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Abstract— In this paper, we present an approach for potential
negative obstacle detection based on missing data interpreta-
tion that extends traditional techniques driven by data only
which capture the occupancy of the scene. The approach is
decomposed into three steps: three-dimensional (3-D) data accu-
mulation and low level classification, 3-D occluder propagation,
and context-based occlusion labeling. The approach is validated
using logged laser data collected in various outdoor natural
terrains and also demonstrated live on-board the Demo-III
eXperimental Unmanned Vehicle (XUV).

I. INTRODUCTION

Autonomous ground robot navigation in natural outdoor
environment requires capabilities to sense, analyze and
model the complexity of the surrounding three-dimensional
terrain. One of the most popular sensing modalities is the
laser range scanner (or ladar), which allows 3-D perception
of a robot’s surroundings, and enables the building of high-
accuracy environment maps. However, this sensor (as well
as other sensors like cameras) have several limitations, such
as limited field of view and range. Their biggest limitation
however is that they do not “see through” objects: in a
cluttered environment, it might be impossible to see the
entire scene at once from any given viewpoint, thus yielding
incomplete maps where a large amount of data is missing.
In some cases, missing data might be explained by negative
obstacles, i.e. obstacles which lie below the ground surface
such as holes or ditches, for example. They are regions where
the robot cannot see and might be potentially dangerous for
its mobility, and thus should be treated as obstacles.

In this paper, we seek to build a richer 3-D environment
map by finding plausible explanations to regions where data
is missing due to occlusions or sensing limitations, and
explicitly find where they might be caused by a negative
obstacle. We go beyond traditional methods that rely only
on existing data to interpret the scene. The proposed ap-
proach is applied to potential negative obstacle detection
and demonstrated in various terrain types on-board a mobile
robot equipped with a ladar (Fig. 11). We only label terrain
regions susceptible to containing negative obstacles, so the
term ”potential”. We assume that, if the negative obstacle can
be mapped, at close range for example, mobility assessment
can be performed.

The approach leverages on existing work done on terrain
classification [1], [2]. Laser data is accumulated in 3-D and
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Fig. 1. Two of the terrains we experimented in with the Demo-III
eXperimental Unmanned Vehicle: large ravine with a steam and terrain
depression.

classified into three basic classes (linear, scatter, surface)
based on the local geometric property of the point cloud.
Ray tracing is performed in 3-D to determine the occluded
regions in the scene. The occluder’s class is propagated
through the data structure, producing a dense 3-D map which
captures the occupancy, classification, visibility and nature of
the occlusion for each voxel. Finally, context-based labeling
of missing data is used to detect potential negative obstacle.

Our approach has several advantages over other preexist-
ing approaches. First, we are able to work with accumulated
laser data versus working with a frame by frame approach.
Our approach works with complex scenes with trees, shrubs,
sparse and dense vegetation, and vegetation-covered ground
surface. The approach also is invariant to the slope of the
ground surface. Finally, the labeling is associated with a
confidence measure.

II. RELATED WORK

Since negative obstacle detection is very important for
ground robotics, it has received a fair amount of attention
in the literature. Our approach is original because it uses
3-D data acquired by a ladar.

Existing techniques use cameras, as in [3]. The authors
rely on shadows cast by negative obstacles when illuminated
by two lighting sources below and above stereo cameras.
Those shadows provide cues to complement and enhance
stereo vision.

Terrain depressions exhibit different thermal properties
than their surroundings: they stay warmer at night. This fact
was used by Matthies and Rankin [4] to detect negative
obstacles. In contrast, our approach is robust to weather
conditions and time of day, as we are using an active sensor,
which does not depend on ambient illumination.



Leading and trailing edges of negative obstacles produce
discontinuities in images. Rosenblum et al. [5] detect such
discontinuities in multi-spectral imagery as one of many cues
for obstacle detection. Dima et al. [6] fuse multiple classifiers
trained on texture, color, infrared and 3-D saliency features.

Negative obstacles, in some instances, are materialized by
the transition sequence data / no data / data. Matthies et al.
[7], [8] detect such transitions in range images. The algorithm
takes into account the height of the trailing edge, the length
of the data gap and the slope between the leading and trailing
edges and a vehicle mobility model. In [9], the authors also
take advantage of the data gap, but they do so in a 2-D
occupancy map of the terrain. Our approach relies on accu-
mulated 3-D data, takes into account a richer interpretation
of the terrain (classification versus occupancy), de-couples
the detection problem from the mobility assessment problem,
and detects only potential negative obstacles.

High resolution overhead data (several points per square
meter) was demonstrated to be suitable for negative obstacle
detection [10], [11], [12]. The top-down point of view
ensures that the bottom of the negative obstacle is observed,
which is not the case if the obstacle is seen from a ground
perspective. In contrast, our approach does not rely on the
existence of such data and directly estimates the potential
negative obstacles from the robot’s point of view.

III. APPROACH

Our approach relies on determining the location of oc-
clusions and identifying a subset of those where a negative
obstacle might occur. Fig. 2 illustrates the process, which
is decomposed into three major steps: 1) data accumulation
and classification in high resolution 3-D maps (first row),
2) occluder propagation in low resolution 3-D maps (second
row), and 3) context-based labeling in a low resolution 2-D
map (third row).

A. Data accumulation and terrain classification

Using voxelized 3-D ladar data as input, we adopt the
method introduced in [1] and perform voxel-wise classifica-
tion to detect vegetation, thin structures and solid surfaces.
The method relies on the use of the scatter matrix to extract
features via principal component analysis (PCA). For each
voxel, the approach computes the scatter matrix within a
support volume and then extracts its principal components
(eigenvalues). A linear combination of the components and
the associated principal directions define the features. A
model of the features distribution is learned off-line, prior
to the mission, from manually labeled data. As the robot
traverses a terrain, data is accumulated, features computed
and maximum likelihood classification performed on-line.

Fast terrain classification is enabled by an efficient
scrolling data structure which takes advantage of overlapping
neighborhoods and the reuse of previously computed data as
the algorithm scans each voxel as in [2].

B. Scene ray-tracing and occlusion labeling

We can now use the classification results to determine
where occlusions occur in the scene and identify several
different types of occlusion.

Classification information is first collapsed from the high-
resolution 3-D map to a low-resolution 3-D map for com-
putational tractability. Low-resolution voxels are obtained
by grouping together several high-resolution voxels, and
assigning the most frequent class within them. To account for
noise, such as generated by sparse vegetation in the scene,
we require a minimum level of occupancy of voxels in the
low resolution 3-D map.

Occlusion labeling is performed by ray tracing from the
current position of the laser through all the occupied voxels
that exist in an area of interest in the scene. A conventional
ray tracing algorithm is used [13]. The voxels that lie behind
an occupied voxel (along the ray tracing direction) are
considered occluded. Every occluded voxel stores the class
of its occluder. Likewise, empty voxels that exist between the
laser and an occupied voxel are considered visible. Figs. 2-
c and 2-d illustrate this technique. Note that these figures
display only occlusions by one class for clarity purposes, and
occlusions by the two other classes are propagated as well.
The complexity of this algorithm isO(vk), wherev is the
number of occupied voxels andk is the distance (in voxels)
from the laser position to a corner of the data structure.

C. Context-based labeling

As illustrated in Fig. 3, negative obstacles may occur only
in regions where there is a transition from visible to occluded
voxels. We explicitly look for those regions by searching
through columns in the low resolution 3-D map.

Fig. 3. Transitions between visible unoccupied and occluded unoccupied
voxels suggest the existence of a negative obstacle.

We first create a 2-D map, aligned with the low-resolution
3-D map, parallel to the ground plane. It will be used to
store the location of the potential negative obstacles detected.
Each 3-D column is scanned in a top-down fashion, until
either: the transition between an empty voxel to an occluded
voxel is found; an occupied voxel is found; or the end of
the data structure is reached. If the first case (transition)
is encountered, we mark the 2-D cell corresponding to the
column as being a potential negative obstacle. Additionally,
we also store the class of the voxel that caused the occlusion
in the 2-D map. Fig. 2-f illustrates the transition regions
found in that particular situation. The complexity of this step
is O(n), wheren is the number of voxels in the 3-D low
resolution map. From now on, all processing will be done in
2-D.
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(a) Terrain elevation (b) Terrain classification
(Blue, low elevation. Red, high elevation) (Blue, linear. Red, surface. Green, scatter) .
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(c) Occluder propagation, top view (d) Occluder propagation, side view
(Yellow, unoccupied voxels occluded by linear structures. Red, surface. Blue, linear. Green, scatter)
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(e) Occupancy (f) Transition (g) Potential negative obstacle (PNO)
(Red, ground. Blue, non ground) (Dark green, transition. Light green, non transition) (Grey, laser model. Brown/yellow, PNO)

Fig. 2. Approach. The center of the vehicle is shown with a white dot, the area of interest by a white square. (g) Only labeled missing data within the
area of interest is shown.

Now that we knowwhere data is missing, we examine
the scene context to determinewhy data is missing. Based
on the type of occluder and if data can be found after
each transition voxel identified in the previous step, we
differentiate between four types of explanation for missing
data, which are illustrated in Fig. 4.

This step is performed on each transition voxel in an
interest area around the robot. First, the type of occluder
is determined by looking up the class of the voxel that
caused the occlusion. Next, the existence of data after the
transition is determined by performing ray tracing between
the projected laser position and the transition location in the
2-D map. The appropriate class can then be assigned to each
transition voxel according to Fig. 4. Canonical results are
shown in Fig. 2-g. Additionally, we use a model of our laser
that is based on the maximum range of return on flat ground
surface to determine which regions of missing data cannot

be seen. The complexity of this step isO(v′k′), wherev′

is the number of occupied voxels in the low resolution 2-D
map andk′ is the distance (in voxels) from the laser position
to a corner of the data structure.

Fig. 4. Context-based labeling for potential negative obstacle detection



IV. EXPERIMENTS

This section presents some implementation details omitted
in the previous section and experiments from off-line and
on-board data processing validating the approach, including
obstacle avoidance of negative obstacle.

A. Implementation, vehicle and experimental set-up

The algorithm runs on a stand-alone, off-the-shelf com-
puter with a 3 GHz CPU and 2 GB of RAM. Our program
is interfaced with the vehicle to acquire laser data and
vehicle state. The voxel size of high resolution 3-D, low
resolution 3-D and low resolution 2-D maps are 10 cm3,
40×40×10 cm3, and 40×40 cm2 respectively. The map
dimensions are 50×50×6 m3, 50×50×6 m3 and 50×50 m2

respectively. The map is scrolling with the vehicle and
maintains a constant orientation.

For live results, to interface with the XUV planner, we
assign a different cost to each class of potential negative
obstacle. These costs are currently engineered manually, and
a probabilistic approach is the subject of future work.

Experiments were conducted in various terrains type in
Central Pennsylvania during the summer and winter seasons,
and with different vegetation density.

B. Off-line playback

Fig. 5 shows results produced off-line with pre-recorded
data. Note that the data flow is exactly the same as the one
used when processing data live on-board the vehicle except
that the process is reading off a file instead of a live data
stream. The vehicle is driving on a dirt road boxed by small
drainage trenches, a half-meter deep and one meter wide.
A bridge crosses a stream and a deep terrain depression
(two meters deep and five meter wide). From left to right,
the columns represent the raw 3-D data (top row) and the
potential negative obstacle detection after accumulation 756,
918 and 1134 ladar frames. In the first column, the water
stream depression is not yet visible but the drainage ditches
are detected correctly. In the second column, the trailing
edge of the depression just appeared and the corresponding
negative obstacle is partially labeled. Finally, in the last
column, the terrain behind the negative obstacle is clearly
visible and the obstacle is correctly labeled.

In the second example, illustrated in Fig. 6, we show
the robustness of the approach when the terrain is rough,
includes large trees and is partially covered by tall grass.
Some potential negative obstacle are detected at the edge
of the perceived terrain due to a lack of data density.
However, note that trees and vegetation cover are handled
correctly by our approach even though they introduced range
discontinuities, partial or even total occlusion of the terrain.

C. Field test results on-board the Demo-III XUV

In this section, we present results produced on-board the
vehicle in real-time. First, we show in Fig. 7 results on flat
ground with a change of elevation. Note the similar problem
at the edge introduced by the lack of point density.

Fig. 8 shows timing results for a run performed in a forest.
The graphs represent cumulative histograms of classification
time, ray-tracing, context-based labeling and their total based
on timing collected at each iteration of the algorithm. For
example, 80% percent of the algorithm runtime takes less
than 800 ms. Note that this code was run with very large
data structures.

Fig. 8. Timing performance. Area of interest: 50 x 100 m. 3 GHz computer,
2 GB RAM.

Finally, we show preliminary results on how this approach
can be used practically to influence the behavior of a vehicle.
We exported the areas most likely to contain negative obsta-
cles, as defined in Section III-C, into an obstacle map read by
the Demo-III XUV. The vehicle was commanded to follow
a path between two way points set on each side of a terrain
depression. Note that this terrain feature does not challenge
the mobility of the autonomous vehicle. Such obstacle was
chosen for safety consideration. Note that this terrain feature
fits our definition of potential negative obstacle even though
it is not an obstacle. The terrain is illustrated in Figs. 1
and 9-a. As illustrated in Fig. 9-b/c, the terrain feature was
characterized correctly. The vehicle stopped, tried to plan
around the terrain depression based on the data available,
but could not and stopped moving. The best candidate path
illustrated in Fig. 9-d intersected the obstacle and was not
executed. Note that these results are preliminary and need to
be confirmed by further field testing.

V. CONCLUSION

Negative obstacle detection is a very challenging problem
that cannot be entirely and robustly solved from a single per-
spective (ground versus overhead) or using a single sensing
modality (radar, imagery or laser) or algorithm.

In this paper, we presented an approach for potential neg-
ative obstacle detection based on missing data interpretation
that extends traditional data-driven techniques. The approach
is decomposed into three steps: 1) 3-D data accumulation and
low level classification, using high-resolution 3-D maps, 2)
3-D occluder propagation, using a low resolution 3-D map,
and 3) context-based occlusion labeling, using low resolution
2-D maps.

Our approach has several advantages over other existing
techniques. By working with accumulated data in 3-D, we



Fig. 5. Playback results. Trail with ditches and a bridge. Results after accumulation of 756, 918 and 1134 ladar frames (left, center and right column).
Upper row, terrain model color coded by elevation, red for high and blue for low. The center of the vehicle is shown with a white dot, the area of interest
by a white square. Bottom row, potential negative obstacle detection (grey, laser model; brown/yellow, potential negative obstacle with data after). Only
labeled missing data within the area of interest is shown.

Fig. 6. Playback results. Wooded environment with a rough terrain, vegetation and large trees. Left: scene. Center: raw 3-D data color-coded by elevation
from high (red) to low (blue). The center of the vehicle is represented by a white dot, the area of interest by a white square. Right: potential negative
obstacle detection (grey, laser model; brown/yellow, potential negative obstacle with data after; orange/dark yellow, potential negative obstacle without data
after). Only labeled missing data within the area of interest is shown.

Fig. 7. Live on-board results. Flat ground. Left: scene. Center: raw 3-D data color-coded by elevation from high (red) to low (blue). The center of the
vehicle is shown with a white dot, the area of interest by a white square. Right: potential negative obstacle detection (grey, laser model; brown/yellow,
potential negative obstacle with data after; orange/dark yellow, potential negative obstacle without data after). Only labeled missing data within the area of
interest is shown.

are able to use a richer terrain representation. It can handle
complex scenes with trees, shrubs, sparse and dense vegeta-
tion, and vegetation-covered ground surface and it is invariant
to the slope of the ground surface. Finally confidence is

associated to each label.

Our approach suffers from several limitations that are
currently being addressed. Water ponds are misclassified but
we believe that this problem can be solved by looking at the



(a) Terrain model color coded by elevation. (b) Scene, front view (c) Scene, side view

(c) (d)

Fig. 9. On-board preliminary results. (a) The terrain model is color coded by elevation (Blue for low, red for high). (c) Terrain classification map used
by the planner. In green, known traversable terrain; in yellow, obstacle with the cost coded as elevation. (d) Obstacle map and planned path for the same
scene but a different run. The vehicle approached the obstacle closer than before.

elevation of the surrounding terrain because water produces
horizontal obstacles. Data density will be taken into account
to avoid some observed misclassification. The algorithm runs
in real-time but a slow frame rate of 1 Hz, implementation
improvements are under way. As mentioned before, the ap-
proach is deterministic, and a probabilistic model is currently
being investigated. As with existing work, only qualitative
results were presented in this paper, a quantitative evaluation
is planned in order to thoroughly evaluate the reliability of
such approaches.
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