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Abstract

This paper proposes a robust algorithm that finds a proxy

surface from a series of calibrated pictures of an object

without assuming any of its reflectance properties. This

proxy is optimized to reduce view interpolation errors by

globally minimizing the frequency criterion proposed in

[1]. The generality of this setting makes robustness par-

ticularly difficult to achieve since no model from which to

identify outliers or noise is available. Unfortunately, fail-

ing to achieve robustness results in unusable proxy for most

of the datasets presented. The traditional method of iden-

tifying outliers by their discrepency from photoconsistency

must somehow be replaced by a global analysis involving

all viewpoints. The major contribution of this paper is to

meet this requirement by proposing a robust estimation of

the minimizer of the frequency criterion as well as a novel

framework for merging the multiple depth hypotheses ob-

tained. View interpolation results and proxies are shown

for challenging datasets, both Lambertian and not.

1. Introduction

We strive to find a 3D proxy that reduces view interpola-

tion error. Our starting point is a set of calibrated pictures of

an object taken under fixed lighting conditions, as is com-

mon with most multi-view stereo algorithms. A distinguish-

ing feature of this paper is removing any assumption regard-

ing the reflectance properties of the object, which inciden-

tally prohibits matching between pictures. Consequently,

the primary role of the proxy becomes guiding view inter-

polation rather than describing the object shape, as illus-

trated in Figure (1). This distinction becomes crucial when

no reflectance property is assumed because the proxy does

not have to correspond to the actual object shape although

it succeeds in diminishing view interpolation errors.

Recently, it was shown that the desired proxy must glob-

ally minimise the integration of the so-called frequency

criterion over its surface[1], a conclusion we will review

later. This criterion satisfies our requirement by avoiding

photoconsistency measure in favor of enforcing smoothness

among the colors of neighboring rays on the proxy. Inter-

estingly, for shaded or textured Lambertian objects, a robust

optimization of this criterion recovers the actual 3D shape

of the object.

We will show why a direct approach to the optimization

is not robust enough to converge when applied to datasets

prone to visibility outliers. Achieving robustness is partic-

ularly difficult in this setting since no reflectance model is

assumed from which to identify these outliers. Moreover,

most forms of filtering are inappropriate since visibility out-

liers lead to erroneous values clustered together in a coher-

ent way. Therefore, new techniques must be developed to

deal with these sources of errors.

The main contribution of this paper is to provide a ro-

bust algorithm in spite of the difficulties exposed. We must

emphasize that robustness in this setting is not just a slight

improvement over a non robust algorithm. Without it, ob-

taining a usable proxy is not even possible for some of the

datasets that will be presented. The proposed algorithm fol-

lows the two step approach of other multi-view stereo algo-

rithms by first finding a depth estimate for each pixel of the

pictures and then merging these depths to form the proxy.

Our contribution is supported by two main ideas used

at each of these two steps respectively. The first and most

important one is a proper decomposition of the computation

leading to the location of the minimizer of the frequency cri-

terion that ensures that outliers cannot bias its value. Out-

liers instead produce additional modes in the correspond-

ing distribution and are later discarded. The second idea

is a novel way to merge the multiple depths obtained from

this multi-modal distribution, which also integrates a sim-

ple mechanism to handle dataless regions. This last step

uses a scalar field of Radial Basis Functions that enforces

and regularizes the multiple modes obtained, both within

each depth map and then globally. Note that both ideas are

general enough to apply to any other criterion. The pro-

posed algorithm is shown to produce results comparable to

the best ones recorded on the Middlebury datasets, despite

the milder assumptions under which it operates. Results

also improve those of existing approaches for non Lamber-

tian datasets.
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Figure 1: Interpolating the color of the unknown black ray in (a) implicitly requires a depth value along this ray to determine

which neighboring rays to use. As shown in (b), a proxy provides this depth value for each ray emanating from the volume

it encloses. When no reflectance property is assumed, the major difficulty in identifying the optimal depths arises from

visibility outliers, like the three thick red rays shown in (c). In (d), outliers are visible on the left side of a lumisphere of the

Temple dataset (depicted in Fig. (4) and (5)). Flat shading was used to enhance contrast.

2. Related Work

There is indeed a close relationship between the problem

of finding a proxy and multi-view stereo algorithms. Recent

such algorithms were reviewed in [2]. They operate by as-

suming specific reflectance properties, usually Lambertian,

and optimize a criterion enforcing this assumption to obtain

the object geometry. See also [3] for the application of this

idea on the same non Lambertian objects as those used in

this paper.

Both the Surface Light Fields [4] and Light Field Maps

[5] proposed a strategy to perform view interpolation that

removed the necessity of knowing the reflectance properties

of the object. They used range scans to map the exiting radi-

ance measured by calibrated pictures on the acquired object

surface. This strategy requires the two additional steps of

preparing the object for the scan using surface coverage and

finally doing the registration that aligns the scan with the

pictures.

Lambert et al. [1] proposed using a frequency criterion

that is free from any reflectance property assumption yet op-

erates from calibrated pictures alone. The surface that op-

timizes this criterion directly improves Surface Light Field

rendering efficiency. Instead of relying on physical laws

governing the interaction between light and surface, as in

the multi-view stereo setting, the frequency criterion aims

to decrease the variations in the Surface Light Field along

its less densely sampled dimensions, which directly reduces

interpolation error. A drawback to this approach is that it

requires more pictures than in the multi-view stereo setting

and it is highly sensitive to outliers.

State of the art in multi-view stereo has already iden-

tified the most common sources of difficulties in surface

optimization and provided interesting strategies to handle

outliers and noise. To mention a few among the most

successful algorithms, Goesele et al.[6] and Campbell et

al.[7] implement a simple yet effective outlier rejection by

eliminating viewpoints whose normalised cross-correlation

(NCC) score computed with a reference viewpoint is not

high enough. This strategy is unfortunately prone to error

with non Lambertian objects since the view dependant vari-

ations in colors can lead to a low NCC score. More gen-

erally, when the color of a point of the object varies in an

unknown way with viewpoint, it is no longer possible to

remove outliers based on a discrepancy from photoconsis-

tency.

Campbell et al.[7] proposed to retain multiple depths

corresponding to high NCC scores and merge them to pro-

duce each depth map using a Markov Random Field. In [6],

merging of the depth maps relies on a discretised scalar field

(VRIP). Inspired by these approaches, our merging step also

handles multiple depth hypotheses and its field leverages on

the following known properties of Radial Basis Functions

(RBF): adaptation to non uniform sampling, hole filling and

regularization. A simple yet novel mechanism to incorpo-

rate visual hull information is also proposed.

The organisation of the paper is as follows. Section 3

reviews the concept of a Surface Light Field and its lumi-

spheres. In section 4 the motivation behind the frequency

criterion are briefly revisited. The core of the paper then

follows with the proposed implementation. It is first ex-

plained in a direct but easily understood manner followed

by the mandatory modifications needed to achieve robust-

ness. Finally, the proposed merging is presented along with

results obtained on various challenging datasets.

3. Surface Light Fields and its Lumispheres

A Surface Light Field (SLF) is a provenly efficient way

to store the light rays captured by the input pictures [4].
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Figure 2: In (a), a lumisphere depicts the colors of the rays

traversing its center in all directions. In (b), the correspond-

ing geometry is illustrated and shows how each picture pro-

vides a single sample of the lumisphere.

Each ray in a SLF is indexed by a point (u, v) on a given

surface K(u, v) and the angles (θ, φ) this ray makes when

leaving the surface. A SLF is thus a 4D function f :
K × S2 → [0, 1]3, (u, v, θ, φ) 7→ f(u, v, θ, φ) whose do-

main is the product of a 2D manifold K embedded in R
3

and the two dimensional unit sphere S2, while its range is

the unit cube of RGB triplets. We will refer to the surface

K as the parameterization surface, the combined (u, v) co-

ordinates as the spatial dimensions and the remaining (θ, φ)
coordinates as the angular dimensions.

In order to more easily understand the SLF, we use a cen-

tral concept of this paper called a lumisphere [4]. It desig-

nates in the SLF the 2D function obtained by fixing a point

of the spatial dimensions P = (u0, v0) and varying only the

angular ones: LP (θ, φ) = f(u0, v0, θ, φ). A lumisphere is

graphically represented by a unit sphere at a specific loca-

tion whose surface colors correspond to those of the light

rays traversing at this location, as shown in Figure (2). The

SLF can thus be conceived as a set of lumispheres located

on the parameterization surface.

4. Frequency criterion

As illustrated in 2D in Figure 1(b), choosing a particu-

lar depth along a given ray determines which rays are used

to interpolate its color. From this perpective, we are inter-

ested in knowing which parameterization surface is the best

proxy. An answer to this question is proposed in [1] and

can be summarized as follows using the terminology devel-

oped so far: When interpolating an unknown ray, its color is

obtained using the lumisphere of the SLF that the ray inter-

sects. When there is a high amount of variations among the

colors of this lumisphere, any slight shift in the angle of the

unknown ray leads to a highly different color and thus pro-

duces visible artifacts. Motivated by this observation, it was

proposed to use as a proxy the surface whose lumispheres

exhibit less variations.

The measure of these variations in a lumisphere located

at position P is given by the frequency criterion:

‖LP ‖V =

∫∫
S2

‖∇LP ‖
2
dA, (1)

where the integration is performed over the lumisphere sur-

face and dA is its surface element. The name frequency cri-

terion comes from the alternative statement of this measure

in the frequency domain that was first used in [1].

Why is the frequency criterion interesting? The pres-

ence of the gradient makes the frequency criterion sensitive

to the ordering of rays within a lumisphere. This situation

is not the same when computing the variance of the col-

ors, for example, since a shuffling of the angular position of

the rays does not affect the variance of the colors. The fre-

quency criterion is thus a relevant measure when assessing

interpolation quality because interpolation depends on this

ordering. Other criteria like entropy and mutual information

also lack this capability.

The frequency criterion is computed on a single lumi-

sphere. It thus avoids having to use a window of many pix-

els in the pictures, a situation favorable to an increase in 3D

resolution. The additional stability obtained by considering

neighbouring pixels can still be used, but can be defered

to the later stage of merging points, as will be done in the

following.

5. Obtaining a proxy surface

The overall strategy to obtain the proxy follows two

steps. First, for each pixel whose projector ray intersects

with the object, we find the depth along the projector ray

where the frequency criterion is minimal, what we call

the optimal depth. Once these depths are found, they are

merged together to obtain the proxy. These two steps are

the subject of the next two sections.

5.1. Finding optimal depths

Evaluating the frequency criterion A fundamental op-

eration required to find the proxy is computing the fre-

quency criterion for a lumisphere located at any given po-

sition in 3D space, following equation (1). This compu-

tation is achieved by first obtaining the continuous func-

tion describing the colors on the lumisphere, what we call

the reconstruction of a lumisphere, and then computing the

frequency criterion for the function found by summing the

norm of its squared gradients, which we now describe.

We are given the position P of a lumisphere in the world

coordinate frame and we want first to obtain a continuous

function describing the colors at its surface, as illustrated in

Figure (1)(d). By projecting P in the ith picture and using



Figure 3: The geometry involved in the problem of finding

a lumisphere’s gradients on the left along with an example

solution on the right. The color of the gradient indicates the

corresponding color channel.

bilinear interpolation, the lumisphere color along the cor-

responding viewing direction is sampled. Using this time

the world coordinate frame translated at P , these samples

lead to data of the form {(xi, yi, zi), (Ri, Gi, Bi)}, where

pi = (xi, yi, zi) is the point of the lumisphere unit-sphere

along the ith viewing direction and ci = (Ri, Gi, Bi) its

color. Note that we switched to cartesian coordinates to

simplify future computations. Refer to Figure (2)(b) for an

illustration of the geometry involved.

From the data obtained, many methods exist to obtain

a continuous function giving the colors over the whole lu-

misphere. The particularly simple one we chose is justi-

fied principally by a specific usage in the robust approach

to come. The function is first evaluated on the vertices of a

triangular mesh of the lumisphere spherical surface. Specif-

ically, to obtain the color of vertex vj , we first compute its

distance to each input viewing direction using d(vj , pi) =
arccos(< vj , pi >). These distances then allow computing

a weighted average of all sampled colors ci. An exponential

kernel gives more importance to closer data:

LP (vj) =
∑

i

ci exp(−αd(vj , pi))/
∑

i

exp(−αd(vj , pi)),

(2)

where LP (vj) is the color of vertex vj of the lumisphere

and α is set empirically from the number of pictures avail-

able and serve to control the region over which a sample

has influence (we used 100). The color of any point inside

a triangle is obtained using the standard linear interpolation

from the color of its vertices using barycentric coordinates.

An example result of this computation along with the corre-

sponding data, shown by circles of the corresponding color,

is displayed in Figure (1)(d).

From the reconstructed lumisphere, we must compute

the frequency criterion, as given by equation (1). This in-

tegral is divided over each triangle of the mesh since the

gradient is constant within them. The gradient ∇LP (k),
corresponding to the triangle k of the mesh, is calculated

using the colors of its three vertices. Refer to Figure (3)

for the geometry involved. The two directional derivatives

Jk,1,Jk,2 along the edges of each triangle are given by the

following expressions:

Jk,1 = (LP (vk,2) − LP (vk,1))/d(vk,1, vk,2)v̂k,12

Jk,2 = (LP (vk,3) − LP (vk,1))/d(vk,1, vk,3)v̂k,13
,

(3)

where vk,ij is the vector joining vertices i and j of triangle

k and v̂k,ij is the unit vector in the same direction. A linear

system is then solved to obtain the gradient of this triangle:

‖Jk,1‖ = < ∇LP (k), v̂k,12 >
‖Jk,2‖ = < ∇LP (k), v̂k,13 > .

(4)

The integration of the squared gradient of equation (1)

is finally evaluated by summing the norm of the squared

gradient inside each triangle, weighted by the triangle area,

summed for the three color channels:

‖LP ‖V =
∑

k

‖∇LP (k)‖
2
·
1

2
‖vk,12 × vk,13‖ . (5)

Direct approach Along a projector ray, the closest point

of the proxy is more likely to be located where the lumi-

sphere has the lowest value of the frequency criterion. Us-

ing equation (5), we can thus compute the criterion for a

series of lumispheres located at regular interval along the

projector ray and retain the position of the one having the

lowest value as the corresponding location for the proxy.

This procedure is illustrated in Figure (1)(c), where it is

visible that the size of the interval used corresponds to the

maximum resolution for the proxy.

Why is the direct approach inadequate? A simple fact

was overlooked in the direct approach, which leads to erro-

neous depths: when gathering the colors of a lumisphere

from the acquired viewpoints, the point where the lumi-

sphere is located might not be visible from all viewpoints.

When such visibility outliers are present, locating the opti-

mal depth will fail since the erroneous gradients added to

equation (5) increase the value of the frequency criterion

and shift the position of its minimum. A lumisphere of the

Middlebury Temple dataset having such visibility outliers is

shown in Figure (1)(d).

The exact visibility information is unfortunately not

available since it depends on the geometry of the object. A

common practice is to approximate it using the visual hull.

To further reduce the occurence of visibility problems, only

the viewpoints within 30 degrees of the viewing direction of

the projector ray will be used. Although this strategy will

remove potential visibility outliers, some will inevitably re-

main. The most common occurance happens when the ob-

ject has a cavity not resolved by the visual hull, as illustrated

in Figure (1)(c).
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Figure 4: Using equation (5) to minimize the frequency criterion along a projector ray is highly influenced by visibility

outliers. This situation is illustrated here along with the proposed solution for a pixel of the Temple dataset projecting inside

a cavity. The vote of each triangle is weighted according to its distance from the projector ray considered (black dot), in (c),

and from the sampling distribution (white dots) in (d). Warmer colors corrrespond to larger weights.

The robust approach The computation of equation (5) is

illustrated in Figure (4)(a) to show where the problem orig-

inates. Each of the thinner lines of Figure (4)(a) represents

the summand in equation (5) as P is moved through the

depths z along a projector ray. The outlier is shown with a

red dotted line. The computation of the criterion performed

in equation (5) is the sum of all these lines and is displayed

as the (offset) thicker black line. While there appears to be

three candidate minima when looking at the thinner curves

individually, their sum just barely conveys this information.

Moreover, the consensus for the position of the minimum

estimated by the three blue lines at the left of the graph is

shifted by the influence of the red outlier whose gradient

norm is much higher. Even doing a consensus pointwise is

prone to fail because regions of consensus of high gradient

values must not hide a possibly smaller consensus of low

gradients which is of greater interest when doing a mini-

mization.

These problems can be avoided by using a voting

scheme. Each triangle of the lumisphere mesh votes for the

position where it would more likely locate the minimum

norm along z of its corresponding gradient. As noted pre-

viously, this vote must not be done for a single position. In-

stead, a probability distribution for the location of the min-

imum is constructed, as shown by the thin lines in Figure

(4)(b). Formally, the likelihood for the position of the min-

imum obtained from the gradient k is calculated using the

following expression:

gk(z) = exp(−(‖∇Lz(k)‖
2
−‖∇Lzmin

(k)‖
2
)2/σk), (6)

where σk is set for each lumisphere triangle k individ-

ually to a value such that gk becomes negligible when

‖∇Lz(k)‖
2

reaches its median value along the interval con-

sidered. This expression is built to correctly place a higher

probability at regions where the norm of the gradient is

close to its smallest value ‖∇Lzmin
(k)‖

2
. Moreover, if

multiple depths exhibit values close to the minimum, they

all receive a part of the probability accounted for. These

individual likelihoods are then normalized and summed for

every triangle of the lumisphere. This sum is presented in

Figure (4)(b) using a thick black line and shows how the red

outlier does not interfere with the minimum on the left. The

vote of each triangle is further weighted inversely according

to its angular distance from the projector ray, as illustrated

in Figure (4)(c). In this way, we have reached our stated

goal of integrating all viewpoints in a global way without

being biased by outliers.

Non-uniform sampling A final difficulty is caused by the

non uniform sampling of the lumispheres. Because of the



varying visibility and non uniform placement of the view-

points, lumispheres are in practice never regularly sampled.

This situation is illustrated in Figure (1)(d) where each sam-

ple is represented by a circle of the corresponding color.

Therefore, some regions of the lumisphere may contain less

samples than others and the gradients in these regions are

equally less significant. Furthermore, since they are extrap-

olated from the same data, these unreliable gradients un-

fortunately introduce detrimental modes in the likelihood

function because they tend to vote for the same location.

To cope with this situation, the vote of each triangle is

weighted by how close it is to the data, as illustrated in

Figure (4)(d). This weight for each triangle is calculated

by summing the distance from its center to the m nearest

data (we use m = 6 for all our experiments) represented by

white dots in the figure. It is thus set to

wk = exp(−(
m∑

i=1

d(tk, pi))
2/γ), (7)

where tk = (vk,1 + vk,2 + vk,3)/3 is the center of the kth

triangle and γ is fixed empirically according to the density

of data on a typical lumisphere (we use 0.01).

5.2. Merging depths

The merging of the depths obtained from all pixels is a

crucial step that selects the correct ones among the many

candidates retained. This merging is done at two different

levels: first within each viewpoint to obtain the correspond-

ing depth maps and then globally using all viewpoints. A

provenly efficient way to perform function approximation

from scattered data is by Radial Basis Functions (RBFs)

approximation [8]. This tool will be used similarly at both

steps.

First, within each viewpoint, all local maxima along the

likelihood curve of each pixel whose likelihood exceeds a

threshold (we use 0.05) are used as samples for the approx-

imation of the corresponding depth map function. The like-

lihood values are also used as weights to better fit depths

having higher confidence. To add robustness, a Ransac-

type procedure is used in the following way. A subset of the

points belonging to a viewpoint are selected randomly and

the Radial Basis Functions are used to fit a depth map. The

depths of all points are then compared to the reconstructed

depths and their absolute differences are stored. This pro-

cess is repeated four times and the differences collected for

a point are summed together. Afterwards, a point whose

summed difference is above a threshold is considered an

outlier.

When doing the final merging of all viewpoints, Radial

Basis Functions are used this time to approximate an im-

plicit function whose zero level is the proxy sought, as in

[8]. Obtaining a mesh of the desired proxy will then sim-

ply amount to a zero level extraction using the well known

marching cubes for example. The first step is thus to gather

samples of this implicit function. The local maxima along

the likelihood curves that passed the previous step are all

potential zero valued points since they are supposed to lie

on the proxy surface. Having only zero valued points is

however not enough to determine the desired implicit func-

tion since a trivial implicit function evaluating to zero ev-

erywhere would satisfy all the points. A common technique

to solve this problem is to add off-surface points, one on

each side of a point of the proxy along the corresponding

projector ray. While the point closer to the camera receives

a positive value, the other is set negative to encode that they

are respectively outside and inside the proxy. A subset of

these points is shown in the upper right corner of Figure

(5). Points outside are colored red, blue are inside and green

are on the proxy. The same Ransac-type procedure is used

to eliminate outliers using again likelihood values to weigh

the points.

Uncertain regions There are two types of regions where

the data obtained so far is not enough to uniquely determine

the shape of the proxy. Such regions will produce undesir-

able holes or the noise within them will lead to unnecessary

curvature in the proxy. The first type is when a group of pix-

els does not provide a well defined position identifying the

location of the proxy. This happens for textureless regions

of the object for example. These pixels are easy to identify

since no obvious maximum is found in the likelihood along

the projector ray. The second type is for regions of the ob-

ject that are not visible from any viewpoint, underneath the

object for example.

Using the information given by the visual hull is a stan-

dard technique exploited by various successful algorithms

reviewed in [2]. To avoid the complexity of enforcing a

constraint during the optimization, we propose the follow-

ing simple yet effective technique. For regions of the vi-

sual hull that are either not visible or not sufficiently well

sampled, we add points of the visual hull along with their

two off-surface points, forcing the proxy to follow the visual

hull in these regions.

6. Results

Proxy of Lambertian Objects For Lambertian textured

or shaded objects, the proxy corresponds to the actual ob-

ject surface since the frequency criterion cannot be lower

than on the object where there is no variation. In this case, it

is therefore possible to assess the quality of the implementa-

tion by looking at the surface obtained. Recall however that

the Lambertian reflectance property was nowhere exploited

in the optimization.

Figure (5) shows the proxies obtained for the Temple



Figure 5: Results (accuracy at 90%/completeness at

1.25mm): Temple (0.55mm/99.7%), Dino (0.76mm/99.0%)

(312 pictures) and Dino (363 pictures) of the Middlebury

dataset[2]. The score obtained for both models compares fa-

vorably with the best ones recorded on the Middlebury web-

site1. One challenge encountered with the temple is related

to the problematic visibility caused by its complex topology

and the sharp edges of the stairs and cavities. Consider the

projector ray illustrated on the left of Figure (4). The lu-

misphere of Figure (1)(d) is the one located at the optimal

depth along this ray, inside the cavity. The combined votes

described in section 5.1 correctly locates its optimal posi-

tion despite the numerous visibility outliers present. Note

that the non-uniform sampling density of this lumisphere

was also correctly taken into account and the corresponding

vote weights are those visible in Figure (4)(d).

Some portions of the Temple are not visible from any

viewpoint, particularly underneath it and below its entab-

lature, between columns. Points of the visual hull that are

automatically added to fill these dataless regions are visible

in the upper right of Figure (5), colored according to their

off-surface position: orange outside, light blue inside and

green on the visual hull surface.

The color uniformity of some regions of the Dino pro-

duces uncertain regions, particularly on its back. Again, the

added points are visible on the lower right of Figure (5),

with the same color coding used previously, and correctly

fill these regions.

Proxy of Non Lambertian Objects Results for the chal-

lenging Bust and Buddha datasets of [5] are presented in

Figure (7). Both objects have complex surface reflectance

properties and are pictured 339 and 281 times respectively.

The Bust is made from metallically-painted clay while the

1http://vision.middlebury.edu/mview/eval/

Figure 6: Both the depths of the virtual image of the light

source and of the plane are found, as shown by the points on

the right. The warmer the color the higher is the likelihood

of the point.

Buddha exhibits combined subsurface scattering and highly

specular regions.

For non Lambertian objects, the shape of the proxy is

less intuitive. Regions where the surface properties are still

close to being Lambertian may correspond to the object

surface, but in general this correspondence does not hold.

Since the search for the proxy does not rely on the object’s

surface properties, this result is not surprising. This discrep-

ancy is however not a problem because when interpolating

between viewpoints, the proxy surface still produces low

interpolation error by construction.

An interesting behavior emerges on regions where there

are specularities. We observed that the optimal depths cor-

respond to those of the virtual image of the light source in-

stead of that of the object surface. This is consistent with

the framework proposed since the importance of the signal

from the virtual light source is superior to that of the object

surface, which is hardly visible. These depths may how-

ever lead to a deviancy of the proxy from the actual shape,

visible for example on the shoulder of the Buddha proxy.

To further support this finding, 196 rendered pictures of

a glossy galvanized plane below a single light source were

used as input pictures and the optimal depths of four depths

maps were combined to produce the cloud points visible on

the right in Figure (6). The reconstruction of the virtual im-

age of the light source shows that the proposed approach

could be generalized to produce a volumetric proxy, as op-

posed to a single surface.

View interpolation The analysis presented so far did not

depend on any particular choice of renderer for generating

the interpolated views, the only output of the algorithm pre-

sented here is a mesh of the proxy. Therefore, as soon as the

renderer supports surface light fields, e.g. [4, 5], we should

see an increase in quality. We chose to use the Light Field

Mapping software [5], which is freely available online.

To assess the quality of the viewpoints generated, we

compare them to the corresponding input pictures, visible

in the two last images of each group in Figure (7), and to the

one obtained using as a proxy the geometry of the model for

the synthetic Buddha and that of the scan for the Bust. Note



Figure 7: Results obtained for two non Lambertian objects. For each group of four pictures, the proxy is shown first along

with an input picture, then follow the rendered model using first the proposed proxy and then the actual object shape.

that contrast was enhanced to help comparison. Providing

a perceptually meaningful metric to compare the results ob-

tained to the ground truth is beyond the scope of this pa-

per. We thus only rely on a visual assessment of the quality,

which is nonetheless an important metric when assessing

picture quality.

7. Conclusion

Finding a proxy optimized to reduce view interpolation

error allows geometric information in the pictures to be ex-

tracted without using matching or more generally any as-

sumption regarding the reflectance properties of the object.

Through the robust implementation provided, the method

applies to a wide variety of objects and produces results

comparable with those of existing approaches that either

use additional assumptions or rely on scanning. For ob-

jects that exhibit specularities, using a single surface as

the proxy is the first limitation future reseach has to over-

come.
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