesting application as well as a visual evaluation

of this technique is the recoloring of an image to make it
appear more realistic. The idea is to first classify the im-
age using our proposed method and retrieve either a nearest
scene (if the global method is used), or the determination
that no matching global scene is available. In the first case,
we need to recolor the object to match the colors of simi-
lar objects in that nearest scene. In the second case, we can
only try to make the object more similar to its surroundings,
as in [15].

The goal of recoloring is to modify a source color distri-
bution Ds in order to match a target color distribution Dt.
In our setting, Ds represents the object colors, andDt is the
nearest neighbor object if the global method is used, or the
background otherwise.

Our color matching procedure is an automatic extension
of the interactive recoloring approach from [16], where they
propose to represent both Ds and Dt by k color clusters,
with k being manually chosen to be the number of major
colors in the scene. Each cluster in Ds is matched to a clus-

ter in Dt by comparing their means and variances.

Instead, we propose an entirely automatic algorithm.
Each color distribution is represented by a mixture of k
spherical gaussians (k = 100 and remains constant for all
images), and the distributions are matched in a soft way us-
ing the solution to the well-known transportation problem.
The algorithm is divided in three steps. First, we use the
Earth Mover’s Distance algorithm [17] to compute the best
assignment between the clusters in Ds and Dt. Second,
color shift vectors for each cluster in Ds are computed as a
weighted average of its distance in color space to each of its
assigned clusters inDt. Finally, every pixel inDs can be re-
colored by computing a weighted average of clusters shifts,
with weights inversely proportional to the pixel-cluster dis-
tance. These three steps are performed in the CIE L*a*b*
color space, and the results are converted back to RGB for
visualization. Examples of recoloring using the global and
local models are illustrated in Figure 6, and show that we
can automatically improve the realism of composite images
by using the same general approach.

7. Conclusion

In this paper, we study the problem of understanding
color compatibility using image composites as a useful ap-
plication domain. We propose two measures for assessing
the naturalness of an image: 1) a global, data-driven ap-
proach that exploits a large database of natural images, and
2) a local model that depends only on colors within the
image. We show that while both techniques provide sub-
stantial improvement over previous work, the best approach
needs to use both techniques for different types of images.

We evaluate our approach on a large test dataset of syn-
thetic images, generated by a novel semi-automatic tech-
nique. We are the first work in this field to provide a quanti-
tative evaluation and we demonstrate performance superior
to the state of the art method [15]. We also qualitatively val-
idate our approach using a novel image recoloring method
that makes composite images look more realistic.

A number of issues, such as position of objects in the
image, object semantics and material properties still need
to be addressed. While this paper is only a first step,
lessons learned from the presented experiments should be
extremely useful to steer this area towards a better under-
standing of natural color statistics and color perception.
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(e) (f) (g) (h)
Figure 6. Automatic image recoloring. The input images (a,b,c,d) are recolored by using the local (e,f) and the global statistics (g,h).
Recoloring these unrealistic input images increases their realism.
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