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Abstract. Detecting shadows from images can significantly improve the
performance of several vision tasks such as object detection and track-
ing. Recent approaches have mainly used illumination invariants which
can fail severely when the qualities of the images are not very good, as is
the case for most consumer-grade photographs, like those on Google or
Flickr. We present a practical algorithm to automatically detect shadows
cast by objects onto the ground, from a single consumer photograph. Our
key hypothesis is that the types of materials constituting the ground in
outdoor scenes is relatively limited, most commonly including asphalt,
brick, stone, mud, grass, concrete, etc. As a result, the appearances of
shadows on the ground are not as widely varying as general shadows
and thus, can be learned from a labelled set of images. Our detector
consists of a three-tier process including (a) training a decision tree clas-
sifier on a set of shadow sensitive features computed around each image
edge, (b) a CRF-based optimization to group detected shadow edges to
generate coherent shadow contours, and (c) incorporating any existing
classifier that is specifically trained to detect grounds in images. Our re-
sults demonstrate good detection accuracy (85%) on several challenging
images. Since most objects of interest to vision applications (like pedes-
trians, vehicles, signs) are attached to the ground, we believe that our
detector can find wide applicability.

1 Introduction

Shadows are everywhere! Yet, the human visual system is so adept at filtering
them out, that we never give shadows a second thought; that is until we need
to deal with them in our algorithms. Since the very beginning of computer vi-
sion, the presence of shadows has been responsible for wreaking havoc on a wide
variety of applications, including segmentation, object detection, scene analysis,
stereo, tracking, etc. On the other hand, shadows play a crucial role in deter-
mining the type of illumination in the scene [1, 2] and the shapes of objects that
cast them [3]. But while standard approaches, software, and evaluation datasets
exist for a wide range of important vision tasks, from edge detection to face
recognition, there has been comparatively little work on shadows in the last 40
years. Approaches that use multiple images [4], time-lapse image sequences [5, 6]
or user inputs [7–9] have demonstrated impressive results, but detecting shadows
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reliably and automatically from a single image remains an open problem. This
is because the appearances and shapes of shadows outdoors depend on several
hidden factors such as the color, direction and size of the illuminants (sun, sky,
clouds), the geometry of the objects that are casting the shadows and the shape
and material properties of objects onto which the shadows are cast.

Most works for detecting shadows from a single image are based on com-
puting illumination invariants that are physically-based and are functions of
individual pixel values [10–14] or the values in a local image neighborhood [15].
Unfortunately, reliable computations of these invariants require high quality im-
ages with wide dynamic range, high intensity resolution and where the camera
radiometry and color transformations are accurately measured and compensated
for. Even slight perturbations (imperfections) in such images can cause the in-
variants to fail severely (see Fig. 4). Thus, they are ill-suited for the regular
consumer-grade photographs such as those from Flickr and Google, that are
noisy and often contain compression, resizing and aliasing artifacts, and effects
due to automatic gain control and color balancing. Since much of current com-
puter vision research is done on consumer photographs (and even worse-quality
photos from the mobile phones), there is an acute need for a shadow detector
that could work on such images.

Our goal is to build a reliable shadow detector for consumer photographs of
outdoor scenes. While detecting all shadows is expected to remain hard, we ex-
plicitly focus on the shadows cast by objects onto the ground plane. Fortunately,
the types of materials constituting the ground in typical outdoor scenes are (rel-
atively) limited, most commonly including concrete, asphalt, grass, mud, stone,
brick, etc. Given this observation, our key hypothesis is that the appearances of
shadows on the ground are not as widely varying as the shadows everywhere in
the scene and can be learned from a set of labelled images of real world scenes.
This restriction by no means makes the problem trivial: the ground shadow de-
tector still needs to contend with myriad other non-shadow visual manifestations
such as markings and potholes on the roads, pavement/road boundaries, grass
patterns on lawns, etc. Further, since many objects (pedestrians, vehicles, traffic
signs, etc) of interest to vision applications, are attached to the ground and cast
shadows onto the ground, we believe such a ground shadow detector will find
wide applicability.

1.1 Overview

Our approach consists of three stages depending on the information in the image
used. In the first stage, we will exploit local information around edges in the
image. For this, we compute a set of shadow sensitive features that include the
ratios of brightness and color filter responses at different scales and orientations
on both sides of the edge. These features are then used with a trained decision
tree classifier to detect whether an edge is a shadow or not. The idea is that
while any single feature may not be useful for detecting all ground shadows,
the classifier is powerful enough to choose the right features depending on the
underlying edge region. In order to make the classifier robust to non-shadow



3

edges, a negative training set is constructed from a set of edges not on the ground
and those arising due to road markings, potholes, grass/mud boundaries, etc.
Surprisingly, this simple procedure yields 80% classification accuracy on our test
set of images randomly chosen from Flickr and LabelMe [16].

In the second stage, we enforce a grouping of the shadow edges using a Con-
ditional Random Field (CRF) to create longer contours. This is similar in spirit
to the classical constrained label propagation used in mid-level vision tasks [17].
This procedure connects likely shadow edges, discourages T-junctions which are
highly unlikely on shadow boundaries, and removes isolated weak edges. But
how do we detect the ground in an image? For this, in the third stage, we in-
corporate a global scene layout descriptor within our CRF, such as the 3-way
ground-vertical surface-sky classifier by Hoiem et. al [18]. Since the scene layout
classifier is trained on the general features of the scene and not the shadows, we
are able to reduce the number of false-positive (non-shadow) detections outside
the ground. Our results show that the shadow detection results improve by 5%
with this step.

We demonstrate successful shadow detection on several images of natural
scenes that include beaches, meadows and forest trails, as well as urban scenes
that include numerous pedestrians, vehicles, trees, roads and buildings, cap-
tured under a variety of illumination conditions (sunny, partly cloudy, overcast).
Similarly to the approach of Zhu et al. [19], our method relies on learning the
appearance of shadows based on image features, but does so by using full color
information. We found that using color features and incorporating knowledge of
the ground location improve classification results as much as 10% on our test set.
While our technique can be used as a stand-alone shadow detector, we believe
it can also be tightly integrated into higher level scene understanding tasks.

2 Learning local cues for shadow detection

Our approach relies on a classifier which is trained to recognize ground shadow
edges by using features computed over a local neighborhood around the edge. We
show that it is indeed possible to obtain good classification accuracy by relying
on local cues, and that it can be used as a building block for subsequent steps.
In this section, we describe how to build, train, and evaluate such a classifier.

2.1 From pixels to boundaries

We first describe the underlying representation on which we compute features.
Since working with individual pixels is prone to noise and computationally ex-
pensive, we propose to instead reason about boundaries, or groups of pixels along
an edge in the image. To obtain these boundaries, we first smooth the image with
a bilateral filter [20], compute gradient magnitudes on the filtered image, and
then apply the watershed segmentation algorithm on the gradient map. Fig. 1(b)
shows a close-up example of such boundaries.
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(a) Input image (b) Boundaries (c) Strong boundaries (d) Output

Fig. 1. Processing stages for the local classifier. The input image (a) is over-segmented
into thousands of regions to obtain boundaries (b). Weak boundaries are filtered out by
a Canny edge detector (c), and the classifier is applied on the remainder. (d) shows the
boundaries i for which P (yi = 1|x) > 0.5. Note the correct classification of occlusion
contours around the person’s legs and the reflectance edges in the white square between
the person’s feet.

An undesirable consequence of the watershed segmentation is that it gener-
ates boundaries in smooth regions of the image (Fig. 1(b)). To compensate for
this, we retain only those boundaries which align with the strong edges in the
image. For this, we use the canny edge detector at 4 scales to account for blurry
shadow edges (σ2 = {1, 2, 4, 8}), with a high threshold empirically set to t = 0.3.
Under these conditions, we verified that the initial set of boundaries contain
more than 97% of the true shadow edges in our dataset. For example, Fig. 1(c)
shows the set of boundaries on which our classifier is evaluated for that image.

2.2 Local shadow features

We now describe the features computed over each boundary in the image. A
useful feature to describe a shadow edge is the ratio of color intensities on both
sides of the edge (e.g. min divided by max) [21]. The intuition is that shadows
should have a specific ratio that is more or less the same across an image, since
it is primarily due to the differences in natural lighting inside and outside the
shadow. Since it is hard to manually determine the best color space [22] or best
scale to compute features, we use 3 different colors spaces (RGB, LAB, [23])
and 4 different scales, and let the classifier automatically select the relevant
features during the training phase. Although color-based features are bound to
be affected by camera non-linearities, we found these ratios to work well across
a wide range of cameras and capture conditions.

For a pixel along a boundary, we compute the intensity on one side of the
edge (say, the left) by evaluating a weighted sum of pixels on the left of the edge.
But which pixels to choose? We could use the watershed segments, but they do
not typically extend very far. Instead, we use an oriented gaussian derivative
filter of variance σ2, but keep only its values which are greater than zero. We
align the filter with the boundary orientation such that its positive weights lie
on the left of the boundary and convolve it with the image to obtain fl. The
same operation is repeated with the filter rotated by 180◦ to obtain the weighted
mean of pixels on its right fr. Color ratios can then be computed at pixel p by
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min(fl(p),fr(p))
max(fl(p),fr(p)) . This is done independently for each color channel of the RGB,
LAB, and illumination-invariant [23] color spaces. To account for edge sharpness,
we compute each filter at 4 different scales σ2 = {1, 2, 4, 8} and size 2σ2, to obtain
36 ratios in total.

We also employ two features suggested in [19] which capture the texture
and intensity distribution differences on both sides of a boundary. The first
feature computes a histogram of textons at 4 different scales, and compares them
using the χ2-distance. The texton dictionary was computed on a non-overlapping
set of images. The second feature computes the difference in skewness of pixel
intensities, again at the same 4 scales.

Finally, we concatenate the absolute value of the minimum filter response
min(fl(p), fr(p)) computed over the intensity channel to obtain the final, over-
complete, 48-dimensional feature vector at every pixel. Boundary feature vectors
are obtained by averaging the features of all pixels that belong to it.

2.3 Classifier

Having computed the feature vector xi at each strong boundary in the image,
we can now use them to train a classifier to learn the probability P (yi|xi) that
boundary i is due to a shadow (which we denote with label yi). We estimate that
distribution using a logistic regression version of Adaboost [24], with twenty 16-
node decision trees as weak learners. This classification method provides good
feature selection and outputs probabilities, and has been successfully used in a
variety of other vision tasks [18, 25].

To train the classifier, we selected 170 images from LabelMe [16], Flickr,
and the dataset introduced in [19], with the only conditions being that the
ground must be visible, and there must be shadows. The positive training set
contains manually labelled shadow boundaries, while the negative training set is
populated with an equal amount of strong non-shadow boundaries on the ground
(e.g. street markings) and occlusion boundaries.

We obtain a per-boundary classification accuracy of 79.7% (chance is 50%,
see Fig. 5 for a breakdown per class). See Fig. 1(d) for an example. This result
support out hypothesis: while the appearance of shadows on any type of material
in any condition might be impossible to learn, the space of shadow appearances
on the ground in outdoor scenes may not be that large after all!

3 Creating shadow contours

Despite encouraging results, our classifier is limited by its locality since it treats
each boundary independently of the next. However, the color ratios of a shadow
boundary should be consistent with those of its neighbors, since the sources illu-
minating nearby scene points should also be similar. Thus, we can exploit higher
order dependencies across local boundaries to create longer shadow contours as
well as remove isolated/spurious ones.
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(a) (b)

Fig. 2. Creating shadow contours by enforcing local consistency. Our CRF formulation
may help to (a) bridge the gap across X-junctions where the local shadow classifier
might be uncertain, and (b) remove spurious T-junctions which should not be caused
by shadows.

To model these dependencies, we construct a graph with individual bound-
aries as nodes (such as those in Fig. 1(b)) and drawing an edge across bound-
aries which meet at a junction point. We then define a CRF on that graph,
which expresses the log-likelihood of a particular labeling y (i.e. assignment of
shadow/non-shadow to each boundary) given observed data x as a sum of unary
φi(yi) and pairwise potentials ψi,j(yi, yj):

− logP (y|x;λ, β) = λ
∑
i∈B

φi(yi) +
∑

(i,j)∈E

ψi,j(yi, yj)− logZλ,β , (1)

where B is the set of boundaries, E the set of edges between them, and λ and
β are model parameters. In particular, λ is a weight controlling the relative
importance of the two terms. Zλ,β is the partition function that depends on the
parameters λ and β, but not on the labeling y itself.

Intuitively, we would like the unary potentials to penalize the assignment of
the “shadow” label to boundaries which are not likely to be shadows according
to our local classifier. This can be modeled using

φi(yi) = − logP (yi|xi) . (2)

We would also like the pairwise potentials to penalize the assignment of
different labels to neighboring boundaries that have similar features, which can
be written as

ψi,j(yi, yj) = 1(yi 6= yj) exp(−β‖xi − xj‖22) , (3)

where 1(·) is the indicator function, and β is a contrast-normalization constant
as suggested in [26]. In other words, we encourage neighboring shadows which
have similar features and strong local probabilities to be labelled as shadows.

The negative likelihood in (1) can be efficiently minimized using graph cuts [27–
29]. The free parameters were assigned the values of λ = 0.5 and β = 16 obtained
by 2-fold cross-validation on a non-overlapping set of images.

Applying the CRF on our test images results in an improvement of roughly
1% in total classification accuracy, for a combined score of 80.5% (see Fig. 5-
(b)). But more importantly, in practice, the way the CRF is setup encourages
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(a) Input (b) Local classifier (c) Shadow contours

(d) Ground likelihood [18] (e) Combining (c) and (d)

Fig. 3. Incorporating scene layout for detecting cast shadows on the ground. Applying
our shadow detector on a complex input image (a) yields false detections in the vertical
structures because of complex effects like occlusion boundaries, self-shadowing, etc. (b)
& (c). Recent work in scene layout extraction from single images [18] can be used to
estimate the location of the ground pixels (d). We show how we can combine scene
layout information with our shadow contour classifier to automatically detect cast
shadows on the ground (e).

continuity, crossing through X-junctions, and discourages T-junctions as shown
in Fig. 2. Since shadows are usually signaled by the presence of X-junctions and
the absence of T-junctions [30], this reduces the number of false positives.

4 Incorporating scene layout

Until now, we have been considering the problem of detecting cast shadow
boundaries on the ground with a classifier trained on local features and a CRF
formulation which defines pairwise constraints across neighboring boundaries.
While both approaches provide good classification accuracy, we show in Fig. 3
that applying them on the entire image generates false positives in the verti-
cal structures of the scene. Reflections, transparency, occlusion boundaries, self-
shadowing, and complex geometry [30] are common phenomena that can confuse
our classifier. This results in image-wide classification results which might not
be useful for complex scenes (see Figs. 3(b)-(c)).

The advent of recent approaches which estimate a qualitative layout of the
scene from a single image (e.g. splitting an image into three main geometric
classes: the sky, vertical surfaces, and ground [18]) may provide explicit knowl-
edge of where the ground is. Since such a scene layout estimator is specifically
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trained on general features of the scene and not the shadows, combining its out-
put with our shadow detector should reduce the number of false positive (non-
shadow) detections outside the ground. We now consider how such high-level
scene reasoning can be used within our shadow detection framework.

4.1 Combining scene layout with local shadow cues

To combine the scene layout probabilities with our local shadow classifier, we
can marginalize the probability of shadows over the three geometric classes sky
S, ground G, and vertical surfaces V:

Pcomb(yi|x) =
∑

c∈{G,V,S}

P (yi|ci,xi)P (ci|xi) , (4)

where ci is the geometric class label of boundary i, P (yi|ci,xi) is given by our
local shadow classifier, and P (ci|xi) by the scene layout classifier (we use the
geometric context algorithm [18]). Unfortunately, this approach does not actually
improve classification results because while it gets rid of false positives in the
vertical structures, it also loses true positives on the ground along the way. This
is due to the fact that shadow likelihoods get down-weighted by low-confidence
ground likelihoods. Thus, we need a different approach.

4.2 Combining scene layout with shadow contours

Intuitively, we would like to penalize an assignment to the shadow class when
the probability of being on the ground is low. When it is high, however, we
should let the shadow classifier decide. We can encode this behavior simply by
modifying the unary potentials φi(yi) from (2) in our CRF formulation:

φi(yi) =

{
− logP (ci = G|xi)− logP (yi = 1|xi) if yi = 1 (shadow)
(1− P (ci = G|xi))− logP (yi = 0|xi) if yi = 0 (non-shadow) .

(5)
Here, λ = 0.5 and β = 16 was found by cross-validation. They yield a good
compromise between local evidence and smoothness constraints.

This approach effectively combines local and mid-level shadow cues with
high-level scene interpretation results, and yields an overall classification accu-
racy of 84.8% on our test set (see Fig. 5) without adding to the complexity
of training our model. Observe how the results are significantly improved in
Fig. 3(e) as compared to the other scenarios in Fig. 3(b)-(c).

5 Experimental results

We evaluate our approach on 135 consumer photographs downloaded from Label-
Me [16], Flickr, and images from the dataset introduced in [19]. In all cases,
we have no control over the acquisition settings, so images contain the typical
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(a) Original image (b) Invariant img. [12] (c) Result with [12] (d) Our result

Fig. 4. Comparison with the shadow detection method of Finlayson et al. [12]. First
row : Using a high-quality linear image as input (a), our implementation of their method
successfully recovers a shadow-free 1-D invariant image (b), which is used to detect
shadow edges (c). Second row : However, if the input is not linear and corrupted by
noise or jpeg compression typical of consumer photographs, the 1-D invariant image
still contains some shadows (b), making it hard to tell them apart from other types of
edges (c). Our method detects shadows both in high and low quality images (d).

sources of distortions [31] such as jpeg compression, sharpening, sampling due
to resizing, non-linear response functions, image noise, etc. We first compare our
method with the current state of the art [12], then show shadow detection and
removal results on several challenging images.

5.1 Comparison with previous work

The current state of the art in color-based shadow detection and removal in
single images is the approach of Finlayson et al. [12], which relies on a physics-
based model of shadows to compute an illumination-invariant image. Shadows
are then obtained by finding edges in the original image which are not present
in the invariant image. The first row of Fig. 4 shows that our implementation
of their approach successfully recovers a shadow-free invariant image from the
same high-quality, linear image used in their original paper [10]. Note that our
approach is able to extract similar results to theirs (Fig. 4(d)). When applying
their method on an image from our set, the performance degrades because the
invariant still contains strong traces of shadows (second row of Fig. 4).

This is also demonstrated in the quantitative comparison shown in Fig. 5-
(a), which compares our approach with the original shadow detection technique
of [11], and the most recent version [12]. Note here that we cannot generate
an ROC curve with the results of our CRF formulation, since the output is
binary, so we plot a point at its classification accuracy. To obtain ROC scores
for the competing methods, we first estimate the invariant image, and compute
the difference of gradient magnitudes between the original and the invariant
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(a) ROC curve comparison with previous work

Shadows Non-shadows Combined
Local
CRF

CRF + scene layout

78.3% 81.0% 79.7%
78.7% 82.3% 80.5%

84.8%96.4%73.1%

(b) Quantitative ground shadow classification results

Fig. 5. Quantitative results. We compare our local classifier with the methods pro-
posed by Finlayson et al. [11, 12] (a). The table in (b) show the results obtained with
the approaches presented in Sects. 2 (local), 3 (CRF) and 4 (CRF + scene layout).
Integrating scene layout information from [18] results in ground shadow classification
accuracy of 84.8%.

images. For fairness, we evaluate this score only at the strong boundaries in the
image. The ROC curve shows that our results greatly outperform the previous
work. This is most likely due to the use of features which are robust to artifacts
common in consumer photographs.

5.2 Ground shadow detection and removal

We summarize the quantitative results obtained by the technique presented in
this paper on our test set in Fig. 5-(b), which shows results obtained on the entire
image by the local classifier and the boundary CRF (Sects. 2 and 3), and those
obtained by combining the geometric context ground likelihoods (Sect. 4). The
best performance (84.8% accuracy) is obtained by our CRF formulation which
combines the scene layout results with our local shadow boundary classifier.

Fig. 6 shows ground shadow detection results on several images from our
dataset. It demonstrates that our method works on challenging outdoor images
with varying illumination conditions, ground colors and textures, and clutter.

The typical errors made by our method are shown in Fig. 7. It may fail to
detect shadows cast by thin structures like the lamppost in Fig. 7(a). Another
failure case arises when the ground has a color that is vastly different from all
the other images in the training set, as in Fig. 7(b). This can likely be improved
by increasing the size and diversity of the training set. A third failure mode is
due to errors in the estimated scene layout probabilities as in Fig. 7(c).

Once we have detected shadow boundaries, we can, as an application, use the
technique introduced in [10] to remove them and recover a shadow-free image.
There have been improvements proposed since then [32], but we chose the origi-
nal method for its simplicity. This approach involves setting the derivatives of the
image at shadow boundaries to zero, and reintegrating the result by solving the
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Fig. 6. Ground shadow detection results on images downloaded from the web (Flickr,
LabelMe [16]), and the dataset from [19]. First and third columns: input images; sec-
ond and fourth columns: detected ground shadows. Our approach successfully detects
ground shadows in many challenging, real-world conditions.
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(a) Very thin and blurry shadows (b) Unusual ground color

(c) Ground estimation errors

Fig. 7. Failure cases. The downside of using boundaries from an over-segmentation is
the trade-off between spatial support obtained from longer boundaries and the size
of shadow regions that can be detected. In our current setting, it may miss thin and
blurry edges, like the lamppost in (a). Our approach is also sensitive to vastly different
ground colors, which have never been seen by the classifier (b). Although our ratio-
based features are somewhat color independent, they are not able to compensate for
such drastic differences. Increasing the variety of ground colors in the training set
would likely improve performance on such extreme cases. (c) Errors in the scene layout
probabilities can lead to false positives.

Poisson equation with Neumann boundary conditions. Fig. 8 shows shadow-free
images that were computed using the boundaries detected by our method.

5.3 Future work

While our technique detects ground shadows with good accuracy, shadows that
are not on the ground exhibit significantly larger appearance variations, so de-
tecting them will be challenging. While our technique can be used as a stand-
alone shadow detector, we believe it can also be tightly integrated into higher
level scene understanding tasks. For example, the presence of an object implies
that a shadow should be nearby, and vice versa. We will be pursuing these re-
search avenues as future work.
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Fig. 8. Automatic ground shadow removal from a single image. We apply the original
gradient reintegration method of [10] on the boundaries detected by our method. The
shadows are either completely removed or greatly attenuated, with few visual artifacts.
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