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Abstract

Photometric Stereo has been explored extensively in lab-
oratory conditions since its inception. Recently, attempts
have been made at applying this technique under natural
outdoor lighting. Outdoor photometric stereo presents ad-
ditional challenges as one does not have control over il-
lumination anymore. In this paper, we explore the stabil-
ity of surface normals reconstructed outdoors. We present
a data-driven analysis based on a large database of out-
door HDR environment maps. Given a sequence of object
images and corresponding sky maps captured in a single
day, we investigate natural factors that impact the uncer-
tainty in the estimated surface normals. Quantitative evi-
dence reveals strong dependencies between expected accu-
racy and the normal orientation, cloud coverage, and sun
elevation. In particular, we show that partially cloudy days
yield greater accuracy than sunny days with clear skies;
furthermore, high sun elevation—recommended in previous
work—is in fact not necessarily optimal when taking more
elaborate illumination models into account.

1. Introduction

Photometric Stereo (PS) is a well-known shape recon-
struction technique which has been studied extensively
since its inception in the early 80s [23]. The original idea—
that shape can be recovered from several images of the
same object lit from different directions—has since matured
to provide robust algorithms able to deal with increasingly
complex materials and lighting conditions [4–6, 11, 12].

The vast majority of the work in PS has so far focused
on images captured indoors, in laboratory conditions. Re-
cently however, new algorithms have targeted the case of
images captured outdoors [1,2,19,20,24]. Clearly, this new
scenario with uncontrolled, natural illumination differs sig-
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nificantly from laboratory setups: we are left at the mercy of
the sun, its motion through the sky, and the complex effects
created by sunlight interacting with the atmosphere.

To tackle this new challenge, a natural first strategy
has been to experiment with Lambertian reflectance and
to model the sun as a point light source, to match a well-
studied lab condition. Unfortunately, approaches based on
this model have practical limitations caused by the move-
ment of the sun in the sky for a given day. Depending on
the latitude and time of year, its trajectory may lie too close
to a plane [19], yielding an under-constrained, two-source
PS problem [9]. Possible solutions include waiting for a
day when the sun trajectory is non-planar [19], or capturing
several months of data [1, 2] to ensure good conditioning.

While these techniques can lead to well-defined solu-
tions, they are not always practical in many scenarios with
strict temporal or geographical constraints. A second strat-
egy has therefore been to combine PS with other techniques
such as multi-view stereo [13, 20], or use reference objects
as in [15] or example-based PS [3, 10]. But can we ac-
curately reconstruct surface geometry simply based on the
photometric cue in an outdoor setting, without overly re-
strictive temporal and geographical constraints?

A promising approach to answer this question is to
use more elaborate models of illumination—high dynamic
range (HDR) environment maps [18]—as input to outdoor
PS. Promising results have been reported in [24] for out-
door images taken within an interval of just eight hours (in
a single day). However, the quality of outdoor results is
reported to be inferior to that obtained in indoor environ-
ments, the decline being attributed to modest variation in
sunlight. This observation leads to an interesting, yet unan-
swered question: had the sun path and atmosphere condi-
tions been different on that day, could the quality of their
results have been better? Or, in other words: what makes it
a good day for outdoor Photometric Stereo?

As one might expect, the answer to the question above
is intrinsically tied to the orientation of a particular surface
patch, the associated hemisphere of lighting directions ob-
served by the patch, and the variation in lighting intensity
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Figure 1. Examples from our dataset of HDR outdoor illumination conditions. In all, our dataset contains 3,800 different illumination
conditions, captured from 10:30 until 16:30, during 23 days, spread over ten months and at two geographical locations. Each image is
stored in the 32-bit floating point EXR format, and shown tone mapped here for display (with γ = 1.6). The companion video2shows
time-lapse sequences for these sky environment maps.

in that hemisphere over the course of a day. So far, this
question has only been explored in laboratory conditions or
with simple directional illumination, where optimal lighting
configurations can be theoretically derived [7,16,19]. No at-
tempt has been made at answering this question with more
realistic illumination models in an outdoor setup, where
lighting cannot be controlled and atmospheric effects are
difficult to predict.

In this paper, we present a systematic analysis of the
expected performance of photometric stereo algorithms in
outdoor settings. To explore the influence of these effects,
we exploit a large database of outdoor HDR environment
maps, which provides a rich sampling of the variability in
outdoor illumination. Through a theoretical analysis (in-
spired by [22]) and supported by an extensive empirical
evaluation as well as a preliminary quantitative validation,
we derive confidence intervals that allow us to predict when
surface normals can be reconstructed more accurately and
solely from the photometric cue. Instead of focusing ex-
clusively on sun position [19], our analysis incorporates the
influence of all components of natural lighting: sun, sky,
clouds, etc., as well as noise and surface albedo.

This paper does not introduce a novel photometric stereo
algorithm. Rather, we explore the conditions in which PS
may or may not work, when faced with the challenging case
of uncontrollable outdoor illumination. Our main goal is to
provide guidance for future research by assessing the recon-
structibility of surface patches as a function of their orien-
tation and the illumination conditions, given a set of HDR
environment maps captured throughout a single day.

To make this novel analysis tractable, we make the
following assumptions. We consider Lambertian surface
patches, and assume that at most one day of data can be

2Available at project webpage: http://vision.gel.ulaval.
ca/˜jflalonde/projects/outdoorPS/

used. We also assume that the dominant part of the light
comes from the sky hemisphere (sun, sky, clouds, etc.) and
surface patches are independent (cast shadows and inter-
reflections are not modeled).

2. Dataset of HDR outdoor lighting conditions
To analyze the influence of outdoor lighting on photo-

metric stereo, we rely on a rich dataset of high dynamic
range images of the sky, captured under a wide variety of
conditions. We use the environment map database of [17],
which contains HDR images of the sky captured using the
approach described in [21]. We augment the dataset of [17]
with an additional set of images captured using a similar
setup, but at a different geographical location. In all, the
dataset we used for our analysis totals 3,800 illumination
conditions, captured over 23 different days. To ensure the
data is properly aligned temporally, the HDR sky photos
were captured during a continuous 6 hour time interval on
each of these days, from 10:30 until 16:30. Fig. 1 shows
examples of the sky environment maps used in our analy-
sis. Note that while the examples have been tone mapped
for display, the actual sky images have extremely high dy-
namic range, and span the full 22 stops required to properly
capture outdoor lighting [21]. In addition, all the images are
converted to grayscale before the analysis is performed.

3. Sensitivity analysis for outdoor PS
This section derives the image formation model and the

probabilistic method used to assess the uncertainty in the
solution of outdoor PS. Although previous work have pre-
sented sensitivity analyses for standard PS with point light
sources (e.g., [14, 16, 19, 22]), so far as we know, the case
of outdoor PS with more complex illumination models has
received little attention.

http://vision.gel.ulaval.ca/~jflalonde/projects/outdoorPS/
http://vision.gel.ulaval.ca/~jflalonde/projects/outdoorPS/


Figure 2. A normal n defines an integration domain Ωn equivalent
to a hemisphere on the entire spherical environment map. Only
light emanating from this hemisphere contribute to the shading
on that patch. Therefore, patches with different normals are lit
differently even if the environment map is the same.

3.1. Image formation model

Consider a small, Lambertian surface patch with normal
vector n and albedo ρ (w.l.o.g., assume albedo is monochro-
matic). At time t, this surface patch is observed under nat-
ural, outdoor illumination represented by the environment
map Lt(ω) (e.g., fig. 1), with ω denoting a direction in the
unit sphere. With an orthographic camera model, this patch
is depicted as an image pixel with intensity

bt =
ρ

π

∫
Ωn

Lt(ω)〈ω,n〉dω , (1)

where 〈·, ·〉 denotes the dot product. Integration is carried
out over the hemisphere of incoming light, Ωn, defined by
the local orientation n of the surface, fig. 2. This hemi-
sphere corresponds to an occlusion (or attached shadow)
mask; only half of the pixels in the environment map con-
tribute to the illumination of the surface patch. To make the
analysis tractable and independent on object geometry, this
paper focuses on the simpler case without cast shadows.

This image formation model is then discretized as,

bt =
ρ

π

∑
ωj∈Ωn

L̂t(ωj)〈ωj ,n〉 , (2)

with L̂t(ωj) = Lt(ωj)∆ωj representing the environment
map weighted by the solid angle ∆ωj spanned by pixel j
(∆ωj , ∀j, are normalized as to sum to 2π). Eq. (2) can be
further summarized into the equivalent form

bt = l̄Tt x (3)

where x = ρn is the albedo-scaled normal vector and

l̄t =
1

π

∑
ωj∈Ωn

L̂t(ωj)ωj ∈ R3 (4)

is interpreted as the mean light vector for the environment
map at a time t.

Given multiple images taken at times t ∈ {1, 2, . . . , T},
we collect all photometric constraints for patch x to obtain:

b =


b1
b2
...
bT

 =


l̄T1
l̄T2
...

l̄TT

x = Lx . (5)

With (5), this model of natural environmental illumination
becomes quite similar to a model with a distant point light
source, the well-known case in PS. However, note that each
l̄t in L is a function of Ωn and, thus, of n.

Most importantly, in outdoor PS, a well-defined solution
x may exist even if the relative sun motion is nearly planar
during a certain time interval. Instead of relying solely on
sun direction, now, the solution requires non-coplanar mean
light vectors l̄t, which are determined by a comprehensive
set of natural illumination factors.

3.2. Modeling uncertainty

From (5), the least-squares solution x = (LTL)−1LTb
of outdoor PS is clearly affected by the condition number
of L. Thus, we next characterize how well the solution x is
constrained by natural, outdoor illumination within a given
time interval (e.g., one day)—which is encoded by the set
of mean light vectors l̄t in L or, equivalently, the set of en-
vironment maps Lt(·).

To assess the reliability of a solution x, we follow stan-
dard practice in PS [16, 22] and consider image measure-
ments corrupted by zero-mean Gaussian noise with equal
variance σ2 (as least squares estimation is only optimal for
this practical, most common noise model). Thus, b in (5)
follows a normal distribution:

b ∼ N
(
µb, σ

2I
)
, (6)

where µb has the (unknown) uncorrupted pixel values.
Since the desired least-squares solution for the albedo-

scaled normal, x =
(
LTL

)−1
LTb, is a linear transforma-

tion of a Gaussian random vector, it is easy to show that

x ∼ N
(
µx, σ

2(LTL)−1
)
, (7)

where µx =
(
LTL

)−1
LTµb is the expected value of x.

Once the albedo of a surface patch is known, we analyze
its contribution to the uncertainty in the estimated normal
vector, n = ρ−1x, using a similar distribution,

n ∼ N
(
µx

ρ
,
σ2

ρ2
(LTL)−1

)
. (8)

The marginal distributions in (8) allow us to derive con-
fidence intervals that indicate the uncertainty in each com-
ponent of the least squares estimate n̂ = [n̂x n̂y n̂z]T of



n = [nx ny nz]T . The corresponding 95% confidence in-
terval [8] is given by

n̂± δ , with δk = 1.96
σλk
ρ

, (9)

where λk is the square root of the kth element on the diag-
onal of (LTL)−1. As expected, the sensor-dependent noise
level σ is not the only factor that determines uncertainty.
The gain factor λk/ρ in (9) reveals how outdoor illumina-
tion (the conditioning of L) and albedo can amplify the ef-
fect of noise on the solution n̂. The lower the albedo ρ is,
the larger is the variance in the obtained estimate n̂ (as less
light is reflected towards the camera). Our goal is then to
answer the remaining question: how do natural changes in
outdoor illumination affect this gain factor (λk) and, there-
fore, uncertainty?

3.3. An intuitive measure of uncertainty

To provide a measure of uncertainty that is more intuitive
than (9), we consider angular distances in degrees,

θ± = cos−1(nT n̂±) , where n̂± =
n̂± δ
‖n̂± δ‖

. (10)

The uncertainty in the estimate of n is then summarized in
a single confidence interval, in degrees,

Cn = [ 0, max(θ±) ] , (11)

which indicates the expected accuracy of the estimated sur-
face orientation n̂.

Note that the condition number, determinant, and trace
of matrix (LTL)−1 can also be used as measures of to-
tal variance in the estimated solutions—as done in [22]—to
find the optimal location of point light sources in PS. These
measures are closely related to the rank of matrix L, which
must be three for a solution to exist; that is, LTL must be
nonsingular. In practice, this matrix is always full-rank, al-
though it is often poorly conditioned [19]. In the remaining
sections, we consider confidence intervals Cn in degrees, as
they provide a more intuitive measure of uncertainty in the
obtained solutions. Finally, in (10), the normalization of n̂±

to unit length reflects the fact that part of the estimation er-
ror is propagated to the estimated albedo ρ (i.e., the length
of the computed least-squares solution vector x). In this pa-
per, we focus on analyzing our ability to recover geometry
and will assume that the albedo is constant and known.

4. Analyzing the outdoor lighting dataset
Now that we are equipped with a tool to characterize

the stability of surface normal estimation in outdoor PS, we
proceed to apply it to all 23 days from our dataset (sec. 2) in
order to determine the conditions in which surface normals
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Figure 3. Uncertainty in normal estimation with σ = 1% is indi-
cated by 95% confidence intervals (in degrees), as a function of
ground-truth surface normal. Results are shown for three different
days in our dataset (same days as in fig. 1). The plots show the full
sphere of normals from two different viewpoints: South (left), and
North (right). Cardinal directions are shown for reference. The
color-coding is indicated below the plots. See companion video
for an animated version of these plots.

can accurately be reconstructed. We first describe how the
confidence intervals Cn are computed and visualized, then
analyze the effect of two important characteristics of out-
door lighting: the degree of cloud coverage in sec. 4.2, and
the sun elevation in sec. 4.3.

4.1. Computing the stability of outdoor PS

We aim to apply the stability analysis of sec. 3 on all
23 days from our dataset, and on all possible normal di-
rections. To do so, we consider each day independently,
and first sample directions on the sphere by subdividing an
icosahedron three times, yielding a set of 642 potential ori-
entations N = {n1, ...,n642}. Then, for each nj ∈ N , we
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Figure 4. Median confidence interval of normal estimates (red line) as a function of mean sun visibility over the course of the day for
various values of σ. Our analysis predicts that normal reconstruction errors will likely be high if the sky is completely overcast (low sun
visibility), or completely clear (high sun visibility). Good results can thus be expected in partially cloudy conditions, as shown in fig. 5.
The lower (upper) edge of each blue box indicates the 25th (75th) percentile. Statistics are computed only on normals pointing upwards to
lessen ground effects.

build the illumination matrix L in (5), given all 6 hours of
data for that day. Finally, the 95% confidence interval Cnj

is computed using (11), indicating the uncertainty (possible
reconstruction error) for that normal—the higher the inter-
val, the less stable the solution.

To compute Cnj , values for the noise level σ and the sur-
face albedo ρ from (9) must be chosen. For the albedo, we
will consider the best case with ρ = 1. To set σ, we first
render noise-less pixel values bj using the (ground-truth)
normal nj and (5), with L including our entire collection of
environment maps. All figures have been generated with σ
set at 1% of the 95th percentile value of the resulting bj ,
unless otherwise stated. This particular value is chosen to
yield a small, yet non-negligible, level of noise that is sim-
ilar to that in previous work [16]. The values of ρ and σ
are kept constant in order to focus solely on the influence
of lighting conditions, but could be set to match particular
experimental conditions if needed.

Fig. 3 shows the result of such an analysis on the three
days of fig. 1. For each day, two sides of the sphere of nor-
mal directions are shown: seen from the South (left), and
from the North (right). The spheres are color-coded accord-
ing to the confidence interval Cn for each normal direction.
Note that vertex interpolation is used to display full spheres,
but valid data is available only at vertices (thus the staircase
effect in some plots).

At first glance, we notice that normals pointing down
(towards Nadir) consistently have high confidence intervals,
irrespective of the illumination conditions. The stability of
outdoor PS on these normals is thus expected to be low.
This behavior concords with expectation: normals point-
ing down define integration domains Ωn (see fig. 2) which
mostly include the ground, whose intensity does not vary

spatially throughout the day. Another interesting observa-
tion from fig. 3 is that the same normal exhibits different
confidence intervals depending on the day. This raises the
question: what is the relation between outdoor illumination
conditions and uncertainty in the recovered surface normal?

4.2. Influence of cloud cover

It is already apparent from fig. 3 that cloud coverage has
an effect on the uncertainty of normal reconstruction, since
an overcast day (last row) clearly does not behave the same
way as a day with light clouds (top row). Here, we present a
more systematic analysis of the influence of cloud coverage.
To control for the effect of the sun elevation (which will be
explored in sec. 4.3), the analysis is performed on days with
similar sun elevations by keeping only the skies captured in
October and November.

We approximate cloud coverage by computing the frac-
tion of time that the sun is visible, i.e., that it fully shines
on the scene, for a given day. To do so, we simply find the
brightest spot in a sky image, and determine that the sun
shines on the scene if the intensity of the brightest pixel is
greater than 20% of the maximum sun intensity—we deter-
mined empirically that this is the point at which the sun is
bright enough to start creating cast shadows. Cloud cov-
erage is represented by computing the mean sun visibility
for a given day. A value of less than 10–15% would indi-
cate a mostly overcast sky, while skies are mostly clear with
values above 85–90%.

The relation between sun visibility and the confidence
interval Cn is shown in fig. 4. Normal reconstruction errors
will likely be quite high in two situations: when the sky
is completely overcast (low sun visibility), or completely
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Figure 5. Influence of cloud cover on the 95% confidence intervals
with σ = 1%. Each row shows a different type of sky, based on
sun visibility. For example, the top row shows confidence intervals
averaged over all days with direct sun visibility in the range 85%-
100%. The averaged days presented similar sun elevations. As
with fig. 3, the plots show the full sphere of normals from two
different viewpoints: South (left), and North (right).

clear (high sun visibility). Interestingly, good reconstruc-
tion results are expected for a wide range of cloud coverage
conditions, ranging from 10–90% mean sun visibility.

These results are corroborated by fig. 5, which shows the
confidence intervals themselves on a plot similar to fig. 3.

Zenith

W E

S

mean light directions
sun positions

Figure 6. Cloud effect on the mean light direction over one day:
while the sun path (orange) yields nearly co-planar directions of
illumination, the mean light directions (red dots) provide a much
more varied set (data from 11/06/2013, 2nd row of fig. 1).

Results there are presented by averaging the intervals of
skies belonging to four groups: overcast (0–15%), mixed
overcast (15–50%), mixed clear (50–85%), and clear (85–
100%) days. Again, high uncertainty results are visible for
the two extreme cases of fully overcast and fully clear days,
while the remainder indicate more stable solutions.

The improved conditioning in mixed skies is explained
by the following key observation: cloud cover shifts the
mean light vectors l̄t towards zenith and away from sun tra-
jectory in the sky. Therefore, even when the sun moves
along a trajectory that nearly lies on a 3D plane, as shown
in fig. 6, cloud cover effectively causes an out-of-plane shift
of the mean light vectors, making reconstruction possible.

This key observation also demonstrates the advantages
of adopting more elaborate illumination models (e.g., [24]).
For instance, the simpler point light model was used in [19]
to study the conditioning of outdoor PS. Because the at-
mospheric component is not modeled, the conclusion was
that single-day reconstruction breaks down in two cases of
nearly coplanar sun directions: closer to the poles near the
winter solstice, and worldwide near an equinox. Our results
suggest that more attention should be placed on the illumi-
nation model, without focusing exclusively on the sun.

4.3. Influence of sun elevation

We also hypothesized the position of the sun to have an
important effect on the ability to recover surface normals
outdoors. Since our dataset is already aligned in terms of
sun azimuths (see sec. 2), we now analyze the influence of
sun elevation. For this purpose, we retain only the days for
which the sun visibility was between 15–85% of the time.
We then compute the relation between sun elevation and
expected reconstruction confidence, as illustrated in fig. 7.

Sun elevation does appear to have an influence, with
higher sun elevations resulting in slightly increased uncer-
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Figure 7. Median confidence interval of normal estimates (red line)
as a function of maximum sun elevation over the course of the day
for various values of σ. Although the effect is not as significant as
with cloud cover, we anticipate a small decrease in performance
at higher sun elevations. The lower (upper) edge of each blue box
indicates the 25th (75th) percentile. Statistics are computed only
on normals pointing upwards to lessen ground effects.

tainty than when the sun is lower in the sky. However,
the impact is less drastic than that of cloud cover from
sec. 4.2. These results can be explained, at least in part,
by the smaller sun-zenith shift introduced by cloud cover
when the sun is already high in the sky; therefore, smaller
improvements in conditioning are obtained.

Our data-driven analysis shows that higher sun
elevations—predicted as preferable by the analysis
in [19]—are in fact not necessarily optimal when taking
more elaborate illumination models into account.

4.4. Analyzing full objects

So far, our analysis has focused solely on one patch (one
normal direction) at a time. But can we also say some-
thing about an entire object? Clearly, a full answer to this
question would require analyzing non-local effects such as
occlusions, inter-reflections, cast shadows, etc. However,
we hypothesize that a simpler analysis ignoring these ef-
fects can still provide useful results. We therefore predict
the performance of an outdoor PS algorithm by computing
the expected value of the confidence interval, En[Cn], over
an entire object; expectation over the normal vector is com-
puted using a prior distribution taken from a simpler convex
shape (e.g., a sphere). Fig. 8 shows the expected reconstruc-
tion performance for two objects: a bottle, and the bunny.
Overall, surface reconstruction performance is expected to
be best when objects face south (i.e., the sun).

5. Validation on real object images
The analysis performed on our dataset indicates that sur-

face patches may be better reconstructed in certain condi-
tions, dependent upon cloud coverage, sun elevation, and
the orientation of the patch itself. At the time of this writ-
ing, a thorough validation on real outdoor images of dif-
ferent objects is currently under development. This section
reports preliminary results on real outdoor images of an owl
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Figure 8. Predicting object reconstruction performance for the
08/24/2013 dataset. These curves show the mean surface recon-
struction variance for two objects: a bottle (blue) and the bunny
(red). Irrespective of the noise level, surface reconstruction per-
formance is expected to be best when the objects face south.

statuette (fig. 9), which was scanned with a Creaform Me-
traSCAN at a resolution of 0.05mm to provide a reference
of true surface orientation.

We oriented this owl statuette towards south and took
66 HDR captures using a Canon EOS Rebel SL1 between
10h30 and 16h30, local time, in Quebec City. These cap-
tures were synchronized with the HDR environment maps
described in sec. 1, providing high fidelity estimates of the
illumination conditions for each image, as shown in fig. 9.
The laser scan was then manually aligned to these images.

A simple outdoor PS algorithm was run on evenly dis-
tributed patches on the owl images. For each patch, the sur-
face normal is obtained as to minimize the rendering error
given by the model in (5), in a least-squares sense. Since
this estimation problem is nonlinear on the normal n, a so-
lution is computed via exhaustive search on a set of 271 can-
didate orientations for the light hemisphere Ωn. Given Ωn,
a candidate solution x is obtained via linear least squares.
For the best solution, an estimation error, in degrees, is
computed using the reference normal from the laser scan.
The uncertainty measure (confidence interval Cn) derived
in sec. 3.3 is also computed for each patch.

Results from this quantitative evaluation are given in
fig. 10. As shown on the left, normals pointing upwards are
generally recovered more accurately than normals pointing
downwards. This is in concordance with the predicted con-
fidence intervals shown on the right in fig. 10. The behavior
of the reconstruction error is, in general, well predicted by
the confidence intervals.
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Figure 9. Real outdoor HDR images of owl statuette and corresponding HDR environment maps (top row) providing synchronized, high-
fidelity estimates of illumination conditions. All images were acquired on 10/11/2014 and tone-mapped for display only (with γ = 1.6).
The sun visibility was 43% on this day.

Angular differences to ground truth Predicted 95% confidence intervals

Figure 10. Quantitative validation on images of a real object.
Evenly distributed patches of the owl images were used to per-
form a simple calibrated outdoor PS algorithm. Error estimates
of the surface normals are reported on the left using the reference
surface orientation in the laser scan. The predicted 95% confi-
dence intervals Cn from (11) are shown on the right. A few large
estimation errors on the left image may be caused by imperfect
alignment between the scanned model and the images. Insets in
the lower right corner show the recovered normals mapped to the
south hemisphere. Normals in dark blue means no data available.

6. Discussion and future work

This paper has presented the first data-driven analysis of
the expected behavior of PS under outdoor illumination. In
this scenario, we have no control over the illumination con-
ditions themselves, so existing methods to determine an op-
timal illumination setup [7,16] cannot be applied. Our goal
is, therefore, to reveal natural factors that distinguish good
and unfavorable daylight conditions for outdoor PS.

The recent work of Shen et al. [19] presents an insightful,
theoretical analysis of the conditioning of outdoor PS using
the standard illumination model with a point light source.
Their work suggests that PS reconstruction becomes un-

stable in two cases of nearly planar sun motion: near the
poles during the winter solstices, and worldwide near the
equinoxes. However, these conclusions are drawn based on
a simple illumination model that focuses exclusively on di-
rect sun light, without considering other atmospheric com-
ponents. Our approach is fundamentally different in that we
adopt a more realistic illumination model and then follow a
data-driven approach to investigate the conditioning of out-
door PS. We identify not only solar, but also atmospheric
and object-intrinsic factors that contribute to stability, or un-
certainty, in the photometric reconstruction.

To achieve our goal, we exploit a large database of out-
door HDR environment maps that provide a rich sampling
of the natural variability in outdoor illumination. To make
comprehensive use of this dataset, our photometric model
considers not only direct sun illumination, but also the full
atmospheric (sky) component and an additional ground ef-
fect. We then derive a theoretical analysis to investigate
the stability of surface normal reconstruction, as measured
by an intuitive angular confidence interval. Our empirical
analysis reveals how reconstruction is affected by surface
orientation, cloud coverage, and sun elevation. Our prelim-
inary quantitative experiments corroborate the predictions
with actual reconstruction results.

In short, our analysis revealed the following important
observations of direct practical value. We show that better
stability can be achieved when:

1. surface patches are oriented South and above the hori-
zon: since our data was captured in the Northern
Hemisphere, these are the patches (normals) that “see”
the sun while it moves during the day;

2. the sky is partially cloudy throughout the day: this
resulted in improved stability than either completely
sunny, or completely overcast days;

3. the sun is lower in the sky: this resulted, on average, in
slightly better performance than with days where the
sun is higher in the sky.

While these observations might seem intuitive to an experi-
enced practitioner, as far as we know, our work is the first
attempt to confirm or contradict such intuition in outdoor



PS. For instance, a common belief has been that clear days
were preferable [1, 2, 13, 24], instead of mixed weather.

Another goal of this paper has been to inform future re-
search in outdoor PS. Clearly, a better understanding of the
sources of uncertainty is useful in developing better recon-
struction algorithms (e.g., better informed regularization).
Despite the interesting observations above, this work still
has some limitations that also open the way to interesting
future work. First, it would be interesting to explore the cor-
relation between the predicted reconstruction performance
(e.g., fig. 8) and the performance of an actual outdoor pho-
tometric stereo algorithm such as [24]. Second, our analysis
assumes white Gaussian noise, for practical purposes; more
realistic noise models for HDR photography should be in-
vestigated. Third, our current analysis does not model ran-
dom perturbations in the light probes themselves (i.e., L).
These are interesting extensions that increase the complex-
ity of our derivations above and, thus, are left as future
work. Finally, some seasons are not well represented in our
dataset yet. We plan on continuing data capture to further
enrich this database of outdoor environment maps.
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