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Abstract

A few 3D interactive modeling systems have been devel-

oped recently. Such systems must cope with a high flow of

input measurements during the entire acquisition period.

Therefore, the reconstruction and rendering algorithms

used must all run online. However, compression algorithms

are still run offline as postprocessing. In order to develop a

fully interactive modeling framework, this paper presents

an online compression algorithm where the system auto-

matically adjusts the level of detail according to the user

behavior. The proposed method can reduce peak memory

consumption by more than 50% during the acquisition of a

typical model and the final result is comparable to offline

compression. Furthermore, the results obtained show that

a local acquisition approach must be prioritized.

1. Introduction

Developing an interactive modeling framework for 3D

scanners has been an emerging topic in recent years [1, 2,

3, 4]. Interactive systems allow a surface model to be built

and displayed in real-time while data is acquired. They are

particularly well suited for hand-held sensors. Modeling is

then an online interpretation process of the measurements

as opposed to the accumulation of a point cloud. Producing

a specific model representation, filtering, rendering or geo-

metric compression are all modeling interpretation pro-

cesses. Among these, compression is usually computed as

a post processing stage [4]. However, by locally adapting

the resolution to the complexity of the surface and data

sampling, building a model can be made a more efficient

process. For a given maximum resolution, larger volumes

can be scanned. Conversely, for a given volume, a higher

resolution model can be stored. The current challenge is

the automation of an online compression process; that is

replacing any fine resolution section by a coarser descrip-

tion representing the same surface within a given thresh-

old. It is thus our aim to develop an interactive modeling

framework where the resolution of the model can be

adapted both locally and automatically. Based on the

approach proposed in this paper, Figure 1 shows the state

of a model being recovered during acquisition as well as

the local resolution levels.

It is interesting to compare this interactive modeling

process with the next best view planning paradigm [5]. In

interactive modeling, a human user is part of the modeling

loop and cooperates with the system. The user sees both

the actual object and the model being built, i.e. the current

interpretation. He also controls the acquisition strategy as

well as the local sampling density on the object’s surface.

The modeling system must adapt to the user’s behavior and

provide its interpretation of the acquired data in order to

support the user in view planning.

In order to adapt the resolution of the model both locally

and automatically, two problems must be addressed.

First, the system must be able to automatically build a

multiresolution representation from coarse to fine resolu-

tion. Local resolution on the surface must be controlled and

increased depending on the measurement density. In the

past, this had to be done manually [4]. Since this process

must now be performed online, one must ensure sampling

has reached a threshold before enabling a higher resolution

level.  Increasing the resolution level too rapidly would

lead to inefficient memory consumption. Moreover, false

apparent holes could appear in the rendered model.

Figure 1. a) Shaded image of the model being recov-

ered. b) Colored image depicting the resolution levels

and their state. In orange and red areas, the system has

detected insufficient sampling to proceed to compres-

sion. In blue areas, the system detected sufficient sam-

pling before applying local compression. Darker blue

depicts higher compression rate.
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The second problem to deal with is the online compres-

sion from finer to coarser levels. The system will try to

compress only when local sampling is sufficient, that is

when the resolution limits of the sensor are reached.

Although geometric compression has been extensively

studied [6], it has always been assumed that a fixed repre-

sentation with all details, is initially available. In the con-

text of online acquisition and compression, it is not

guaranteed that no detail will appear before the finest reso-

lution has been reached everywhere on the surface. Com-

pression must then be applied locally. Nevertheless, a

posteriori compression will still be useful since, by activat-

ing it, the user confirms that local model resolution is suffi-

cient for his application. This will make it possible for the

system to activate local compression where the resolution

limits of the sensor have not been reached.

In the next section, we describe fundamentals for build-

ing a model representation adapted to interactive modeling.

Section 3 describes the proposed approach for addressing

the first problem of progressive recovery of levels of

details during acquisition. Then, both online and a posteri-

ori compressions are addressed in section 4. Simulation as

well as experimental results are presented in section 5.

2. Previous work

A few systems or frameworks have been developed for

interactive acquisition and modeling [1, 3, 7, 8]. Among

these systems, the first general framework to produce a

complete model interactively without the necessity for

postprocessing was presented in [7]. In this framework,

surfaces are encoded in a vector field. The vector field rep-

resentation offers several advantages over other surface

representations such as scalar signed distance fields or

polygon meshes. Among them, the linear complexity of all

modeling algorithms with respect to the number of input

measurements is the most important. Nevertheless, the

model is built in a single resolution vector field. More

recently, a multiresolution approach was proposed where

the resolution was set manually [4].  Although complete

multiresolution models can be built, compression must still

be processed a posteriori.

In this paper, we also build on vector fields. More pre-

cisely, a vector field is an implicit representation of a sur-

face whose discrete version is encoded in a voxel grid.

Each voxel, V, accumulates surface information to encode

both the distance to the surface and the direction to the

closest point on the surface, namely the surface normal.

These values define the 3D vector F(V) at each voxel.

When a 3D measurement is acquired (a point, a point with

a surface tangent or a point with a surface normal), it con-

tributes locally to the vector field recovery. To do so, each

voxel encodes a covariance matrix whose eigenvectors

approximate the normal and two tangent vectors at the

closest point on the surface. For instance, when measure-

ments are input as 3D points, , a covariance matrix,

C(V),  is built and updated in each nearby voxel [8]:

(1)

where .

N is the number of measurements that have contributed to

a voxel. From the right-hand side of the equation, we see

that each covariance matrix can be incrementally built.

When acquired, a measurement contributes locally,

within an envelope size of ε,  to the recovery of a set of

voxels in the field. By the same token, each voxel inte-

grates all measurements within the envelope size. Conse-

quently, the vector field is recovered only within this

distance to the surface. The size of the envelope is set man-

ually depending on the error level of input data. Since the

covariance matrices integrate measurements, the envelope

size affects the smoothness of the recovered surface. It acts

as a low pass filter, a useful property for noise removal.

Typically, the envelope size is set to ε = 2 voxels apart

from each side of the surface.

The vector field framework is also particularly useful

for dealing with pose refinement, namely registration, of

input curves or range images [8].

One can also recover a multiresolution vector field

within an octree structure [4]. The vector field is recovered

at each level and the envelope size ε -in voxels- remains

fixed (see Figure 2). Thus, the actual envelope size, ε, dou-

bles from finer to coarser levels. Since the surface will be

progressively discovered by locally increasing sampling

Figure 2. Multiresolution vector field within an octree

structure. Two levels of detail are shown. The level n in

black and the level n+1 in red. Also shown is the enve-

lope of each level in dotted lines.
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density, we will recover the multiresolution field from

coarser to finer levels. Each level will thus be built inde-

pendently as opposed to a hierarchical reconstruction. One

could think of efficiently describing a parent node - actu-

ally a voxel - matrix as a combination of its children voxel

matrices but the envelope covered by the union of the child

voxels at level n+1 does not match exactly with the enve-

lope covered by the parent voxel at level n. However, by

building within the octree structure from coarse to fine lev-

els with leaf nodes at different levels, it is possible to deal

with a variable resolution surface. Thus, a unique multires-

olution vector field makes it possible to recover a model

from varying local sampling density.

The vector field representation also shows interesting

properties for compression [8]. For instance, the com-

pressed representation is not sensitive to the surface orien-

tation with respect to the grid alignment. It can also be

compressed at various levels. However, compression had

to be performed a posteriori; it was still decoupled from the

vector field recovery. We will explain how this process can

be applied concurrently with data acquisition.

3. Automatic resolution progression

By automatically adapting the resolution level with

sampling density, one avoids the necessity for considerable

memory space in a scenario where all levels of the octree

would be systematically recovered from coarse to fine. A

given level is recovered only where sampling density is

sufficient. Before introducing sampling density verifica-

tion, we first describe the principle of progressive recon-

struction.

For each new measurement:

1- At the coarsest level (n = 1), update the voxels that

are closer to the measurement than the envelope size.

2- If an updated voxel at level n is stable, use the mea-

surement to update its child voxels that are closer to

the measurement than the envelope size, at level n+1.

3- Recursively repeat step 2 as long as the recovery of

the child voxels is not in the last active level.

The last stage says that a measurement may contribute

to the child level as long as it is not in the last active level.

Actually, the level may reach the highest resolution level,

Nmax, set for the sensor or a level that will have already

been compressed. This latter condition says that higher res-

olution levels were reached and compressed afterwards

where the surface is smooth. This is detailed in section 4.

 Before defining a stable voxel, we must first define a

valid voxel.

Definition: A voxel is valid iff the measurements within its

envelope are consistent in describing a tangent plane section.

To verify that these measurements are nearly coplanar,

the eigenvalues associated with the three eigenvectors of

the covariance matrix are tested. The measurements are

consistent if there is one smaller eigenvalue relative to the

two others. The smallest eigenvalue is associated with the

normal vector, the two others should be tangent to the

plane. To make sure that the estimated tangent plane is

valid, the three eigenvalues, e1, e2 and e3,  are first ordered;

their sum is 1 since the covariance matrices are normal-

ized. Then imposing the constraints e2 > 0.05 and e1 <

0.5e2 validates the estimated tangent plane. A voxel might

not be valid when the measurements are too noisy or when

the resolution level is too coarse with respect to the surface

local curvature.

Definition: A voxel is stable iff its sampling density is suf-

ficient to prevent unexpected change at its resolution level.

One must then make sure that the quantity of measure-

ments as well as the coverage of the estimated tangent

plane are sufficient within the envelope. Figure 3 depicts a

voxel along with its envelope intersected by the tangent

plane. In order to validate the stability, one should ideally

analyze the distribution of the measurements on the esti-

mated tangent plane. This would require storing all mea-

surements to perform the test. Since the complexity of the

algorithm must be kept low, the coverage must be approxi-

mated. Conversely, one could simply test the number N of

measurements that have contributed to the voxel. This sup-

poses that the intersection area of the plane with the enve-

lope is of constant size.

A better condition is to assess the density of data based

on N, the number of measurements acquired, as well as on

the area of the intersection of the estimated plane with the

envelope sphere. The value N is thus divided by that area

before thresholding. A voxel whose estimated tangent

plane is farther from its center will thus require less mea-

surements to stabilize. Nevertheless, for non valid voxels,

the tangent plane does not describe the actual surface well;

in this case, it is imposed to accumulate the maximum

number of measurements as if the tangent plane was coin-

cident with the voxel center. Using this condition, a valid

voxel may stabilize more rapidly.

The same threshold is applied at each level. This

imposes a sampling density that is four times higher at

Figure 3. A voxel (square region) along with its enve-

lope of radius εn. The intersection of its envelope with

the tangent plane it encodes is shown in blue.



each resolution level. This is well suited for a sensor that

outputs uniformly sampled points. Nevertheless, setting the

threshold is still empirical. It depends on the noise level,

the acquisition rate and the type of sensor. When sampling

is not uniform along all directions on the object’s surface,

the threshold should be adapted. For instance, a laser range

scanner projecting stripes with a high linear density of

measurements may produce a lower density along the axis

of motion. This will depend on the velocity of the sensor

relative to the surface. Surface sampling density varies

according to the density of profiles. One can then adjust the

threshold at each level considering a uniform density at the

finest level. The threshold would be doubled at each level

starting from the finest level. It is then assumed that the

density along the profile is preserved and only the number

of profiles is reduced. A severe threshold will slow down

the progression. Typically, the density threshold is set

between 4 and 10 points per voxel area unit when ε = 2.

Identifying stable voxels is useful to better control

memory and make it possible to vary the density of mea-

surement on the object’s surface while displaying a consis-

tent surface without holes due to undersampling. To

display the state of a voxel at a given level, its parent voxel

must have been stabilized beforehand. Moreover, the voxel

must be valid and stable before rendering. This will cause

an actual hole in an object to appear only when its size

exceeds the size of the envelope at a given level.

During the course of progressive reconstruction, it is

important to note that a newly activated voxel is initialized

with N = 0 measurement. Since measurements used to

recover coarser levels are not stored, they do not partici-

pate in the recovery of their child nodes. Moreover, using

the coarser voxel covariance matrix to initialize the matri-

ces at level n+1 might introduce a bias in the representa-

tion since their envelope size differs. One must therefore

acquire an additional number of measurements. To assess

this overhead, assume that the surface area of the object is

m voxel units and that a minimum of K measurements per

voxel are required. Then the minimum number of measure-

ments that must be acquired at the finest level is mK.  At

the parent level, the surface area is m/4 voxels since the

size of the voxels doubles. At the next level, the surface

area will be m/16 voxels. Further assuming the same pro-

gression and the same minimum number of K measure-

ments at all levels, leads to approximately 33% more

points when the whole surface must be sampled at all lev-

els. Note that in the context of interactive modeling, more

data can be acquired at low cost. For instance, the hand-

held device we use provides approximately 20 000 points

per second.

Finally, in order to set the highest resolution level,

Nmax, for the sensor, one will consider the error level pro-

duced by the acquisition system including registration

error. In practice, Nmax is set such that it corresponds to a

minimum voxel size of 2 to 3 standard deviations in the

measurement.  With a minimum envelope size of 2 voxels,

this corresponds to  at the highest resolution level.

Progressive activation of child voxels makes it possible for

the system to adapt the reconstruction level to the user

behavior. Once the Nmax level is reached, compression is

locally activated.

4. Vector field compression

Figure 4 shows that the same surface section can be

encoded by a voxel at level n and redundantly by a set of

voxels at level n+1. While the former voxel at level n is

called the coarse voxel of that surface section, the set of

voxels at level n+1 are said to be the finer voxels. If both

the coarse voxel and the finer voxels describe the same tan-

gent plane within a given tolerance, that is if they meet a

given fitting condition, this duplicate data can be com-

pressed. After compression, we will refer to the coarse

voxel as a compressed voxel.

The fitting condition makes it possible to compare the

surface descriptions encoded at the two levels n+1 and n.

To do so, let the vector Fn+1(V) be the vector between the

center of the finer voxel and the closest point on the sur-

face at level n+1. Let also Fn(V) be a vector originating

from the same voxel center but reaching the closest point

on the surface at level n. As shown in Figure 4, the norm of

the difference between the two vectors encodes the dis-

crepancy between both representations. Before compress-

ing a voxel, one must consider all finer voxels that overlap

with the tangent plane section defined by the coarse voxel. 

Formally, the covariance matrix C encoded in the coarse

voxel at level n approximates locally an object surface sec-

tion by a tangent plane  of circular shape. The radius of 

is set equal to the voxel diagonal. As shown in Figure 5,

the surface overlap region (SOR) of a voxel at level n is a

6σ±

Figure 4. An object surface section encoded at two dif-

ferent levels of detail. The vector ∆ encodes the dis-

crepancy between both representations of the surface.



cylindrical region of cross-section  and length 2εn+1 cen-

tered on F(V). Every voxel whose center lies within the

SOR will be tested before compression. One should keep

in mind that these voxels are not necessarily all children of

the coarse voxel in the octree structure.

The next two sections adapt these principles to online

and offline compressions. 

4.1 Online compression

An online compression scheme must deal with measure-

ments being added progressively to the model. This makes

it difficult to determine when the system should start com-

pressing the model. Starting with the compression too early

would produce a model that misses some of the actual

details of the object while starting too late would result in

memory waste. In order to solve this issue, when a new

point is added to the model, the following four conditions

must be met before compressing a coarse voxel. 

1- The coarse voxel at level n is valid and stable.

2- All voxels in the surface overlap region at level n+1

are valid and stable.

3- All voxels in the surface overlap region at level n+1

are of the last active level, i.e. either of the Nmax level

or having compressed children.

4- All voxels in the surface overlap region respect the fit-

ting condition.

The first condition implies that the coarse voxel

describes a tangent plane section for which we have a good

confidence level (dense and consistent). Therefore, the

compressed model should correctly describe the surface.

The second condition ensures that the local approxima-

tion  at level n of the object surface section is entirely cov-

ered by valid and stable voxels at level n+1. First, this

ensures that the fitting condition is relevant everywhere on

the surface section . Secondly, when this condition is met,

the addition of further points to the model should not sig-

nificantly modify the result of the fitting condition. At this

stage, a finer voxel already removed by the compression

process is considered valid and stable. Also, this voxel will

be ignored for the remainder of the compression process.

The third condition has the following implications.

First, no compression will begin before the density of

points is high enough to recover a stable surface at the

Nmax level. This ensures that a decision is made only when

the surface representation has locally stabilized at the finest

level of resolution Nmax. Failing to do so could prevent the

modeling process from acquiring details that are visible

only at the finest level. Secondly, after the compression

process has started, a voxel at a level coarser than Nmax

can be involved in the compression process if its children

have been already compressed. Such a voxel is now a leaf

node of the octree and considered of the last active level.

The fourth condition ensures that the compressed model

still encodes the same object surface after compression

within the tolerance of the fitting condition. This tolerance

is a percentage, typically 10%, of the voxel size. Finally,

since the four conditions are tested each time a new point is

added, the compression starts as early as possible.

Once all four conditions are met, the coarse voxel can

be compressed. Its child voxels in the octree are not needed

anymore and are thus removed. The coarse voxel is then

tagged as being compressed as well as being from the last

active level; it already contains the surface description that

was directly built from measurements.  

4.2 Offline compression

The online compression scheme must deal with points

added progressively to the model. However, once the user

is satisfied with the model, it is possible to use an addition-

nal offline compression scheme that does not face this con-

straint. It is possible to compress areas that have not

reached the Nmax level. This is possible since no more

points will be added to the model. To apply offline com-

pression, leaf nodes that are not valid or stable are first

recursively discarded. They do not represent a meaningful

surface and they no longer have the possibility of changing

their status.

One can now compress a given level even if its SOR is

not totally covered by valid and stable voxels. In that

sense, condition 2 is relaxed. We can then test conditions 3

and 4 on the valid and stable voxels that are included

within the SOR. At this stage, a voxel without children is

considered a voxel of the last active level.

5. Experiments

The previous concepts are validated by both simulated

and experimental data sets. The first data set is generated

from a high resolution model of a mannequin head. Using a

profile range sensor, acquisition was simulated in order to

illustrate the proposed modeling steps.

Figure 5. Illustration of the surface overlap region (in

blue) for a voxel at level n.



Figure 6 presents the output displayed to the user during

the session. The top row shows a shaded version of the

model displayed at different time intervals. The images are

rendered by applying a ray casting technique of the vector

field [4]. The bottom row is an alternative display that

shows the same model according to the local resolution

level. On the one hand, red color tints correspond to sur-

face areas that have not reached the Nmax level yet. The

darker the red, the coarser is the level. On the other hand,

blue color tints appear when the compression process has

started. Darker blue areas are further compressed.

As shown in Figure 6a the first step consists in the con-

text acquisition. The bottom of Figure 6a shows that the

model is being recovered at a coarse (dark red) level

because of the low density of points available at that stage.

One can note the expected low level of detail around the

eyes, nose and mouth. 

Based on these visual feedbacks, the user can then plan

data acquisition in order to obtain a model that encom-

passes details only where desired. Therefore, as a human

user would do, the simulation increases the density of

points around the features of interest. This is seen where

finer levels (light red tones) appear in figure 6b. As

expected, the system also adapts by starting the online

compression of the areas that have reached the finest level

as shown in blue.

Figure 6c shows a satisfactory model once the data

acquisition is completed. Smooth areas around details were

compressed online at a coarser level of resolution (dark

blue). One can note that the actual fine details of the object

surface are preserved by the compression process since

they still appear in light blue. The only remaining step is

the optional offline compression. The corresponding

results are shown in figure 6d. Smooth regions that did not

reach the Nmax level during acquisition, are now correctly

encoded by coarse levels and appear in green. 

The previous simulation showed the proposed acquisi-

tion stages within the interactive modeling framework. Its

main particularity is that online compression is applied

locally and progressively. We now compare three types of

acquisition techniques: uniform sampling without com-

pression, uniform sampling and finally piecewise sampling

both with online compression. In order to do so, we use

data from the Stanford Bunny model. 

The blue curve in Figure 7 shows the progressive mem-

ory requirement in voxels according to the number of input

points for uniform sampling without compression. In this

case, 3D points are added to the model progressively and

they are uniformly sampled over the entire surface. Since

there is no compression, the memory requirement is con-

tinually increasing except when the model is completely

recovered at its finest level. One can note that the memory

requirement converges toward a maximum, a particularity

of a representation encoded in a grid compared to point

cloud. This curve, which represents the worst case, will

thus serve as a reference for the other acquisition schemes.

The red curve in Figure 7 shows the same relation but

for the uniform sampling acquisition scheme with online

compression. One can observe that the memory require-

ment for such a procedure reaches a maximum as high as

the previously described scheme before compressing. This

is clearly suboptimal since it still requires having the com-

plete model at its finest level in memory as did the scheme

without compression. 

Figure 6. Model displayed to the user in a typical acquisition session. The top rows shows the model in shades of

gray.  The bottom row shows the same model according to the local resolution level. a) Context acquisition. b) Ac-

quisition of a detailed region. c) Model state at the end of acquisition. d) Final offline compressed model. Tints of red

are used for the reconstruction process, tints of blue are used for online compression and tints of green are used

for offline compression. Darker shades are associated with coarser levels of detail.

(b) (c) (d)(a)



This observation motivates the acquisition scheme that

was presented for the mannequin head. A significant

improvement in memory consumption is obtained by add-

ing local sections one after the other. In this case, each  sec-

tion reaches the finest level thus allowing it to be

compressed independently. The green curve in Figure 7

shows the corresponding gain in memory. It was obtained

by adding 3D points to the model from four different sec-

tions uniformly while progressively sampling them, thus

explaining the four visible peaks in the curve. This shows

that a local approach must be prioritized to ensure memory

optimisation during object acquisition.

Table 1 further motivates the proposed acquisition

framework. The first column shows the voxel count for

each model at the end of the acquisition, before the offline

compression stage. Both uniform and piecewise sampling

provide a significant compression rate of more than 80%,

as displayed in parentheses.

 The second column compares the maximum amount of

memory used at any time during the acquisition for each

technique. We can observe that a local acquisition

approach can significantly reduce the maximum memory

requirement needed to generate a model compared with

uniform sampling. Specifically, the piecewise approach

reduces the peak memory consumption by 57% over a uni-

form sampling. 

The third column shows the compression rate after

applying the offline compression to each model. The addi-

tional increase in compression rate is around 3.5% for both

sampling techniques compared with using only online

compression. Figures 8a and 8b show the model after

offline compression for the piecewise approach and the

model generated without compression respectively. Tints

of green represent areas compressed by the offline proce-

dure. Figure 8c shows piecewise offline compressed mod-

els and Figure 8d shows the uncompressed model.

It is interesting to note that the model generated after

offline copression and without online compression does

not reach the same compression rate as those using a prior

online compression scheme.

This difference shows that it is not always possible to

determine exactly if a given voxel is stable during online

compression. We can consider the reconstruction of the

model without online compression as being more strict in

applying the stability condition; all available points con-

tribute in assessing voxel stability. Therefore, before start-

ing compression, some voxels might have been considered

as details that the online compression would have missed.

Those additional details encoded in the field explain why

the compression rates slightly differ.

Figure 9 shows similar results obtained with the piece-

wise approach on real data obtained using the Creaform’s

HandyScan. The sensor provides 3D points in a global

coordinate system. The sensor error thus includes registra-

tion error. The data is intrinsically filtered by the vector
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Figure 7. Memory requirements according to the num-

ber of acquired measurements while reconstructing the

Bunny model for three different acquisition schemes.

final voxel count max voxel count
offline 

compression

Without compression 2.11M 2.11M 0.343M

(83.7%)

Uniform sampling 0.396M

(81.2%)

2.08M 

(1.1%)

0.317

(84.9%)

Piecewise sampling 0.394M

(81.3%)

0.88M

(57.9%)

0.316

(85.0%)

Table 1: Memory requirements for three acquisition

schemes. The figures are the final voxel count for each

model, the absolute maximum voxel count and the

voxel count after offline compression.

Figure 8. a) Local resolution level of the Bunny model

after offline compression obtained from the piecewise

acquisition scheme b) without online compression.  c)

Shaded model based on the representation in a). d) Ref-

erence model (without compression).

(a) (b)

(c) (d)



field. The level of filtering is set by the envelope size

which was 2 voxels and the minimum voxel size at level

Nmax was 1.3 mm. The height of the vase is approximately

700 mm.

The proposed acquisition session consists of two steps:

the context acquisition followed by the capture of local

details.  Figure 9a shows the context acquisition of the

model. During this stage, one can still observe that the den-

sity of points is lower than that required to start the online

compression. Figure 1 shows the state of the model after

the addition of a first detail. The high density of points in

this area now allows the online compression to be acti-

vated. Smooth areas around the details are thus compressed

and appear in dark blue. This again shows the benefits of

the proposed approach. In the next step of the acquisition

process, a new detail is being added to the model as shown

in Figure 9b. Once again, we observe new smooth areas

that are now compressed.

The tested implementation is not optimized for memory

access. More specifically, access to voxels in the surface

overlap regions is particularly demanding and will gain to

be optimized by adapting the octree structure. Currently,

more than 2000 points per second can be processed on a

desktop computer. Nevertheless, the complexity of the

algorithms remains constant or, equivalently, linear with

time; this is a fundamental constraint for an interactive

framework.

6. Conclusion

We have contributed towards completing the interactive

modeling framework with an automatic level of detail

detection as well as online compression. The density of

measurements gathered by the user in an area serves to

determine the level of detail used to represent the object

surface. This is coherent with the whole idea of interactive

modeling, i.e. giving an active role to the user in the mod-

eling loop. The user can optimally manage the available

time and memory. It was possible to reduce the peak mem-

ory consumption by as much as 57% during the acquisition

of a typical model. Moreover, the obtained results show

how prioritizing a local acquisition approach further opti-

mizes the available resources. Currently, the finest level

Nmax is still manually set by the user and the SOR analysis

can be further optimized.

Acknowledgments

This work has been supported by NSERC (Natural Sci-

ences and Engineering Research Council of Canada). The

authors are grateful to Annette Schwerdtfeger for proof

reading.

References

[1] S. Rusinkiewicz, O. Hall-Holt and M. Levoy, Real-Time 3D

Model Acquisition, ACM Transactions on Graphics, vol. 21

no.3, July 2002, pp. 438-446.

[2] F. Blais, M. Picard and G. Godin, Accurate 3D Acquisition of

Freely Moving Objects, in Proc. of the 2nd International

Symposium on 3D Data Processing, Visualization and Trans-

mission, Thessaloniki, Greece, Sept. 2004, pp. 422-429.

[3] T. P. Koninckx, Adaptive Structured Light, PhD Thesis,

Katholieke Universiteit Leuven, Belgium, May 2005.

[4] J.-D. Deschênes, P. Hébert, P. Lambert, J.-N. Ouellet and D.

Tubic, Multiresolution Interactive Modeling with Efficient

Visualization, in Proc. of the Fifth International Conference

on 3-D Digital Imaging and Modeling, 2005, Ottawa,  Can-

ada, June 2005, pp. 39-46.

[5] W. R. Scott, G. Roth and J. F. Rivest, View Planning with a

Registration Constraint, in Proc. of the Third International

Conference on 3-D Digital Imaging and Modeling, Quebec,

Canada, May 2001, pp. 127-134.

[6] A. Khodakovsky, P. Schröder and W. Sweldens, Progressive

Geometry Compression. in Proc. of ACM SIGGRAPH 2000,

New Orleans, USA, Jul. 2000,  pp. 271-278.

[7] D. Tubic, P. Hébert and D. Laurendeau, A Volumetric

Approach for Interactive 3D Modeling, Computer Vision and

Image Understanding, vol. 92, 2003, pp.56-77.

[8] D. Tubic, P. Hébert, J.-D. Deschênes and D. Laurendeau, A

Unified Representation for Interactive 3D Modeling, in

Proc. of the 2nd International Symposium on 3D Data Pro-

cessing, Visualization and Transmission, Thessaloniki,

Greece, Sept. 2004, pp. 175-182.

Figure 9. Two stages during modeling of a vase : a)

context acquisition. b) Acquisition of two local details.

The left colum displays the model in shades of gray.
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