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Abstract— In this paper, we present an approach for potential
negative obstacle detection based on missing data interpreta-
tion that extends traditional techniques driven by data only
which capture the occupancy of the scene. The approach is
decomposed into three steps: three-dimensional (3-D) data accu-
mulation and low level classification, 3-D occluder propagation,
and context-based occlusion labeling. The approach is validated
using logged laser data collected in various outdoor natural

terrains and also demonstrated live on-board the Demo-lll Fig- 1. Two of the terrains we experimented in with the Demo-lil
eXperimental Unmanned Vehicle (XUV) eXperimental Unmanned Vehicle: large ravine with a steam and terrain
' depression.

. INTRODUCTION

Autonomous ground robot navigation in natural outdoor ified into th basic cl i it ¢
environment requires capabilities to sense, analyze ar%ass' led into three basic classes (linear, scatter, surface)

model the complexity of the surrounding three-dimensionaﬁased on th_e local geom_etrlc property of_the point cloud.
terrain. One of the most popular sensing modalities is th%ay trac!ng is performed in 3-D to d?termlne Fhe occluded
laser range scanner (or ladar), which allows 3-D perceptior gions In the scene. The occlu_ders class is propaga'Fed
of a robot’s surroundings, and enables the building of hight— rough the data structure, prqd_ucmg a ‘?'e.”?.e 3-D map which
accuracy environment maps. However, this sensor (as w&fptures the occupancy, classification, visibility and nature of

as other sensors like cameras) have several limitations, st qcc_lusmn for_ each voxel. Finally, context-bas_ed labeling
as limited field of view and range. Their biggest limitation® Missing data is used to detect potential negative obstacle.

however is that they do not “see through” objects: in a Our approach hgs several advantages over other preexist-
cluttered environment, it might be impossible to see thi'd @pproaches. First, we are able to work with accumulated
entire scene at once from any given viewpoint, thus yieldinlgSer data versus working with a frame by frame approach.
incomplete maps where a large amount of data is missin ur approach works with complex scenes with trees, shrubs,

In some cases, missing data might be explained by negativBarse and dense vegetation_, apd vggetation—covered ground
obstacles, i.e. obstacles which lie below the ground surfag¥face. The approach also is invariant to the slope of the
such as holes or ditches, for example. They are regions whéfound surface. Finally, the labeling is associated with a
the robot cannot see and might be potentially dangerous f6Pnfidence measure.
its mobility, and thus should be treated as obstacles.

In this paper, we seek to build a richer 3-D environment Il. RELATED WORK
map by finding plausible explanations to regions where data

is missing due to occlusions or sensing limitations, and . . . . .
o . . . ground robotics, it has received a fair amount of attention
explicitly find where they might be caused by a negativ . : - .
in the literature. Our approach is original because it uses

obstacle. We go beyond traditional methods that rely onlg{_D data acquired by a ladar
on existing data to interpret the scene. The proposed ap-Existing techniques use cémeras as in [3]. The authors

proach is applied to potential negative obstacle detectionI had b i bstacl hen illuminated
and demonstrated in various terrain types on-board a mob jg'y on shadows cast by negative obstacles when riluminate

robot equipped with a ladar (Figl)L We only label terrain y two lighting sources below and above stereo cameras.

regions susceptible to containing negative obstacles, so t%%?iﬁ ;Zi)dnows provide cues to complement and enhance

term "potential”. We assume that, if the negative obstacle cal . ) L )
derrain depressions exhibit different thermal properties

be mapped, at close range for example, mobility assessmen ) . ) :
can be performed. than their surroundings: they stay warmer at night. This fact

The approach leverages on existing work done on terraf§f2S used by Matthies and Rankin [4] to detect negative

classification [1], [2]. Laser data is accumulated in 3-D angPStacles. In contrast, our approach is robust to weather
conditions and time of day, as we are using an active sensor,

1This paper is best viewed in color which does not depend on ambient illumination.

Since negative obstacle detection is very important for



Leading and trailing edges of negative obstacles produ& Scene ray-tracing and occlusion labeling
discontinuities in images. Rosenblum et al. [5] detect such \ne can now use the classification results to determine

discontinuities in multi-spectral imagery as one of many CUgghere occlusions occur in the scene and identify several
for obstacle detection. Dima et al. [6] fuse multiple classifiergjferent types of occlusion.

trained on texture, color, infrared and 3-D saliency features. ¢ assification information is first collapsed from the high-

Negative obstacles, in some instances, are materialized R¥olution 3-D map to a low-resolution 3-D map for com-
the transition sequence data / no data / data. Matthies et gijtational tractability. Low-resolution voxels are obtained
[7], [8] detect such transitions in range images. The algorithihy grouping together several high-resolution voxels, and
takes into account the height of the trailing edge, the lengiissigning the most frequent class within them. To account for
of the data gap and the slope between the leading and trailifgise, such as generated by sparse vegetation in the scene,
edges and a vehicle mobility model. In [9], the authors als@e require a minimum level of occupancy of voxels in the
take advantage of the data gap, but they do so in a 24gy resolution 3-D map.
occupancy map of the terrain. Our approach relies on accu-gcclusion labeling is performed by ray tracing from the
mulated 3-D data, takes into account a richer interpretatiofyrent position of the laser through all the occupied voxels
of the terrain (classification versus occupancy), de-couplggat exist in an area of interest in the scene. A conventional
the detection problem from the mobility assessment problem@ly tracing algorithm is used [13]. The voxels that lie behind
and detects only potential negative obstacles. an occupied voxel (along the ray tracing direction) are

High resolution overhead data (several points per squagensidered occluded. Every occluded voxel stores the class
meter) was demonstrated to be suitable for negative obstaelgits occluder. Likewise, empty voxels that exist between the
detection [10], [11], [12]. The top-down point of view |aser and an occupied voxel are considered visible. Figs. 2-
ensures that the bottom of the negative obstacle is observedand 2-d illustrate this technique. Note that these figures
which is not the case if the obstacle is seen from a groungisplay only occlusions by one class for clarity purposes, and
perspective. In contrast, our approach does not rely on thgclusions by the two other classes are propagated as well.
existence of such data and directly estimates the potentighe complexity of this algorithm i€ (vk), wherev is the
negative obstacles from the robot's point of view. number of occupied voxels aridis the distance (in voxels)

from the laser position to a corner of the data structure.

. APPROACH C. Context-based labeling

Our approach relies on determining the location of oc- AS illustrated in Fig. 3, negative obstacles may occur only
clusions and identifying a subset of those where a negatilid "€gions Where_there is a transition from_ visible to occlupled
obstacle might occur. Fig. 2 illustrates the process, whictPxels. We explicitly look for those regions by searching
is decomposed into three major steps: 1) data accumulafifough columns in the low resolution 3-D map.
and classification in high resolution 3-D maps (first row),

2) occluder propagation in low resolution 3-D maps (second )
row), and 3) context-based labeling in a low resolution 2-D P

map (third row). l Occupied Voxels

A. Data accumulation and terrain classification

. . . Fig. 3. Transitions between visible unoccupied and occluded unoccupied
Using voxelized 3-D ladar data as input, we adopt th@oxels suggest the existence of a negative obstacle.

method introduced in [1] and perform voxel-wise classifica-
tion to detect vegetation, thin structures and solid surfaces.We first create a 2-D map, aligned with the low-resolution
The method relies on the use of the scatter matrix to extragtD map, parallel to the ground plane. It will be used to
features via principal component analysis (PCA). For eaddtore the location of the potential negative obstacles detected.
voxel, the approach computes the scatter matrix within Bach 3-D column is scanned in a top-down fashion, until
support volume and then extracts its principal componentither: the transition between an empty voxel to an occluded
(eigenvalues). A linear combination of the components angbxel is found; an occupied voxel is found; or the end of
the associated principal directions define the features. #e data structure is reached. If the first case (transition)
model of the features distribution is learned off-line, priolis encountered, we mark the 2-D cell corresponding to the
to the mission, from manually labeled data. As the robatolumn as being a potential negative obstacle. Additionally,
traverses a terrain, data is accumulated, features computgd also store the class of the voxel that caused the occlusion
and maximum likelihood classification performed on-line. in the 2-D map. Fig. 2-f illustrates the transition regions
Fast terrain classification is enabled by an efficientound in that particular situation. The complexity of this step
scrolling data structure which takes advantage of overlapping O(n), wheren is the number of voxels in the 3-D low
neighborhoods and the reuse of previously computed datar@solution map. From now on, all processing will be done in
the algorithm scans each voxel as in [2]. 2-D.



High Resolution 3-D maps

(a) Terrain elevation (b) Terrain classification
(Blue, low elevation. Red, high elevation) (Blue, linear. Red, surface. Green, scatter)
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(c) bccluder propagation, top view (d) Occluder propagation, side view
(Yellow, unoccupied voxels occluded by linear structures. Red, surface. Blue, linear. Green, scatter)
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(e) Occupancy (f) Transition (9) Potential negative obstacle (PNO)
(Red, ground. Blue, non ground) (Dark green, transition. Light green, non transition)  (Grey, laser model. Brown/yellow, PNO)

Fig. 2. Approach. The center of the vehicle is shown with a white dot, the area of interest by a white square. (g) Only labeled missing data within the
area of interest is shown.

Now that we knowwhere data is missing, we examine be seen. The complexity of this step (§v'k’), where v’
the scene context to determiméhy data is missing. Based is the number of occupied voxels in the low resolution 2-D
on the type of occluder and if data can be found aftemap andk’ is the distance (in voxels) from the laser position
each transition voxel identified in the previous step, weéo a corner of the data structure.
differentiate between four types of explanation for missing
data, which are illustrated in Fig. 4.

This step is performed on each transition voxel in an Occluded by ground Oceluded by non-ground
interest area around the robot. First, the type of occluder With {l
is determined by looking up the class of the voxel that data —t —
caused the occlusion. Next, the existence of data after the ter /
transition is determined by performing ray tracing between Without C}
the projected laser position and the transition location in the data | —
2-D map. The appropriate class can then be assigned to each "
transition voxel according to Fig. 4. Canonical results are
shown in Fig. 2-g. Additionally, we use a model of our laserFig. 4. Context-based labeling for potential negative obstacle detection
that is based on the maximum range of return on flat ground
surface to determine which regions of missing data cannot




IV. EXPERIMENTS Fig. 8 shows timing results for a run performed in a forest.
T&e graphs represent cumulative histograms of classification

This section presents some implementation details omitte traci text-based labeli d their total based
in the previous section and experiments from off-line an me, ray-tracing, context-based fabeling and their fotal base
timing collected at each iteration of the algorithm. For

on-board data processing validating the approach, includir} . :
obstacle avoidarl)nce of neggative obsgtacle PP eé:ample, 80% percent of the algorithm runtime takes less
' than 800 ms. Note that this code was run with very large

A. Implementation, vehicle and experimental set-up data structures.

The algorithm runs on a stand-alone, off-the-shelf com- 120
puter with a 3 GHz CPU and 2 GB of RAM. Our program
is interfaced with the vehicle to acquire laser data and
vehicle state. The voxel size of high resolution 3-D, low
resolution 3-D and low resolution 2-D maps are 103¢cm
40x40x10 cn?, and 40<40 cn? respectively. The map
dimensions are 5050x6 m?, 50x50x6 m?* and 50<50 n¥
respectively. The map is scrolling with the vehicle and o
maintains a constant orientation.

For live results, to interface with the XUV planner, we
assign a different cost to each class of potential negative Y R B et B e el S
obstacle. These costs are currently engineered manually, and oW B e ime e
a probabilistic approach is the subject of future work.

Experiments were conducted in various terrains type iRig. 8. Timing performance. Area of interest: 50 x 100 m. 3 GHz computer,
Central Pennsylvania during the summer and winter seasofs>E RAM.
and with different vegetation density.

= classification
visibility
+ pnod
= combined
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Finally, we show preliminary results on how this approach
B. Off-line playback can be used practically to influence the behavior of a vehicle.

. . . e exported the areas most likely to contain negative obsta-
Fig. 5 shows results produced off-line with pre—recorde%}l P y 9

) es, as defined in Section IlI-C, into an obstacle map read by
data. Note that the data flow is exactly the same as the ORE. Demo-Ill XUV. The vehicle was commanded to follow
used when proce_ssing d_ata live on_-bo_ard the vehic!e exceé)'bath between two way points set on each side of a terrain
that the Process 1S r_eadl_n_g off a f||e_ instead of a live dat epression. Note that this terrain feature does not challenge
strgam. The vehicle is driving on a dirt road boxed by SMajhe mobility of the autonomous vehicle. Such obstacle was
drainage trenches, a half-meter deep and one meter wi fiosen for safety consideration. Note that this terrain feature

A bridge crosses a strgam and a.deep terrain deprgss 4 our definition of potential negative obstacle even though
(two meters deep and five meter wide). From left to right is not an obstacle. The terrain is illustrated in Figs. 1

the co_lumns re_present the raw 3_'D data (top row) gnd t d 9-a. As illustrated in Fig. 9-b/c, the terrain feature was
potential negative obstacle detection after accumulation 75 aracterized correctly. The vehicle stopped, tried to plan
918 and 1134 I.adalr frames. '.”.the first cqump, the V.Vatea[round the terrain depression based on the data available,
stream depression is not yet visible but the drainage d".c.hSBt could not and stopped moving. The best candidate path
are detected correctly. In the second column, the tr"’"“nﬁﬁustrated in Fig. 9-d intersected the obstacle and was not

edge .Of the depres_slon J“?t appeared an_d the cprrespond@x%cuted. Note that these results are preliminary and need to
negative obstacle is partially labeled. Finally, in the IasF)e confirmed by further field testing
column, the terrain behind the negative obstacle is clearly '

visible and the obstacle is correctly labeled. V. CONCLUSION

In the second example, illustrated in Fig. 6, we show Negative obstacle detection is a very challenging problem
the robustness of the approach when the terrain is roudgfiat cannot be entirely and robustly solved from a single per-
includes large trees and is partially covered by tall grasgpective (ground versus overhead) or using a single sensing
Some potential negative obstacle are detected at the edg@@dality (radar, imagery or laser) or algorithm.
of the perceived terrain due to a lack of data density. In this paper, we presented an approach for potentia] neg-
However, note that trees and vegetation cover are handlgglve obstacle detection based on missing data interpretation
correctly by our approach even though they introduced ranggat extends traditional data-driven techniques. The approach
discontinuities, partial or even total occlusion of the terrainis decomposed into three steps: 1) 3-D data accumulation and

i low level classification, using high-resolution 3-D maps, 2)
C. Field test results on-board the Demo-Iil XUV 3-D occluder propagation, using a low resolution 3-D map,

In this section, we present results produced on-board tlaad 3) context-based occlusion labeling, using low resolution
vehicle in real-time. First, we show in Fig. 7 results on flaR-D maps.
ground with a change of elevation. Note the similar problem Our approach has several advantages over other existing
at the edge introduced by the lack of point density. techniques. By working with accumulated data in 3-D, we



Fig. 5. Playback results. Trail with ditches and a bridge. Results after accumulation of 756, 918 and 1134 ladar frames (left, center and right column).
Upper row, terrain model color coded by elevation, red for high and blue for low. The center of the vehicle is shown with a white dot, the area of interest
by a white square. Bottom row, potential negative obstacle detection (grey, laser model; brown/yellow, potential negative obstacle with data after). Only
labeled missing data within the area of interest is shown.

Fig. 6. Playback results. Wooded environment with a rough terrain, vegetation and large trees. Left: scene. Center: raw 3-D data color-coded by elevation
from high (red) to low (blue). The center of the vehicle is represented by a white dot, the area of interest by a white square. Right: potential negative
obstacle detection (grey, laser model; brown/yellow, potential negative obstacle with data after; orange/dark yellow, potential negative obstacle without data
after). Only labeled missing data within the area of interest is shown.
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Fig. 7. Live on-board results. Flat ground. Left: scene. Center: raw 3-D data color-coded by elevation from high (red) to low (blue). The center of the
vehicle is shown with a white dot, the area of interest by a white square. Right: potential negative obstacle detection (grey, laser model; brown/yellow,
potential negative obstacle with data after; orange/dark yellow, potential negative obstacle without data after). Only labeled missing data within the area of
interest is shown.

are able to use a richer terrain representation. It can handissociated to each label.
complex scenes with trees, shrubs, sparse and dense veget@yr approach suffers from several limitations that are

tion, and vegetation-covered ground surface and itis invariagiirrently being addressed. Water ponds are misclassified but
to the slope of the ground surface. Finally confidence ige believe that this problem can be solved by looking at the



(b) Scene, front view

(d)

Fig. 9. On-board preliminary results. (a) The terrain model is color coded by elevation (Blue for low, red for high). (c) Terrain classification map used
by the planner. In green, known traversable terrain; in yellow, obstacle with the cost coded as elevation. (d) Obstacle map and planned path for the same
scene but a different run. The vehicle approached the obstacle closer than before.

elevation of the surrounding terrain because water producegg] L. Matthies, “Negative obstacle detection by thermal signature,” in

horizontal obstacles. Data density will be taken into account |2E0%§/RSJ International Conference on Intelligent Robots and Systems
to avoid some observed misclassification. The algorithm rungs; \; “rosenblum and B. Gothard, “A high fidelity multi-sensor scene

in real-time but a slow frame rate of 1 Hz, implementation  understanding system for autonomous navigation|EigE Intelligent

improvements are under way. As mentioned before, the ap-_Vehicle Symposiun2000. o
. S e . y[6] C. Dima, N. Vandapel, and M. Hebert, “Classifier fusion for outdoor
proach is deterministic, and a probabilistic model is currently™ yqiacie” detection,” ininternational Conference on Robotics and

being investigated. As with existing work, only qualitative  Automation 2004.

results were presented in this paper, a quantitative evaluatidfl L- Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle detection
. . L for unmanned ground vehicles: a progress report/EBE Intelligent
is planned in order to thoroughly evaluate the reliability of  \epicies Conferenca 995.
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