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Abstract. As the main observed illuminant outdoors, the sky is a rich
source of information about the scene. However, it is yet to be fully
explored in computer vision because its appearance depends on the sun
position, weather conditions, photometric and geometric parameters of
the camera, and the location of capture. In this paper, we propose the
use of a physically-based sky model to analyze the information available
within the visible portion of the sky, observed over time. By fitting this
model to an image sequence, we show how to extract camera parameters
such as the focal length, and the zenith and azimuth angles. In short, the
sky serves as a geometric calibration target. Once the camera parameters
are recovered, we show how to use the same model in two applications:
1) segmentation of the sky and cloud layers, and 2) data-driven sky
matching across different image sequences based on a novel similarity
measure defined on sky parameters. This measure, combined with a rich
appearance database, allows us to model a wide range of sky conditions.

1 Introduction

When presented with an outdoor photograph (such as images on Fig. 1), an
average person is able to infer a good deal of information just by looking at the
sky. Is it morning or afternoon? Do I need to wear a sunhat? Is it likely to rain?
A professional, such as a sailor or a pilot, might be able to tell even more: time
of day, temperature, wind conditions, likelihood of a storm developing, etc. As
the main observed illuminant in an outdoor image, the sky is a rich source of
information about the scene. However it is yet to be fully explored in computer
vision. The main obstacle is that the problem is woefully under-constrained. The
appearance of the sky depends on a host of factors such as the position of the
sun, weather conditions, photometric and geometric parameters of the camera,
and location and direction of observation. Unfortunately, most of these factors
remain unobserved in a single photograph; the sun is rarely visible in the picture,
the camera parameters and location are usually unknown, and worse yet, only a
small fraction of the full hemisphere of sky is actually seen.

However, if we were to observe the same small portion of the sky over time,
we would see the changes in sky appearance due to the sun and weather that are
not present within a single image. In short, this is exactly the type of problem
that might benefit from observing a time-lapse image sequence. Such a sequence
is typically acquired by a static camera looking at the same scene over a period of
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Fig. 1. The sky appearance is a rich source of information about the scene illumination.

time. When the scene is mostly static, the resulting sequence of images contains a
wealth of information that has been exploited in several different ways, the most
commonly known being background subtraction, but also shadow detection and
removal [1], video factorization and compression [2], radiometric calibration [3],
camera geo-location [4], tempor al variation analysis [5] and color constancy [6].
The main contribution of this paper is to show what information about the cam-
era is available in the visible portion of the sky in a time-lapse image sequence,
and how to extract this information to calibrate the camera.

The sky appearance has long been studied by physicists. One of the most pop-
ular physically-based sky model was introduced by Perez et al [7]. This model has
been used in graphics for relighting [8] and rendering [9]. Surprisingly however,
very little work has been done on extracting information from the visible sky.
One notable exception is the work of Jacobs et al [10] where they use the sky to
infer the camera azimuth by using a correlation-based approach. In our work, we
address a broader question: what does the sky tell us about the camera? We show
how we can recover the viewing geometry using an optimization-based approach.
Specifically, we estimate the camera focal length, its zenith angle (with respect
to vertical), and its azimuth angle (with respect to North). We will assume that
a static camera is observing the same scene over time, with no roll angle (i.e.
the horizon line is parallel to the image horizontal axis). Its location (GPS co-
ordinates) and the times of image acquisition are also known. We also assume
that the sky region has been segmented, either manually or automatically [5].

Once the camera parameters are recovered, we then show how we can use our
sky model in two applications. First, we present a novel sky-cloud segmentation
algorithm that identifies cloud regions within an image. Second, we show how
we can use the resulting sky-cloud segmentation in order to find matching skies
across different cameras. To do so, we introduce a novel bi-layered sky model
which captures both the physically-based sky parameters and cloud appearance,
and determine a similarity measure between two images. This distance can then
be used for finding images with similar skies, even if they are captured by differ-
ent cameras at different locations. We show qualitative cloud segmentation and
sky matching results that demonstrate the usefulness of our approach.

In order to thoroughly test our algorithms, we require a set of time-lapse
image sequences which exhibit a wide range of skies and cameras. For this, we
use the AMOS (Archive of Many Outdoor Scenes) database [5], which contains
image sequences taken by static webcams over more than a year.
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Fig. 2. Geometry of the problem, when a camera is viewing a sky element (blue patch
in the upper-right). The sky element is imaged at pixel (up, vp) in the image, and the
camera is rotated by angles (θc, φc). The camera focal length fc, not shown here, is
the distance between the origin (center of projection), and the image center. The sun
direction is given by (θs, φs), and the angle between the sun and the sky element is γp.
Here (up, vp) are known because the sky is segmented.

2 Physically-based Model of the Sky

First, we introduce the physically-based model of the sky that lies at the foun-
dation of our approach. We will first present the model in its general form, then
in a useful simplified form, and finally demonstrate how it can be written as a
function of camera parameters. We will consider clear skies only, and address
the more complicated case of clouds at a later point in the paper.

2.1 All-weather Perez Sky Model

The Perez sky model [7] describes the luminance of any arbitrary sky element
as a function of its elevation, and its relative orientation with respect to the
sun. It is a generalization of the CIE standard clear sky formula [11], and it has
been found to be more accurate for a wider range of atmospheric conditions [12].
Consider the illustration in Fig. 2. The relative luminance lp of a sky element is
a function of its zenith angle θp and the angle γp with the sun:

lp = f(θp, γp) = [1 + a exp(b/ cos θp)]×
[
1 + c exp(dγp) + e cos2 γp

]
, (1)

where the 5 constants (a, b, c, d, e) specify the current atmospheric conditions. As
suggested in [9], those constants can also be expressed as a linear function of a
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single parameter, the turbidity t. Intuitively, the turbidity encodes the amount
of scattering in the atmosphere, so the lower t, the clearer the sky. For clear
skies, the constants take on the following values: a = −1, b = −0.32, c = 10,
d = −3, e = 0.45, which corresponds approximately to t = 2.17.

The model expresses the absolute luminance Lp of a sky element as a function
of another arbitrary reference sky element. For instance, if the zenith luminance
Lz is known, then

Lp = Lz
f(θp, γp)
f(0, θs)

, (2)

where θs is the zenith angle of the sun.

2.2 Clear-weather Azimuth-independent Sky Model

By running synthetic experiments, we were able to determine that the influence
of the second factor in (1) becomes negligible when the sun is more than 100◦

away from a particular sky element. In this case, the sky appearance can be
modeled by using only the first term from (1):

l′p = f ′(θp) = 1 + a exp(b/ cos θp) . (3)

This equation effectively models the sky gradient, which varies from light to dark
from horizon to zenith on a clear day. L′p is obtained in a similar fashion as in
(2):

L′p = Lz
f ′(θp)
f ′(0)

. (4)

2.3 Expressing the Sky Model as a Function of Camera Parameters

Now suppose a camera is looking at the sky, as in Fig. 2. We can express the gen-
eral (1) and azimuth-independent (3) models as functions of camera parameters.
Let us start with the simpler azimuth-independent model.

If we assume that the camera zenith angle θc is independent of its azimuth
angle φc, then θp ≈ θc − arctan

(
vp

f

)
. This can be substituted into (3):

l′p = g′(vp, θc, fc) = 1 + a exp
(

b

cos(θc − arctan(vp/fc)

)
, (5)

where, vp is the v-coordinate of the sky element in the image, and fc is the
camera focal length.

In the general sky model case, deriving the equation involves expressing γp
as a function of camera parameters:

γp = arccos (cos θs cos θp + sin θs sin θp cos∆φp) , (6)
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where ∆φp ≈ φc−φs−arctan
(
up

f

)
, and up is the sky element u-coordinate in the

image. We substitute (6) into (1) to obtain the final equation. For succinctness,
we omit writing it in its entirety, but do present its general form:

lp = g(up, vp, θc, φc, fc, θs, φs) , (7)

where θc, φc (θs, φs) are the camera (sun) zenith and azimuth angles.
Before we present how we use the models presented above, recall that we are

dealing with ratios of sky luminances, and that a reference element is needed.
Earlier, we used the zenith luminance Lz as a reference in (2) and (4), which
unfortunately is not always visible in images. Instead, we can treat this as an
additional unknown in the equations. Since the denominators in (2) and (4) do
not depend on camera parameters, we can combine them with Lz into a single
unknown scale factor k.

3 Using the Clear Sky as a Calibration Target

In the previous section, we presented a physically-based model of the clear sky
that can be expressed as a function of camera parameters. Now if we are given a
set of images taken from a static camera, can we use the clear sky as a calibration
target and recover the camera parameters, from the sky appearance only?

3.1 Recovering Focal Length and Zenith Angle

Let us first consider the simple azimuth-independent model (5). If we plot the
predicted luminance profile for different focal lengths as in Fig. 3-(a) (or, equiv-
alently, for different fields of view), we can see that there is a strong dependence
between the focal length fc and the shape of the luminance gradient. Similarly,
the camera azimuth θc dictates the vertical offset, as in Fig. 3-(b). From this
intuition, we devise a method of recovering the focal length and zenith angle
of a camera from a set of images where the sun is far away from its field of
view (i.e. at least 100◦ away). Suppose we are given a set I of such images, in
which the sky is visible at pixels in set P, also given. We seek to find the camera
parameters (θc, fc) that minimize

min
θc,fc,k(i)

∑
i∈I

∑
p∈P

(
y(i)
p − k(i)g′(vp, θc, fc)

)2

, (8)

where y(i)
p is the observed intensity of pixel p in image i, and k(i) are unknown

scale factors (Sect. 2.3), one per image. This non-linear least-squares minimiza-
tion can be solved iteratively using standard optimization techniques such as
Levenberg-Marquadt, or fminsearch in Matlab. fc is initialized to a value
corresponding to a 35◦ field of view, and θc is set such that the horizon line is
aligned with the lowest visible sky pixel. All k(i)’s are initialized to 1.
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Fig. 3. Luminance profiles predicted by the azimuth-independent model (5). For clear
skies, intensity diminishes as pixel height (x-axis) increases. (a) The camera zenith
angle is kept constant at θc = 90◦, while the field of view is varied. (b) The field of
view is kept constant at 80◦, while the camera zenith angle is varied. Both parameters
have a strong influence on the shape and offset of the predicted sky gradient.

3.2 Recovering Azimuth Angle

From the azimuth-independent model (5) and images where the sun is far from
the camera field of view, we were able to estimate the camera focal length fc
and its zenith angle θc. Now if we consider the general model (7) that depends
on the sun position, we can also estimate the camera azimuth angle using the
same framework as before.

Suppose we are given a set of images J where the sky is clear, but where the
sun is now closer to the camera field of view. Similarly to (8), we seek to find
the camera azimuth angle which minimizes

min
φc,k(j)

∑
j∈J

∑
p∈P

(
y(j)
p − k(j)g(up, vp, θc, φc, fc, θs, φs)

)2

. (9)

We already know the values of fc and θc, so we do not need to optimize over
them. Additionally, if the GPS coordinates of the camera and the time of capture
of each image are known, the sun zenith and azimuth (θs, φs) can be computed
using [13]. Therefore, the only unknowns are k(j) (one per image), and φc. Since
this equation is highly non-linear, we have found that initializing φc to several
values over the [−π, π] interval and keeping the result that minimizes (9) works
the best.

4 Evaluation of Camera Parameters Estimation

In order to thoroughly evaluate our model, we have performed extensive tests on
synthetic data generated under a very wide range of operating conditions. We
also evaluated our model on real image sequences to demonstrate its usefulness
in practice.
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Sequence name
Focal length Zenith angle Azimuth angle

error (%) error (◦) error (◦)

257 1.1 3.5 2.6
414 3.3 1.2 1.5
466 1.1 0.1 2.1

Table 1. Camera calibration from the sky on 3 real image sequences taken from the
AMOS database [5]. Error in focal length, zenith and azimuth angle estimation is shown
for each sequence. The error is computed with respect to values obtained by using the
sun position to estimate the same parameters [14].

4.1 Synthetic Data

We tested our model and fitting technique on a very diverse set of scenarios
using data synthetically generated by using the original Perez sky model in (1).
During these experiments, the following parameters were varied: the camera
focal length fc, the camera zenith and azimuth angles (θc, φc), the number of
input images used in the optimization, the number of visible sky pixels, and the
camera latitude (which effects the maximum sun height). In all our experiments,
1000 pixels are randomly selected from each input image, and each experiment
is repeated for 15 random selections.

The focal length can be recovered with at most 4% error even in challenging
conditions: 30% visibility, over a wide range of field of view ([13◦, 93◦] interval),
zenith angles ([45◦, 135◦]), azimuth angles ([−180◦, 180◦]), and sun positions
(entire hemisphere). We note a degradation in performance at wider fields of
view (> 100◦), because the assumption of independent zenith and azimuth angles
starts to break down (Sect. 2.3). Less than 3.5◦ error for both zenith and azimuth
angles is obtained in similar operating conditions1.

4.2 Real Data

Although experiments on synthetic data are important, real image sequences
present additional challenges, such as non-linear camera response functions, non-
gaussian noise, slight variations in atmospheric conditions, etc. We now evaluate
our method on real image sequences and show that our approach is robust to
these noise sources and can be used in practice.

First, the camera response function may be non-linear, so we need to radio-
metrically calibrate the camera. Although newer techniques [3] might be more
suitable for image sequences, we rely on [15] which estimates the inverse response
function by using color edges gathered from a single image. For additional ro-
bustness, we detect edges across several frames. Recall that the optimization
procedures in (8) and (9) requires clear sky image sets I and J , where the
sun is far or close to the camera respectively. We approximate (5) by a vertical
1 Errata: The results in the original version of the paper indicated the zenith angle

error in radians, whereas they should have been degrees. This has been corrected in
this version.
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Seq. 257 Seq. 414 Seq. 466

Fig. 4. Illustration of estimated camera parameters. First row: Example image for the
three sequences in Table 1. The horizon line is drawn in red. Note that the horizon line
in sequence 414 is found to be just below the image. Second row: Graphical illustration
of all three estimated parameters: focal length, zenith and azimuth angles. The sun is
drawn at the position corresponding to the image in the first row.

quadratic in image space, and automatically build set I by keeping images with
low residual fitting error. Similarly, set J is populated by finding images with
a good fit to horizontal quadratic. It is important that the effect of the moving
sun be visible in the selected images J .

We present results from applying our algorithm on three image sequences
taken from the AMOS database [5]. Since ground truth is not available on those
sequences, we compare our results with those obtained with the method de-
scribed in [14], which uses hand-labelled sun positions to obtain high-accuracy
estimates. Numerical results are presented in Table 1, and Fig. 4 shows a vi-
sualization of the recovered camera parameters. The results are consistent with
image data: for instance, sun flares are visible in the first image (Seq. 257), which
indicate that the sun must be above the camera, slightly to its left. This matches
the visualization below the image.

5 Application: Separation of Sky and Cloud Layers

Now that we have recovered camera parameters, we demonstrate how to use the
same physically-based model for two applications. Until now, we have only dealt
with clear skies, but alas, this is not always true! In this section, we present a
novel cloud segmentation algorithm, which will later be used for sky matching.

Clouds exhibit a wide range of textures, colors, shapes, and even trans-
parencies. Segmenting the clouds from the sky cannot be achieved with simple
heuristics such as color-based thresholding as they are easily confounded by the
variation in their appearances. On the other hand, our physically-based model
predicts the sky appearance, so any pixel that differs from it is an outlier and is
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likely to correspond to a cloud. Using this intuition, we now consider two ways
of fitting our model to skies that may contain clouds. Note that we perform all
processing in the xyY color space as recommended in [9].

5.1 Least-squares Fitting

The first idea is to follow a similar approach as we did previously and fit the
model (5) in a non-linear least-squares fashion, by adjusting the coefficients
(a, b, c, d, e) and the unknown scale factor k independently in each color chan-
nel, and treating the outliers as clouds. To reduce the number of variables,
we follow [9] and express the five weather coefficients as a linear function of
a single value, the turbidity t. Strictly speaking, this means minimizing over
x =

[
t k(1) k(2) k(3)

]
:

min
x

3∑
i=1

∑
p∈P

(
y(i)
p − k(i)g(up, vp, θs, φs, τ (i)(t))

)2

, (10)

where i indexes the color channel. Here the camera parameters are fixed, so
we omit them for clarity. The vector τ (i)(t) represents the coefficients (a, . . . , e)
obtained by multiplying the turbidity t with the linear transformation M (i):
τ (i)(t) = M (i)

[
t 1
]T . The entries of M (i) for the xyY space are given in the

appendix in [9]. The k(i) are initialized to 1, and t to 2 (low turbidity).
Unfortunately, solving this simplified minimization problem does not yield

satisfying results because the L2-norm is not robust to outliers, so even a small
amount of clouds will bias the results.

5.2 Regularized Fitting

In order to increase robustness to outliers, we compute a data-driven prior model
of clear skies xc, which we use to add 2 terms to (10): 1) we assign more weight
to pixels we believe are part of the sky; and 2) we penalize parameters that differ
from the prior in an L2 sense. Equation (10) becomes

min
x

3∑
i=1

∑
p∈P

wp

(
y(i)
p − k(i)g(up, vp, θs, φs, τ (i)(t))

)2

+ β‖x− xc‖2 , (11)

where, wp ∈ [0, 1] is a weight given to each pixel, and β = 0.05 controls the
importance of the prior term in the optimization. We initialize x to the prior xc.

Let us now look at how xc is obtained. We make the following observation:
clear skies should have low turbidities, and they should be smooth (i.e. no patchy
clouds). Using this insight, if minimizing (10) on a given image yields low residual
error and turbidity, then the sky must be clear. We compute a database of clear
skies by keeping all images with turbidity less than a threshold (we use 2.5), and
keep the best 200 images, sorted by residual error. Given an image, we compute
xc by taking the mean over the K nearest neighbors in the clear sky database,
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using the angular deviation between sun positions as distance measure (we use
K = 2). This allows us to obtain a prior model of what the clear sky should look
like at the current sun position. Note that we simply could have used the values
for (a, . . . , e) from Sect. 2 and fit only the scale factors k(i), but this tends to
over-constrain, so we fit t as well to remain as faithful to the data as possible.

To obtain the weights wp in (11), the color distance λ between each pixel and
the prior model is computed and mapped to the [0, 1] interval with an inverse
exponential: wp = exp{−λ2/σ2} (we use σ2 = 0.01 throughout this paper). After
the optimization is over, we re-estimate wp based on the new parameters x, and
repeat the process until convergence, or until a maximum number of iterations
is reached. The process typically converges in 3 iterations, and the final value
for wp is used as the cloud segmentation. Cloud coverage is then computed as
1
|P|
∑
p∈P wp.

5.3 Segmentation Results

Figure 5 shows typical results of cloud layers extracted using our approach. Note
that unweighted least-squares (10) fails on all these examples because the clouds
occupy a large portion of the sky, and the optimization tries to fit them as much
as possible, since the quadratic loss function is not robust to outliers. A robust
loss function behaves poorly because it treats the sky pixels as outliers in the
case of highly-covered skies, such as the examples shown in the first two columns
of Fig. 6. Our approach injects domain knowledge into the optimization by using
a data-driven sky prior, forcing it to fit the visible sky. Unfortunately, since we do
not model sunlight, the estimation does not converge to a correct segmentation
when the sun is very close to the camera, as illustrated in the last two columns
of Fig. 6.

6 Application: Matching Skies Across Image Sequences

After obtaining a sky-cloud segmentation, we consider the problem of finding
matching skies between images taken by different cameras. Clearly, appearance-
based matching algorithms such as cross-correlation would not work if the cam-
eras have different parameters. Instead, we use our sky model along with cloud
statistics in order to find skies that have similar properties. We first present our
novel bi-layered representation for sky and clouds, which we then use to define
a similarity measure between two images. We then present qualitative matching
results on real image sequences.

6.1 Bi-layered Representation for Sky and Clouds

Because clouds can appear so differently due to weather conditions, a generative
model such as the one we are using for the sky is likely to have a large number
of parameters, and thus be difficult to fit to image data. Instead, we propose a
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Fig. 5. Sky-cloud separation example results. First row: input images (radiometrically
corrected). Second row: sky layer. Third row: cloud segmentation. The clouds are color-
coded by weight: 0 (blue) to 1 (red). Our fitting algorithm is able to faithfully extract
the two layers in all these cases.

hybrid model: our physically-based sky model parameterized by the turbidity t
for the sky appearance, and a non-parametric representation for the clouds.

Taking inspiration from Lalonde et al [16], we represent the cloud layer by a
joint color histogram in the xyY space over all pixels which belong to the cloud
regions. While they have had success with color histograms only, we have found
this to be insufficient on our richer dataset, so we also augment the representation
with a texton histogram computed over the same regions. A 1000-word texton
dictionary is built from a set of skies taken from training images different than
the ones used for testing. In our implementation, we choose 213 bins for the color
histograms.

Once this layered sky representation is computed, similar images can be
retrieved by comparing their turbidities and cloud statistics (we use χ2 distance
for histogram comparison). A combined distance is obtained by taking the sum
of cloud and turbidity distance, with the relative importance between the two
determined by the cloud coverage.

6.2 Qualitative Evaluation

The above algorithm was tested on four sequences from the AMOS database.
Since we do not have ground truth to evaluate sky matching performance, we
provide qualitative results in Fig. 7. Observe that sky conditions are matched
correctly, even though cameras have different horizons, focal lengths, and camera
response functions. A wide range of sky conditions can be matched successfully,
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Fig. 6. More challenging cases for the sky-cloud separation, and failure cases. First
row: input images (radiometrically corrected). Second row: sky layer. Third row: cloud
layer. The clouds are color-coded by weight: 0 (blue) to 1 (red). Even though the sky
is more than 50% occluded in the input images, our algorithm is able to recover a good
estimate of both layers. The last two columns illustrate a failure case: the sun (either
when very close or in the camera field of view) significantly alters the appearance of
the pixels such that they are labeled as clouds.

including clear, various amounts of clouds, and overcast conditions. We provide
additional segmentation and matching results on our project website.

7 Summary

In this paper, we explore the following question: what information about the
camera is available in the visible sky? We show that, even if a very small portion
of the hemisphere is visible, we can reliably estimate three important camera
parameters by observing the sky over time. We do so by expressing a well-
known physically-based sky model in terms of the camera parameters, and by
fitting it to clear sky images using standard minimization techniques. We then
demonstrate the accuracy of our approach on synthetic and real data. Once the
camera parameters are estimated, we show how we can use the same model to
segment out clouds from sky and build a novel bi-layered representation, which
can then be used to find similar skies across different cameras.

We plan to use the proposed sky illumination model to see how it can help
us predict the illumination of the scene. We expect that no parametric model
will be able to capture this information well enough, so data-driven methods will
become even more important.
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Input Nearest-neighbors
Sequence 466 Sequence 257 Sequence 407 Sequence 414

Fig. 7. Sky matching results across different cameras. The left-most column shows
several images taken from different days of sequence 466 in the AMOS database. The
three other columns are the nearest-neighbor matches in sequences 257, 407 and 414
respectively, obtained using our distance measure. Sky conditions are well-matched,
even though cameras have different parameters.
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