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Abstract

While Photometric Stereo (PS) has long been confined
to the lab, there has been a recent interest in applying this
technique to reconstruct outdoor objects and scenes. Un-
fortunately, the most successful outdoor PS techniques typi-
cally require gathering either months of data, or waiting for
a particular time of the year. In this paper, we analyze the il-
lumination requirements for single-day outdoor PS to yield
stable normal reconstructions, and determine that these re-
quirements are often available in much less than a full day.
In particular, we show that the right set of conditions for
stable PS solutions may be observed in the sky within short
time intervals of just above one hour. This work provides,
for the first time, a detailed analysis of the factors affecting
the performance of x-hour outdoor photometric stereo.

1. Introduction

Since its inception in the early 80s, Photometric
Stereo (PS) [23] has been explored under many an angle.
Whether it has been to improve its ability to deal with com-
plex materials [4] or lighting conditions [6], the myriad of
papers published on the topic are testament to the interest
this technique has garnered in the community. While most
of the papers on this topic have focused on images captured
in the lab, recent progress has allowed the application of PS
on images captured outdoors, lit by the more challenging
case of uncontrollable, natural illumination.

A central question to any PS practitioner is that of the
quality and amount of data required to achieve good per-
formance. What should the lighting conditions be during
data capture? How many images (illumination conditions)
are needed? What is the shortest time interval required to
collect these samples?
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In the lab, theoretical analyses for Lambertian surfaces,
lit by point light sources, reveal that the minimum number
of images is three [23] and that the optimal light config-
uration yields an orthogonal triplet of light directions [9].
While such theoretical guarantees are reassuring, they are
however much harder to obtain for the case of more com-
plex, non-Lambertian reflectance, or with more general
lighting models. Thus, practitioners are left without guid-
ance in the task of determining when to stop capturing data,
an inherently tedious trial-and-error process. As a result, it
is not rare for PS datasets to include hundreds of images [4]
in an uncertain attempt to obtain accurate reconstruction.

While capturing more data in the lab can be done rela-
tively easily, the same cannot be said for outdoor imagery.
Indeed, one does not control the sun and the other atmo-
spheric elements in the sky; so one must wait for lighting
conditions to change on their own. A creative solution to
this problem was proposed in [15], but it is limited to ob-
jects that can be placed on a small moving platform. There-
fore, capturing more data for fixed, large objects still means
waiting days, or even months, potentially [1,2].

Luckily, techniques that reduce the requirement to a sin-
gle day’s worth of data have also been proposed [18,20,24].
However, this is still much longer than what can be done in
the lab, where light sources can be waved around rapidly
and data be captured in minutes. And although recent work
has investigated which days provide more favorable atmo-
spheric conditions for outdoor PS [13,20], so far, no study
has systematically demonstrated the performance of out-
door PS with less than a full day’s worth of data. Is a full
day of observations indeed necessary to obtain good results
in outdoor PS? Or could similar results be obtained over a
shorter time interval (say, 1 hour)? If so, what should be
happening in the sky over that time interval? Besides eas-
ing the requirements on data capture, these questions are
also important in that, in future work, they could extend the
applicability of outdoor PS to new scenarios (e.g., to more
quickly capture non-static outdoor objects that show grad-



ual changes in shape or appearance over time).

This paper presents what are believed to be the first an-
swers to the questions above. Here, we seek to determine
the relationship between expected PS performance (in nor-
mal estimation) and: 1) the duration of data capture within
a single, arbitrary day; and 2) specific atmospheric events
that introduce beneficial lighting variations during that time
interval. To achieve this goal, we use a large database of
natural, outdoor illumination (sky probes) [13], take a de-
tailed look at the conditions under which normals can be re-
constructed reliably, and explore whether these conditions
occur over less than one day.

Dataset Our analysis is based on the dataset of [13, 14],
which provides wide angle, high dynamic range (HDR) im-
ages of the sky hemisphere. It contains more than 3,800
different illumination conditions captured over 23 different
days. Each HDR sky photograph span the full 22 stops re-
quired to properly capture outdoor lighting using the ap-
proach proposed in [22]. The photos are also temporally
aligned, and were captured every day from 10:30 until 16:30
(see supplementary material). Since this database captures
only the sky hemisphere, we synthesized an infinite Lam-
bertian ground plane with an albedo equal to that of as-
phalt (p ~ 0.15 [3]). Finally, the images were converted
to grayscale before the analysis was performed.

2. Related work

A complete review of PS approaches is beyond the scope
of this paper. For conciseness, we focus on more closely
related work that have considered PS on outdoor conditions.

The first works attempting PS reconstruction on outdoor
data [1, 2] made the observation that, over the course of a
day, the sun seems to move on a planar path through the
sky. Unfortunately, co-planar light sources yield an under-
constrained, two-source PS problem [12], which cannot be
solved without strong regularization and reconstruction ar-
tifacts. To avoid this issue, the authors therefore propose
gathering months of data using webcams.

Recently, Shen et al. [20] showed that, contrary to com-
mon belief, the sun path in the sky actually does not always
lie within a plane. Thus, PS reconstruction can sometimes
be computed in a single day even with a point light source
model. The main downside of this approach is that planarity
of the sun path (i.e., conditioning of PS reconstruction) de-
pends on the latitude and the time of year. More specifically,
reconstruction becomes unstable at high latitudes near the
winter solstice, and worldwide near the equinoxes.

To compensate for limited sun motion, other approaches
have proposed using richer models of illumination that ac-
count for additional atmospheric factors in the sky. Typi-
cally, this is done by employing (hemi-)spherical environ-
ment maps [7]. On one hand, full environment maps can be

captured and used with calibrated PS algorithms [15,21,24].
On the other hand, it is also possible to estimate part of the
environment map without explicitly capturing it, by synthe-
sizing a hemispherical model of the sky using physically-
based models [16, 18]. While these richer models do allow
reconstructions from only one day, it is unknown whether
the same could be done with even less data.

The work presented below extends our initial analysis
in [13]. Rather than presenting a new reconstruction algo-
rithm, in [13] we conducted an empirical analysis of the
same sky database to identify which days provide more fa-
vorable atmospheric conditions for outdoor PS. However,
no consideration was given to the shortest time interval of
data capture needed to obtain accurate reconstructions; all
results were reported on at least 6 hours (a “full day”) of
captured data. Here, instead of comparing days, we focus
on analyzing different time intervals within each day. We
then show that 6 hours is actually more than necessary, and
detail the relationship between the appearance of the sky
hemisphere and the quality of PS reconstruction.

Finally, it is also worth mentioning shape-from-shading
techniques such as [5, 17, 19], which push reconstruction
to its limits by attempting to recover shape from a single
input image. In this case, the information provided by the
shading cue is obviously insufficient to define a unique solu-
tion, so these approaches rely strongly on priors of different
types and complexities. In this paper, we avoid such strong
priors and focus our analysis exclusively on the photomet-
ric/shading cues obtained from multiple images.

3. Outdoor PS conditioning

In the following, we consider a small planar surface
patch with normal vector n and Lambertian reflectance with
albedo p. As discussed in [ 13, 15], the lighting contribution
of an environment map to a Lambertian surface patch can be
formulated as in an equivalent problem with a single point
light source 1 € R3. This vector is the mean of the light
vectors computed over the hemisphere of incoming light di-
rections defined by n. This virtual point light source 1 is
henceforth referred to as the mean light vector (MLV). It is
important to note that, as opposed to the traditional PS sce-
nario where point light sources are fixed and thus indepen-
dent of n, here the per-pixel MLV is a function of n. Thus,
patches with different orientations define different sets of
MLVs (as discussed later and shown in fig. 3).

Given multiple images of the same patch, taken at dif-
ferent times, we collect all photometric constraints for that
patch and obtain the PS equation in matrix form:
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where b; € R are the observed pixel intensities, and x € R3
is the surface normal n scaled by p.

Let X = (L”L)~'L”b denote the least-squares solution
of (1). A 95% confidence interval for normal x is given by

X+, withd, = 1967\, )
P

where o is the camera noise level and )y, is the square root
of the k-th element on the diagonal of (LTL)~* [11].

From (2), note that the only light-dependent stabil-
ity factor in the confidence interval & is Ag; the other
two factors are related to the camera (o), and surface re-
flectance (p). In this paper, we analyze the maximum un-
certainty A\pm,x = maxyg(\x), as a conservative performance
measure that is independent of albedo and sensor noise;
Amax 18 @ maximum noise gain factor, i.e., the intensity of
noise amplification in the solution. Here, we are interested
in (i) investigating how the noise gain Ay is influenced by
the duration of outdoor data capture, and in (ii) identifying
specific changes, or events, in outdoor lighting that are as-
sociated with more stable PS solutions (smaller Ap,y).

To make our analysis tractable, we do not model cast
shadows and inter-reflections. In addition, we assume that
the sky hemisphere (around zenith) provides the dominant
part of incoming light. Unless stated otherwise, our simula-
tions consider a day near an equinox, which corresponds to
the worst case scenario with coplanar sun directions [20].

4. z-hour outdoor PS

This section provides the first answers to the questions
raised above by looking at collections of mean light vectors
(MLVs) from both simulated and real sky data. The main
goal is to analyze the behavior of the illumination factors
A (and associated confidence interval) of normal estima-
tion. More specifically, we investigate numerical stability
(MLYV coplanarity) as a function of the apparent sun motion
and cloud coverage within capture intervals of different du-
rations, containing different atmospheric events. We also
compare the resulting performance measures of z-hour out-
door PS to those of full-day outdoor PS.

4.1. Cloud coverage and MLYV shifting

As shown in [13], with data captured under clear skies,
the MLVs of the model above will point nearly towards the
sun, from which arrives most of the incoming light. Thus,
near an equinox (worldwide), the resulting set of MLVs
are nearly coplanar [20], resulting in poor performance,
fig. 1(a). For a day with an overcast sky, performance is
also poor because the set of MLVs are nearly colinear and
shifted towards the patch normal n, fig. 1(b). Finally, in
partly cloudy days (mixed skies), the sun is often obscured
by clouds and such occlusion shifts some MLVs away from
the solar plane, improving numerical stability, fig. 1(c).
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Figure 1. Impact of cloud coverage on the numerical conditioning
of outdoor PS: clear (a) and overcast (b) days present MLVs with
stronger coplanarity; in partly cloudy days (c) the sun is often ob-
scured by clouds, which may lead to out-of-plane shifts of MLVs.

4.2. Solar arcs and MLV elevation

Here, we seek to provide a sense of the minimal length
of solar arc and amount of out-of-plane MLV shift required
in single-day outdoor PS.

Assuming a day near an equinox, the apparent sun trajec-
tory worldwide describes an arc 6, within the solar plane of
about 15° per hour. We now use this observation to evaluate
the numerical stability of outdoor PS for data capture inter-
vals (solar arcs) of different lengths. Considering a partly
cloudy sky, we also investigate the interaction of solar arc
and cloud coverage; we quantify performance as a function
of both acquisition time (solar arc 6,) and amount of out-of-
plane MLV shift (elevation angle 6..) introduced by clouds.

A simple and effective way to investigate conditioning
with different capture scenarios is to consider a simulation
with the minimum number of three MLVs, as required for
outdoor PS using (1). We simulate solar arcs 6, of different
lengths by defining two MLVs on a reference solar plane,
with the third MLV presenting varying elevation 6, away
from this plane, as illustrated in fig. 1(c). The actual orien-
tation of the solar plane varies with the latitude of the ob-
server; thus, we represent MLV shift relative to this plane.

The numerical conditioning of outdoor PS, as observed
with different configurations for these three MLV, is then
scored using the noise gain A\, ,x (sec. 3). This measure is
independent of albedo and sensor noise; it is also related to
the condition number of the illumination matrix L in (1).
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Figure 2. Simulated noise gain Amax(fa, 0c) as a function of solar arc 6, and MLV shift (elevation) angle 6. See discussion in the text.

We compute Apax(0q,0) for solar arcs 6, of up to 6
hours (90°) and MLV elevations 6. up to 90°. For simplic-
ity, we consider triplets of unit-length MLVs—thus, con-
ditioning depends on the magnitude sin(6.) of the out-of-
plane component of the third MLV. Clearly, the optimal
noise gain A\p,,x = 1 is obtained when the MLV are mutu-
ally orthogonal (0, = 6. = 90°).

Fig. 2(a) shows that the noise gain A,y drops quickly
to under 6 for capture intervals at just above 1 hour and
for MLV shifts . > 15°. This result suggests that even
the performance of 1-hour PS can be acceptable with small
levels of sensor noise o and high surface reflectance p. To
ease visualization, figs. 2(b,c) show cross sections of the
Amax(0a, 0e) gain surface for a constant shift or solar arc.

A second important prediction from fig. 2, considering
(more realistic) small to moderate amounts of MLV shifts
0. < 40°, is that conditioning will improve very little for
data capture intervals above 3 hours (45° solar arcs). Re-
ducing data capture from 3 to 2 hours would lead to an addi-
tional increase in uncertainty (Ayay) of less than 30% (from
about 2.8 to nearly 3.6). Still, 2-hour outdoor PS with noise
gains under 4 X may be possible if an MLV shift of 6, > 20°
is introduced by atmospheric events during capture. Uncer-
tainty in the results of 1-hour outdoor PS would be about 5
to 7 times that of full-day (6-hour) outdoor PS.

4.3. MLV shifts in real sky probes

While the analysis above suggests that outdoor PS may
be possible with a capture interval of only about 1 to 3
hours, it does not answer whether it is possible to observe an
adequate amount of MLV shift (elevation away from solar
plane) within a single partly cloudy day. In the following,
we analyze the shifting (coplanarity) of real MLV obtained
from a database of real environment maps (sky probes) [ 3].

First, it is important to note that surface patches of dif-
ferent orientations (normals) are exposed to different hemi-
spheres of illumination, with light arriving from above (sky)
and below (ground). This fact is illustrated in fig. 3 for
three different normal vectors (rows) and two different days

(columns). Each globe represents the coordinate system for
the environment maps captured in a day. For each com-
bination normal-day, the time-trajectory of computed MLV
directions (dots) and intensities (colors) are shown on the
globe. Brighter MLVs lie closely to the solar arc, while
darker MLVs may shift away from it.

To more closely match the scenario considered above,
we scale these real MLVs so that the brightest one over all
days (i.e., for the most clear sky) has unit-length. From
fig. 3, also note that some MLVs are shifted very far from
the solar arc but, as indicated by the darker colors, their
intensity is dimmed considerably by cloud coverage; little
improvement in conditioning is obtained from these MLVs.

Most important, fig. 3 shows that the amount of out-of-
plane MLV shift (elevation) relative to the solar arc also
depends on the orientation n of the surface patch. This
suggest that outdoor PS reconstruction may present differ-
ent amounts of uncertainty (conditioning) depending on the
normal of each patch. Indeed, the noise gain (A, ax) values
in fig. 4 show that patches with nearly horizontal normals
(orthogonal to the zenith direction) are associated with sets
of MLVs that are closer to being coplanar throughout the
day. As expected, patches oriented towards the bottom also
present worse conditioning since they receive less light.

Although these MLVs were computed from environ-
ment maps captured in the Northern hemisphere (Pitts-
burgh, USA, and Quebec City, Canada [!3]), similar con-
clusions can be drawn for the Southern hemisphere. Finally,
note that this section has considered MLV shifts in whole-
day datasets. Next, we look at subsets of MLVs from time
intervals of varying lengths and analyze some of the atmo-
spheric events associated with improved conditioning.

4.4. Evolution of noise gain over time

In this section, we show how the conditioning of outdoor
PS evolves over time. Analyzing the patterns in its evolution
will allow us to isolate important “events”’—points at which
uncertainty suddenly drops—and investigate whether such
events occur in close succession.
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Figure 3. Globes representing the coordinate system of sky probes.
Each normal (blue arrow) defines a shaded hemisphere in the en-
vironmental map that does not contribute light to the computed
MLVs (dots). All MLVs in two particular partly cloudy days
(columns) were computed from real environment maps [!3] for
3 example normal vectors (rows). Relative MLV intensities are
shown in the color bar on the left. See also video in [14].

The main results are given in fig. 5, which plots the gain
factor A for all possible time intervals in four different
days. Since Apax varies with n, we plot the median gain
over 321 normal vectors visible to the camera (by subdivid-
ing an icosahedron three times) for each time interval.

The first row of fig. 5(a,b) illustrates the case of two days
identified in sec. 4.1 as yielding poor outdoor PS recon-
structions. As seen in the plots, low noise gains are never
reached, irrespective of the start time and duration of the
capture interval. We note that the (nearly) overcast sky of
fig. 5(b) exhibits better behavior than the completely clear
sky of fig. 5(a). This is because that day is not completely
overcast, and the sun sometimes becomes visible (see the
sun log-intensity plot). MLVs are thus shifted away from
their main axes, while improving conditioning only slightly.
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Figure 4. Noise gain for each normal direction n visible to the
camera; the colors indicate the shifting (coplanarity) of the associ-
ated MLVs. The camera is assumed to lie to the South of this hypo-
thetical target object. For both days, normals that are nearly hor-
izontal are associated with more coplanar MLVs (smaller shifts,
higher gains). These normals define a zero-crossing region be-
tween positive and negative out-of-plane shifts (mid row in fig. 3),
where occlusion of the sun results in shifts that are predominantly
along the solar arc. See also video available in [14].

More interesting scenarios arise on days exhibiting a bet-
ter mix of sun and moving clouds, such as the two examples
in fig. 5(c,d). The two black vertical lines in fig. 5(c) iden-
tify capture intervals starting at two different times. Fol-
lowing the line labeled “start time 17 (beginning at 11:00),
we notice that uncertainty remains high for approximately
two hours, then suddenly drops at around 13:00. This time
instant is followed by sudden changes in sun intensity (due
to passing clouds) that are sufficient to shift the MLV away
from the sun plane. Subsequently, uncertainty continues to
decrease, albeit at a much slower pace, over the rest of the
day. The second time interval (identified as “start time 2”)
starts at 14:00, so it does not benefit from that period of
sun intensity changes. The maximum gain at the end of the
interval is therefore higher.

Of course, this could be due to a simple fact: the first
interval is longer than the second one. However, fig. 5(d)
shows that longer intervals do not always result in lower
uncertainty. This time, two 2-hour intervals are considered.
The time interval labeled as “start time 17 stops right be-
fore the 14:00 mark, and only sees clear skies; as expected,
the uncertainty is very high. “Start time 2”, beginning at
13:30, can fully exploit the MLV shifts caused by moving
clouds to dramatically decrease PS uncertainty, even while
the interval length is kept constant.

4.5. Overall performance of z-hour PS

We noted in fig. 5(d) that sufficient conditions for low
uncertainty could be met in as little as 2 hours. In this sec-
tion, we evaluate how often one can achieve low uncertainty
in short time intervals. This is done by assessing the distri-
bution of noise gains from short time intervals, and aggre-
gating results over multiple days.

To compute these statistics, we first consider a single
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Figure 5. Fine-grained analysis of the expected uncertainty of outdoor PS as a function of time over four selected days in the dataset.
Colored plots show the maximum gain Amax as a function of start time (diagonal along the plot), and duration of the interval. The black
lines identify particular time intervals discussed in the text. The blue curve to the left of each colored plot represents the log sun intensity
over the course of that day. Photographs of the sky for each day are also shown on the left.

normal and a single day. For a particular time interval
T = {tstart, tena }» W€ compute the ratio 5 (7) of its noise
gain divided by the best (minimum) gain of all possi-
ble intervals in this day (including the full-day interval).
Fig. 6(a,b) shows distributions of relative gains ) for the
two days in fig. 5(c,d). Fig. 6(a) shows that, for intervals of
4 hours, 75% of the normals have uncertainty below twice
the minimum gain for that day. In the case of fig. 6(b), that
interval drops to 3 hours.

The ratios r) were then computed for all normals, over
all days in the database. The compound statistics are shown
in fig. 6(c). They empirically illustrate that there were many
opportunities for stable normal reconstruction with short
capture intervals. For example, more than 50% of the time
intervals of 3 hours resulted in reconstructions that had at
most twice the uncertainty of the optimal interval. These re-
sults suggest that opportunities for shorter capture sessions
seem to occur quite frequently in practice.

Sky camera
Canon 5D mark iii camera
with 8mm lens

Object camera
Canon 5D mark iii camera
with 300mm lens

— /

Figure 8. Real data capture setup. HDR photographs of the sky
and of the object (owl statuette) are simultaneously captured by
two cameras installed on the roof of a tall building.

S. Experimental validation

We validate the analyses in sec. 3 and 4 via calibrated
outdoor PS on synthetic and real object images with known
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ground truth normals. These normals are used as an opti-
mal initialization for computing ground-truth MLVs, thus
avoiding convergence issues of nonlinear optimization and
allowing us to focus on assessing errors due to illumination
effects in the real sky probes. We then perform calibrated
outdoor PS on these images using the algorithm in [24],
with the following two differences: (i) we use all possible
pairs of images to compute ratios, instead of selecting a sin-
gle denominator image; and (if) we apply anisotropic regu-
larization [12] to mitigate the impact of badly-conditioned
pixels on the surface reconstruction.

Synthetic data We first consider synthetic images of an
owl model rendered with real sky probes. The rendered im-
ages were perturbed with additive Gaussian noise at 1% the
median pixel intensity. For each image, one real-world en-
vironment map from the database was used as the sole light
source. Cast shadows were not simulated to isolate the anal-
ysis to the photometric cue alone (see [ 14] for more realistic
results with a physically-based rendering engine).

We ran calibrated outdoor PS on all time intervals start-

ing at 12:00 or 13:30 for the day 06-NOV-13 (see fig. 5(d)),
in increments of one hour. The main results of this experi-
ment are shown in fig. 7. Fig. 7(a) follows “start time 1” in
fig. 5(d); the reconstruction error improves significantly un-
til an interval of 3 hours is reached, at which point the error
improves only slightly through the rest of the day. Thus, the
additional data provides little new information. In fig. 7(b),
we now follow the path of “start time 2” in fig. 5(d); in this
case, the error is already quite low after just one hour.

Real data Another similar experiment considered real
photos of a real owl statuette. To capture this data, we set
up two cameras on the roof of a tall building as shown in
fig. 8. The first camera, dubbed “sky camera”, captures
omnidirectional photos of the sky using the approach pro-
posed by Stumpfel et al. [22]. The second, “object” cam-
era is equipped with a telephoto zoom lens and captures
photos of the statuette. Both cameras capture exposure-
bracketed HDR photos simultaneously, once every two min-
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Figure 9. Validation on real data, captured on 11-OCT-14 (partly cloudy). Four distinct time intervals are analyzed and, for each one, the
following information is displayed, from left to right: () log sun intensity; (¢) noise gain Amax as a function of start time and duration of
the interval, as in fig. 5; (i4¢) example input images; (¢v) normals recovered by calibrated outdoor PS; (v) normal estimation error at each
pixel; and (v?) the error distribution, in degrees. For reference, ground truth normals are given on the rightmost plots.

utes'. Ground truth surface normals were obtained by align-
ing a 3D model of the object (obtained with a 3D scanner)
to the image using POSIT [8].

The validation results with real data are shown in fig. 9.
As predicted by the noise gain values of fig. 9 (left), similar
reconstruction performance is obtained from three different
time intervals shown in the top three rows of fig. 9 (right).
Once again, the performances of 1-hour (15:30-16:30) and
3.5-hour (13:00-16:30) outdoor PS are indeed quite close
to that of “full-day” outdoor PS (10:30-16:30). However,
not all one-hour intervals are equally good, as shown for
the interval 12:00—13:00 at the bottom of fig. 9.

6. Conclusion

In this paper, we present what we believe is the first study
of the time requirements for single-day outdoor PS. In par-
ticular, we seek to determine the relationship between ex-
pected performance in normal estimation and: (i) the dura-
tion of data capture within a single, arbitrary day; and (i7)
specific atmospheric events that introduce beneficial light-
ing variations during that time interval. To achieve this
goal, we use a large database of natural, outdoor illumi-
nation (sky probes) and take a detailed look at the condi-
tions under which surface normals can be reconstructed re-
liably. Finally, we investigate whether these conditions are
observed in less than a full day of data capture.

Our analysis reveals the following novel insights. First,
we show how the mean light vectors (MLVs) are shifted
from the solar plane when the sun is occluded by clouds.
We demonstrate, through an extensive empirical analysis,
that the atmospheric events causing that shift occur often in
practice, and that they can be observed within a short time

IData and source code are available on our project webpage [14].

interval. In addition, we found that this shifting is often suf-
ficient to constrain the PS problem significantly and reduce
uncertainty in normal estimation. However, we also show
that the shift is not the same for every normal; for some
normals, shifting may not reduce uncertainty sufficiently.
Finally, we validate our analysis by running calibrated out-
door PS on synthetic and real data.

One limitation of our work is that we consider only
contiguous time intervals. It would be interesting to ex-
plore how non-consecutive images could be selected, from
a given interval, with the goal of achieving additional im-
provements in performance. Presently, we are using the
setup in fig. 8 to collect a database of real objects ob-
served outdoors, and extending our analysis considering
more elaborate shading and ground models.

We believe our findings open the way for interesting new
research problems. Of note, one could leverage knowledge
on MLV shifting to steer regularization in outdoor PS and
even attempt to further reduce time requirements. It would
also be interesting to include other cues, such as shape pri-
ors or stereo, to further constrain the problem. We plan to
explore these issues in future work.
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