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Abstract

Traditional approaches for surface reconstruction from range data require that the
input data be either range images or unorganized sets of points. With these meth-
ods, range data acquired along curvilinear patterns cannot be used for surface recon-
struction unless constraints are imposed on the shape of the patterns or on sensor
displacement. This paper presents a novel approach for reconstructing a surface from
a set of arbitrary, unorganized and intersecting curves. A strategy for updating the
reconstructed surface during data acquisition is described as well. Curves are accu-
mulated in a volumetric structure in which a vector field is built and updated. The
information that is needed for efficient curve registration is also directly available
in the vector field. The proposed modeling approach combines surface reconstruc-
tion and curve registration into a unified procedure. The algorithm implementing
the approach is of linear complexity with respect to the number of input curves
and makes it suitable for interactive modeling. Simulated data based on a set of
six curvilinear patterns as well as data acquired with a range sensor are used to
illustrate the various steps of the algorithm.

Keywords: 3D modeling, surface reconstruction, 3D curves, geometric fusion,
curve registration, volumetric representation

1 Introduction

Three-dimensional modeling from 3D (range) data is the process of building a
3D surface model of a measured object. Depending on the type of the sensor,
the range data can be a set of unorganized points, surface curves or range
images (surface patches). In all cases however, range data acquired from a
single viewpoint is not sufficient to build a complete model; thus the 3D sen-
sor or the object have to be moved in order to observe the whole surface.
This creates redundancy in acquired data with respect to the resolution of
the final model since, in general, it is practically not possible to observe the
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whole surface without observing some regions two or more times. When the
range data is a set of surface patches, building a model consists in removing
this redundant data and reparameterizing the surface. This process is usually
referred to as geometric fusion. Building a model of a given resolution from
curves or unorganized sets of points also requires removing redundant data
as well but in addition, surface reconstruction is necessary since curves and
unorganized points do not represent a surface. Although the redundancy of
range data might appear as a setback, it is however very useful in solving
another problem, registration of multiple views.

Alignment, or registration of range data is required if the sensor position and
orientation are not perfectly known for each viewpoint. That information is
usually obtained by using an external positioning device but some sensors can
also estimate their position using features present in the observed scene [7].
Since the estimate of sensor position is always inaccurate to some degree, the
range data is not perfectly aligned once it is transformed into a common ref-
erence frame. This sensor position error is referred to as the registration error.
Note that in 3D modeling it is assumed that an approximate position of the
sensor is known since the commonly used algorithms cannot handle arbitrary
initial positions. For this reason, registration is more correctly referred to as
pose refinement in the context of 3D modeling. To align two views it is suf-
ficient to identify at least three common points on each view and compute a
rigid transformation that aligns them. Selecting common points is referred to
as matching and is usually based on the ICP (Iterated Closest Points) algo-
rithm [2] while numerous variants and specific implementations exist. In this
paper, the process of three-dimensional modeling integrates geometric fusion,
surface reconstruction and registration.

A very common type of range sensor acquires curvilinear measurements (sur-
face profiles) on the surface of an object. Based on optical triangulation, these
sensors use a focused laser pattern projected on the surface and can provide
dense profiles robustly in a very short time frame. Although various laser pat-
terns are available, methods for surface reconstruction from arbitrary curves
still need to be developed. Currently, it is often assumed that profiles are
gathered at regular intervals along a well defined path allowing neighbour-
ing profiles to be grouped into a surface. The relative pose of each profile is
assumed to be accurate. For hand-held sensors that collect profiles, it is not
possible to scan a surface along an exactly predefined scanning path. Thus,
some methods have been proposed to build local surface patches from a rigid
series of profiles with known position but with only nearly regular scanning
paths [3,9,11,15]. There are still two problems with these methods. First, the
only type of surface curves that can be used are surface profiles. Second, al-
though error in sensor positioning cannot be avoided during acquisition, it is
not possible to refine the pose for a single profile. This results in a loss of qual-
ity of the model. The current alternative for low cost hand-held acquisition
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Fig. 1. Example of surface reconstruction from two curves.

is to collect range images [6,14] at the expense of losing robustness of laser
sensors. In this paper, an approach is proposed for surface reconstruction of
free-form objects from arbitrary curves as well as for the correction of the pose
of each individual curve.

Surface curves contain more information about the measured surface than an
unorganized set of points, namely tangents that can be exploited to improve
the quality of the reconstructed surface. A local estimate of the surface can
be obtained using tangents of intersecting curves. Later in this paper, it is
explained that for each point on the reconstructed surface, its surface normal
is assessed from the tangents at the closest points on the neighbouring curves.
Figure 1 illustrates the simplest case where a surface is reconstructed in the
neighbourhood of two intersecting curves. Since the surface is approximated,
the error of the reconstructed surface increases as the distance from the in-
tersection increases. However, one can observe that the reconstructed surface
still faithfully follows the shape of the original surface. This cannot be ac-
complished by reducing curves to unorganized sets of points, i.e. by fitting a
plane in the neighbourhood of a point (see also Figure 3). This improvement
is particularly important in the regions of uneven sampling density such as
the example in Figure 1.

It is also shown that surface reconstruction can be performed efficiently using
a volumetric structure where the surface is incrementally recovered as new sur-
face curves are scanned. Volumetric structures have been exploited for surface
reconstruction from range images or unordered sets of points [4,9,13,15,17]
to reduce computational complexity and provide incremental reconstruction.
These approaches use an implicit representation of the surface e.g. a scalar
signed distance field computed on a volumetric grid where the reconstructed
surface corresponds to the zero crossings of the field. The first contribution of
this paper is to describe how such a volumetric representation can be built
directly from a set of measured curves using their tangents without any inter-
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mediate surface representation. Furthermore, the computational complexity
with respect to the number of curves is linear and the reconstruction is in-
cremental and order independent; thus no constraints are imposed on sensor
displacement. Any light pattern can be used to measure curves as long as the
curves intersect.

If one not only encodes the signed distance field in the volumetric structure
but also includes the direction towards the nearest zero crossing in each voxel,
then matching (closest point) for a point can be obtained directly from the
nearest voxel. We have developed this idea to provide near real-time registra-
tion of range images [18]. The second main contribution in this paper is to still
maintain the same linear complexity registration for surface curves by regis-
tering them with the reconstructed surface. Another important aspect of our
approach is a novel definition of distance measure that improves robustness of
registration in the presence of noise.

Due to the shadow effects, some regions of the object are not measured during
the acquisition of range data, resulting in holes in the final model. The object
then has to be rescanned to complete the model in these regions. It is thus
advantageous to provide a partially reconstructed model in real-time to guide
the operator for the selection of the next best view that allows completion of
the model with minimal acquisition time. The linear computational complexity
of all modeling steps in the approach makes on-line surface reconstruction and
registration feasible.

The paper is organized as follows. The next section presents a summary of
existing methods for surface reconstruction and registration. Sections 3.1 and
3.2 describe the principle of surface reconstruction from curves, followed by
section 3.3 which explains a modification required to allow incremental re-
construction. A novel definition of distance aimed at improving robustness of
registration is presented in section 3.4. Section 3.5 exposes curve registration.
The results presented in section 4 illustrate each aspect of the approach using
simulated and real data.

2 Related Work

Reconstruction methods from range data (geometric fusion of multiple views)
can be divided into two groups based on the representation of a surface: sur-
face based approaches [16,19] and volumetric approaches [4,9,10,13,15]. In this
paper we concentrate on the latter group. Volumetric approaches to surface
reconstruction and fusion are based on implicit surface representation as a
signed distance field. The surface itself is the zero-set of the scalar field. In
the case of range images, this scalar field is used to merge multiple views by
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Fig. 2. Estimating local orientation of the surface from two different viewpoints
represented as two curves. a) In low sample density regions, small positioning errors
can lead to a wrong orientation estimate if a plane is fitted in a neighbourhood of
points (shaded circle). b) Using the normals or tangents computed from connectivity
of input data solves this problem. In this example the normal n is obtained as ”the
most perpendicular” vector to tangents t1 and t2. By doing so, the effect of the
translation that caused a wrong orientation estimate in (a) is canceled.

Fig. 3. Considering all 3D data as unorganized sets of points might lead to wrong
surface reconstruction. In this example, the surface reconstructed from a measured
curve (left) is a plane perpendicular to the real surface (right).

simply doing a summation of the fields for each view. The same scalar field
can also be used to reconstruct the surface from unorganized sets of points
[10,15]. In this case, the distance is defined as the distance to a plane fitted in
a neighbourhood of the point where the field is being computed. The final sur-
face is extracted using the Marching Cubes algorithm [12]. Besides geometric
fusion, Masuda [13] merges registration and reconstruction by aligning signed
distance fields. This approach only applies if the input range data is a set of
surface patches.

Most surface reconstruction algorithms using range data accept either range
images [4,13,16] or unorganized sets of points [1,10,15] as input. There are
several problems related to surface reconstruction by considering curves as
unorganized sets of points. First, a local estimate of the surface orientation
has to be inferred from relative positions of the measured 3D points, as illus-
trated in Figure 2a. This can be accomplished for example by fitting a plane in
a neighbourhood of points. However, if the 3D data consists of multiple views,
as in Figure 2, a very small positioning error can cause a very inaccurate es-
timate of surface orientation. Another way to proceed and to circumvent this
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problem is to use additional information that is contained in the connectivity
of points in curves and surface patches. For example, on a triangulated sur-
face, the immediate neighbours for each point are known and can be used to
estimate the surface normal at each point. In this case the surface orientation
is estimated as the average of normals in a neighbourhood, see Figure 2b. By
doing so, the effect of the registration error is much smaller than in the previ-
ous case. Similarly, curve tangents can be used to improve reconstruction and
reduce the effect of registration errors as explained later.

Another reason to use connectivity information in 3D data (tangents or nor-
mals) is the ambiguity that leads to completely wrong surface reconstruction.
One example of such an ambiguity is shown in Figure 3 where a single curve
is measured on a cylindrical object. By considering this curve as an unorga-
nized set of points, the reconstructed surface will inevitably be a plane that
contains the curve and will be perpendicular to the real surface. The reason
for this is that curves are dense sets of points but only along one dimension,
i.e the distance between curves is not necessarily the same as the distance
between neighbouring points within a single curve. This means that, for ex-
ample, the surface shown in Figure 1 could not be reconstructed using surface
reconstruction algorithms from unorganized points since they generally as-
sume a relatively uniform distribution of points over the surface. The method
proposed in this paper for surface reconstruction from curves eliminates this
problem by using curve tangents to obtain a local estimate of the surface.

With the exception of [9], none of the proposed surface reconstruction meth-
ods is applicable to the reconstruction from surface curves. Nevertheless, the
method proposed in [9] assumes that the input data is a set of surface profiles
which can be locally triangulated to produce a surface. Once the profiles are
grouped into a surface, it is considered as a surface patch so that a volumetric
algorithm can be used to reconstruct the surface. The triangulation step has
a negative impact on several aspects of modeling: the registration of individ-
ual profiles cannot be performed, range data has to be acquired in regular
sequences and the model cannot be constructed incrementally by integrating
a single profile at a time. A post processing algorithm [3] for Hilton’s method
has been proposed to improve the alignment of profiles as well as to optimize
reconstructed surface. However, the algorithm [3] cannot register individual
curves and a specialized algorithm for this purpose is required.

Very little work has been reported on the subject of surface curve registration
[8]. Although the stability of curve registration may have contributed to this,
the main reason is the computational complexity of the registration process.
The simultaneous registration based on the ICP (Iterated Closest Points) algo-
rithm [2] is of complexity O(N2) with respect to the number of range images.
If the same algorithm is applied for registration of surface curves, the com-
plexity quickly becomes untractable since the number of curves required for
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complete reconstruction of an object is at least an order of magnitude larger
than the equivalent number of range images and can easily reach several thou-
sand curves.

A different approach for registration has been proposed in [17] where match-
ing information is explicitly encoded in a volumetric grid in addition to the
distance field. Such a vector representation reduces computational complexity
of registration and makes it linear with respect to the number of range images
and the number of measured 3D points. Besides surface reconstruction, this
paper extends this approach to the registration of surface curves where the
computational complexity is linear with respect to the number of curves.

3 Modeling using Range Curves

As reported in an earlier paper [17], the reconstructed surface is represented
implicitly as a vector field. Such a volumetric representation contains both
the reconstructed surface and its corresponding matching information in the
form of direction and distance towards the reconstructed surface. The surface
is represented as the zero-crossing of the signed norm of the field while the dis-
tance and direction are represented by the field itself. Encoding both distance
and direction towards the surface allows one to find approximate closest points
(required for registration) with linear complexity. Another advantage of this
volumetric representation is that the reconstructed surface can be updated
incrementally. In the following, we describe how an implicit representation of
the surface can be obtained from a set of non-parallel, intersecting surface
curves.

3.1 Reconstruction from two intersecting curves

The main idea behind our approach is to perform reconstruction by approxi-
mating the surface in the neighbourhood of the intersection points of surface
curves. The reconstruction from two intersecting curves is first explained in
order to illustrate the principle on a simple case.

The reconstruction is based on a fundamental property of differential surfaces
stating that all surface curves passing through some point have their tangents
located in a plane tangent to the surface at the same point [5]. The most
important consequence of this property for our application is that the tangent
plane to a surface at a given point can be computed using the vector product
of the tangent to each curve at this point.
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In theory, planes at the intersection points of surface curves could be used
to roughly approximate a surface. However, a faithful reconstruction would
require too many intersections to be practical. In the presented approach, a
limited number of intersections is used and a faithful surface representation is
built using tangent planes at these intersections and at points in their neigh-
bourhoods.

The reconstructed surface Ŝ is implicitly represented as a vector field f : R3 →
R3 where f(p) represents the direction and the distance to the closest point
pc on the surface Ŝ:

p + f(p) = pc ∈ Ŝ, (1)

such that

pc = argmin
q∈Ŝ

d(p,q), (2)

where d denotes a distance measure. In practice, the field f(p) is computed
at points on a regular lattice (volumetric grid, see Figure 4) in the vicinity
of a surface, usually referred to as its envelope. The envelope encloses lattice
points which are located at a distance to the surface smaller than a predefined
positive value ε. An example of such an envelope for a curve is depicted in
Figure 4.

To compute the implicit representation of the surface f(p) we start with two
surface curves α1 : U1 ⊂ R → R3 and α2 : U2 ⊂ R → R3 intersecting at a
single point pi = α1(U1)∩α2(U2) (see Figure 6). In the following it is assumed
that the surface is differentiable and that curves are parameterized by arc
length. Now, for some lattice point (voxel) p, an approximation of the normal
n to the tangent plane at the closest point of the surface is approximated as
the vector product of the tangents t1 and t2 at points p1 ∈ α1 and p2 ∈ α2

closest to p, i.e.

n = t1 × t2, (3)

where

p1 = argmin
q∈α1

d(p,q) = α1(u1), u1 ∈ U1,

p2 = argmin
q∈α2

d(p,q) = α2(u2), u2 ∈ U2,

t1 = α′
1(u1),

t2 = α′
2(u2) (4)
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Fig. 4. Example of a volumetric envelope (blue) for a curve. The volumetric envelope
contains all points closer to the curve than a predefined constant distance ε > 0.
A cylindrical iso-surface whose points are located at a distance ε from the curve
delimits the envelope. Field f(p) is computed only at grid points (red dots) located
inside the envelope.

(a) (b)

Fig. 5. Example of the vector field computed on a regular grid. a) The values of
the field represent the direction and the distance towards the closest point on the
surface as defined in Eq. 1. b) Norm of the vector field encoded as gray-levels with
associated directions towards the surface.
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Fig. 6. Reconstruction from two curves. The normal to the tangent plane (shaded
in gray) is obtained as the cross product of the tangents t1 and t2 at the closest
points p1 and p2 of the two curves α1 and α2. The distance d to the tangent plane
is the average of the projections of v1 and v2 on the normal n. The value of the
field f at point p is d · n.

and d is a distance measure. As discussed in section 3.4, the choice of d in Eq.
4 plays an important role in the registration process, but for now, it can be
assumed that the distance d is the Euclidean distance.

The normal n computed in Eq 3, is taken as the direction towards the closest
point on the surface. The average of the projections of vectors v1 = p − p1

and v2 = p− p2 on the normal n is taken as the distance to the surface, i.e.

d(p, S) =
1

2
〈v1 + v2,n〉. (5)

And the value of field f at p is computed as:

f(p) = d(p, S) · n. (6)

An example of the vector field is shown in Figure 5. The reconstructed sur-
face can be extracted from the vector field f(p) using the Marching Cubes
algorithm. The Marching Cubes algorithm uses a scalar field that is obtained
by computing the signed norm of f(p). This norm is a scalar field whose sign
is computed as the sign of the scalar product between f(p) and the direction
of the sensor. An example of the reconstruction from two curves is shown in
Figure 1.

It should be noted that as long as the two curves are not straight lines, there
are no planar regions on the reconstructed surface: the tangent planes are used
to approximate the surface but each plane represents only a single point on
the surface.
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Fig. 7. Reconstruction from multiple curves. The normal is obtained as a
least-squares estimate of the ”most perpendicular” vector to the tangents ti,
i = 1, 2, 3, 4 at the closest points pi of the four curves. Distance d to the tan-
gent plane is the average norm of the projections of vectors vi on the normal n.
The value of the field f at point p is d · n.

3.2 Reconstruction from multiple curves

It is straightforward to extend the two-curve reconstruction approach de-
scribed in section 3.1 to the case of multiple curves. As illustrated in Figure 7
a voxel can be located in the vicinity of more than two curves and the tangent
plane has to be estimated using all of them. The approximation of the surface
can be obtained as a least-squares estimate of the normal using tangents at
the closest points of all nearby curves. This estimate corresponds to the ”most
perpendicular” vector to a set of tangents.

More formally, let α1, . . . , αN be N surface curves passing within some pre-
defined distance ε > 0 from a point (voxel) p and let t1, . . . , tN be their
respective tangents at the closest points to the point p. Then the normal
on the surface is obtained as the vector n = [nx, ny, nz]

T that minimizes the
following expression

ξ =
N∑

i=1

〈ti,n〉2 (7)

Taking the derivatives of ξ with respect to nx, ny and nz and setting them
equal to zero defines the following system of equations:

1

N

N∑
i=1

tit
T
i n = Cn =

[
0 0 0

]T

. (8)
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The solution for n is the eigenvector associated with the smallest eigenvalue
of C which is the covariance matrix of the tangents.

The distance towards the surface is obtained as the average value of the pro-
jected distance vectors on the estimated normal, i.e

d(p, Ŝ) =
1

N

N∑
i=1

〈pi − p,n〉 = 〈ṽ,n〉 (9)

where pi is the closest point to p on curve αi. Finally, the value of the field
at point p is:

f(p) = d(p, S) · n. (10)

In order to estimate the tangent plane to a surface at some point p, at least two
non-parallel tangents are needed to compute the matrix C at p since a single
tangent does not define a plane. This condition can be verified by analyzing
the eigenvalues of matrix C: if two eigenvalues are zero, then only one tangent
(or two or more parallel tangents) exists and the estimated normal at that
point is not used. This implies that the tangent plane cannot be estimated
from parallel curves, which makes the estimate less sensitive to registration
errors (relative position of curves).

At the intersection points of noiseless and accurately positioned curves, all
tangents are coplanar, hence one eigenvalue is always equal to zero and the
tangents span a plane. Since, in our case, the surface is approximated in the
neighbourhood of the intersection points, all three eigenvalues are generally
larger than zero. Also, if the tangents are estimated from noisy data, the
three eigenvalues may have similar values in which case the tangents span
a cube and the estimate of the tangent plane is meaningless. To make sure
that the estimated tangent plane is valid, an additional verification is made
on the eigenvalues. Let e1, e2 and e3 be the three eigenvalues such that e1 <
e2 < e3. Since matrix C is normalized, the sum of the eigenvalues is always
equal to one i.e. e1 + e2 + e3 = 1 and fixed thresholds can be applied to
test eigenvalues. It was confirmed empirically, that imposing the constraints
e2 > 0.05 and e1 < 0.5e2 is enough to validate the estimated tangent plane.
Imposing these constraints simply means that the tangents used to compute
C must be approximately coplanar.

Since the size of the envelope determines how many curves influence the ma-
trix C at each voxel, its role is important in the reconstruction process: If
the envelope chosen is too small with respect to the density of the curves,
the reconstructed surface will either contain holes or it will appear as a set
of patches located around intersection points. Two examples of a surface re-
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(a) (b)

Fig. 8. Surface reconstruction using a small envelope size with respect to the den-
sity of range data. The shape of the reconstructed surface patches depends on the
weighting function. a) Example of reconstruction using unweighted matrices Ci. b)
Reconstruction using the weighting function defined in Eq. 11.

constructed with too small an envelope are shown in Figure 8. As illustrated
in Figure 9, increasing the size of the envelope can solve this problem. Never-
theless, increasing the size of the envelope also increases the execution time of
the algorithm since the field is computed for a larger number of points. More
importantly, by increasing the size of the envelope, the number of tangents
used for estimating the tangent plane increases, as well as the distance to the
curves whose tangents are used. The consequence is a loss of details on the
reconstructed surface since the least-squares estimation of the tangent plane
acts as a low-pass filter. Having these constraints in mind, choosing the size
of the envelope is thus a compromise. It is preferable to solve the problem of
sparse data by sampling the surface more densely. Since our approach aims
at interactive modeling where the reconstructed surface becomes available im-
mediately after each curve has been acquired, it is easy to spot and resample
the low-density regions during the acquisition of range data.

A single curve influences the field only at points located inside its envelope
and its influence drops to zero outside this envelope. Thus, the field computed
from Eq. 10 is discontinuous over the edges of the envelope as well as the
reconstructed surface. An example of such a reconstructed surface is shown
in Figure 9. The solution to this problem is to weight the tangents using a
continuous function of distance that drops to zero at the edge of the enve-
lope. Any decreasing, monotonic function can be used for this purpose. In our
experiments the following function proved to be useful:

ω(d) = e−d2/σ2

. (11)

The value of σ is chosen equal to 1/2ε to make sure that the value of ω
drops close to zero outside the envelope. The weighting function also influences
the shape of the reconstructed surface since it also acts as a low-pass filter
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Fig. 9. Reconstruction using an envelope size larger than the minimum distance be-
tween curves. If unweighted tangents are used for computing the field, the resulting
field is discontinuous and so will be the reconstructed surface. If the surface does
not change abruptly, the effect of discontinuity is relatively small, giving a ”patchy”
appearance to the reconstructed surface, as shown in the image on the top. The
image on the bottom shows the same surface reconstructed using the weighting
function defined in Eq. 11.

giving more importance to closer curves. As illustrated in Figure 8, the shape
of the reconstructed surface patches around intersection points is influenced
by the weighting function. This results from the constraints imposed on the
eigenvalues of matrix C.

The tangents can also be weighted in such a way to reduce influence of less-
confident data, by taking into account some uncertainty measure τ , based for
example on the angle between the curve normal and the incident measurement
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ray. After weighting with τ and ω, matrix C defined in Eq. 8 becomes

C =
1∑N

i=1 τiωi

N∑
i=1

τiωitit
T
i . (12)

3.3 Incremental reconstruction

For the reconstruction approach described above, it was assumed that all
the data has been collected prior to reconstructing the surface. If the re-
construction has to be performed online, then the field needs to be updated
incrementally by integrating a single measured curve at a time. However, the
least-squares estimate of the surface normal and, consequently, the vector field,
cannot be computed incrementally. On the other hand, matrix C computed at
each voxel p is obtained as a sum and can therefore be updated incrementally.
Let C(p) be the matrix C for the voxel p. Equation 12 can be rewritten as:

C(p) =
1∑N

i=1 τiωi

N∑
i=1

τiωiCi(p), (13)

where Ci(p) = tit
T
i . During reconstruction, a matrix C(p) is associated with

each voxel and is updated after each curve αi has been acquired by summing it
with Ci(p). Matrix Ci(p) depends only on the curve αi and is computed using
the tangent ti at the point pi on the curve that is closest to p. In addition to
the matrix C, the sum of distance vectors ṽ is kept at each voxel as well (see
Eq. 9). The value of the field f(p), defined in equations 9 and 10, is computed
only before the application of the surface using the Marching Cubes algorithm
for reconstruction or during registration.

3.4 Defining the distance and computing the vector field

So far the curves were considered as being continuous and noiseless. In prac-
tice, the measured curves are represented as sets of line segments and cor-
rupted by noise. The level of noise does not have a significant effect on the
functionality of the algorithm with respect to the surface reconstruction pro-
cess other than the quality of the reconstructed surface. The most important
effect of noise is on the registration process, specifically on the matching step.
As illustrated in Figure 15.a, the points with high noise level tend to attract
a large number of correspondences. This slows down the registration process
and makes it less accurate. To circumvent this problem, a new definition is
adopted for distance d in Eq. 3 to replace the Euclidean distance.

15



To improve the robustness of matching, the direction towards the closest point
on the line segment has to be corrected while taking into account two impor-
tant constraints: i) the distance field has to be continuous, ii) the position
of the measured 3D points should not be altered. The solution for this prob-
lem is to filter and interpolate tangents over the line segments and to define
the distance using the filtered tangents. For the sake of clarity, the distance
computation is first illustrated in 2D, the curve being contained in a plane.

A curve is considered as a linear interpolation of measured points {p1 . . .pN}
represented as a set of line segments α = {l1, . . . , lN−1} where li = pipi+1.
Except for end-points, the tangent at each measured point pi can be computed
as follows:

ti =
1

2

[
pi−1 − pi

‖pi−1 − pi‖ +
pi − pi+1

‖pi − pi+1‖ .
]

(14)

The tangents ti are filtered with a filter Φ whose size is 2N + 1:

ti =
i+N∑

k=i−N

tkΦ(k − i). (15)

For the experiments reported herein, a simple low-pass filter,

Φ(i) =




1/(2N + 1) if i ∈ [−N, . . . , N ] ,

0 otherwise
(16)

was chosen.

The distance between some point p and the curve α is computed with respect
to the closest line segment lc, i.e.

d(p, α) = d(p, lc),

lc = argmin
l∈α

d(p, l), (17)

where d denotes a distance measure. It is therefore sufficient to provide the
distance from a point to a line segment. The set of all points Π ⊂ R3 for whom
a line segment lc is the closest, is called a fundamental cell associated with
the generator line segment lc. For the purpose of surface modeling, the field
needs to be calculated only within a relatively small distance ε > 0 from the
measured curve thus limiting the size of the cell to the set of points which are
closer than ε, i.e. inside the envelope. If d is the Euclidean distance then the
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Fig. 10. Computing the distance in the direction of interpolated normals. Distance
d between the point p and the line segment p1p2 is defined as the distance between
p and the point pc whose normal nc passes through p. The distance d is computed
by finding the iso-segment q1q2 (line segment where each point is located at an
equal distance from p1p2 ) that contains the point p.

fundamental cells correspond to the cells of the Voronoi diagram for a set of
line segments.

The introduction of a new definition of distance requires the parameterisation
of a line segment p1p2 as:

l(u) = p1 + u(p2 − p1), 0 ≤ u ≤ 1. (18)

The tangents at the two end-points are then interpolated over the line segment
as:

t(u) = t1 + u(t2 − t1), 0 ≤ u ≤ 1. (19)

The normal n(u) at each point of a line segment is defined as the vector being
perpendicular to the tangent and can also be interpolated:

n(u) = n1 + u(n2 − n1), 0 ≤ u ≤ 1. (20)

Finally, the distance d between a point p and the line segment p1p2 is defined
as the distance between p and the point pc whose normal nc passes through
p. This is illustrated in Figure 10. More formally:

d(p,p1p2) = d(p, l(uc)) = e, 0 ≤ uc ≤ 1, (21)

such that

p = l(uc) + e · n(uc). (22)
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Fig. 11. Illustration of real roots in Eq. 23. Even though the two roots d1 and
d2 satisfy Eq. 23, only the root with a smaller absolute value represents a valid
distance. The other root is larger than the maximal allowed distance within the
cell. The point p is contained in the line segment q′

1q′
2 but not in q′′

1q′′
2.

According to the above definition, to obtain a closed form solution for the
distance between a point p and a line segment p1p2, we note that, if the
distance is d, then the point lies on the line segment whose end-points are
q1 = p1 + d · n1 and q2 = p2 + d · n2, as illustrated in Figure 10. This line
segment is an iso-segment whose points are all located at a distance d from the
generator line segment p1p2. The distance is found as the distance for which
the area of the triangle q1q2p is zero, i.e. that the cross-product of q1−p and
q2 − p is zero. This leads to the following equation:

(p1 + d · n1 − p)× (p2 + d · n2 − p) = 0, (23)

that reduces to the form

a + d · b + d2 · c= 0. (24)

Equation 23 is a system of three quadratic equations with a single unknown d.
Any of these equations can be used to compute d after making sure that the
chosen parameters do not vanish altogether. The chosen equation can have up
to two real roots. If the number of real roots is zero, the point p is located
outside the cell. If there is a single real root, the point is located inside the
cell and the distance is valid. If there are two real roots, the root of interest
is the one with the smallest absolute value. The second root is related to
the phenomenon of fundamental cell self-intersection (see Figures 11 and 14)
which is explained later in this section. At this point it is sufficient to mention
that the other root is larger than the maximal allowed distance within the
cell. The validity of the root can also be verified by testing whether the point
p is contained in line segment q1q2 or not (see Figure 11).
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Fig. 12. Computing the distance in the direction of interpolated normals for
non-planar curves. Before computing the distance, the tangents t1 and t2 are pro-
jected onto the plane containing p1,p2 and p. The projections t′1 and t′2 are then
used in equations 19 through 23 instead of t1 and t2.

Extending the above developments to the 3D case is straightforward. It is
sufficient to project the tangents and normals on the plane containing p1,p2

and p as illustrated in Figure 12. Projected tangents t′1 and t′2 as well as
projected normals n′

1 and n′
2 are then used in equations 19 through 23 instead

of t1 and t2.

Choosing the definition for the distance allows one to describe the shape of the
fundamental cell. To do so, note that the projected normals n′

1 and n′
2 at the

two end-points of the line segment p1p2 delimit the cell in the plane p1p2p,
(see Figures 10 and 12). Normals projected on all planes containing the line
segment p1p2 are located in the two planes perpendicular to the two tangents
(shaded in red in Figure 12 ). The cell is therefore delimited by these two
planes and by the maximal prescribed distance. In general, the fundamental
cells have a cylindrical form. An example of a fundamental cell is shown in
Figure 13.

The computation of the distance as defined in Eq. 23 requires projecting nor-
mals on the plane p1p2p. In practice projected normals are computed by
noting that they are contained in the plane p1p2p as well as in the delimiting
planes perpendicular to tangents t1 and t2. Therefore, the two normals are
given as:

n′
1 = t1 × np,

n′
2 = t2 × np, (25)
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Fig. 13. Example of a fundamental cell for a line segment p1p2. The cell is delimited
by two planes perpendicular to the tangents t1 and t2 at end-points of the line seg-
ment. The size of the cylindrical surface delimiting the cell depends on the maximal
prescribed distance (envelope size).
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n2 n3

n4

p1
p2

p3
p4

εεn1
n2
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a) b) c)

Fig. 14. Self-intersection of a fundamental cell. a) Due to noise, normals n2 and
n3 meet inside the envelope, making the distance invalid in a part (shaded region)
of the cell associated with line segment p2p3. b) Filtering the tangents (and thus
the normals) makes the intersection appear outside the envelope, thus making the
distance valid for all points within the envelope. c) Envelope of a self-intersecting
fundamental cell in 3D space.

where np is the normal on the plane p1p2p.

Noisy data and insufficiently filtered tangents can lead fundamental cells to
self-intersect as well as to intersect neighbouring cells; this is illustrated in
Figure 14a and c. The distance is not defined for these regions and should not
be calculated. There are two ways to circumvent this problem. The first way is
to increase the level of filtering of the tangents, thus making the intersections
appear outside the envelope, as illustrated in Figure 14b. For the limit case,
the tangents become parallel and the cell will never self-intersect. The second
way consists in rejecting all voxels that are not located on the right side of the
delimiting planes. If the orientation of tangents is assumed to be as shown in
Figure 12, a point p belongs to a valid region of the cell associated with line
segment p1p2 when the two following conditions are met:

20



〈p1 − p, t1〉≤ 0,

〈p2 − p,−t2〉≤ 0, (26)

since the tangents are normal to delimiting planes.

Equation 21 is valid only inside the fundamental cell of a line segment. Prior
to computing the distance to the curve at some point p, one has to find to
which cell the point p belongs. This is a tedious task that can be avoided by
inverting the process and by rather finding all voxels falling inside each cell
separately. By doing so, the complexity of field computation is linear with
respect to the number of line segments (measured points).

Computing the field for a cell reduces therefore to a simple two-step process.
First, the bounding box of a cell is computed. The two defining corners of
the bounding box can be obtained as minimum and maximum values of p1 +
ε,p1 − ε,p2 + ε,p2 − ε. Then, for all grid points located inside the bounding
box, it is verified whether they are located between the two delimiting planes
as in Eq. 26. If it is so, the distance is computed and accepted if it is smaller
than the maximum allowed distance.

a) b) c)

S1S1S1

S2S2S2

Fig. 15. The effect of noise on the matching step of registration. a) Matching with
the noisy curve (or surface) S2 using Euclidean distance. Since the noisy point in
this example is closest to S1, it attracts most of the points. b) Matching using the
distance defined in Eq. 21 with unfiltered normals (depicted as arrows). c) Matching
in the direction of filtered normals. Matched points are more evenly distributed over
S2.

The effect of choosing the distance as defined in Eq. 21 on matching in presence
of noise, is illustrated in Figure 15.b and c. Filtering the tangents, and at the
same time normals, alters the direction towards the closest point, and therefore
matching directions. As a consequence, the matched points are distributed
more evenly over the curve as well as over the reconstructed surface. It is
important to note that only tangents on the curves are filtered, the measured
3D data remaining unchanged.

The procedure for computing the field is further detailed in the pseudo-code
below. It is assumed that the normals and tangents are computed prior to
field computation.
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Data : Set of curves αi = {pi,1, . . .pi,Ni
} and tangent ti,j at each point pi,j

Initialize matrices C at all voxels to zero;
for i = 1:Number of curves do

for j = 1:Ni − 1 (number of points in the curve i) do
Compute the bounding box for the line segment pi,jpi,j+1

for all voxels pv in the bounding box do
if pv is in the fundamental cell associated with pjpj+1, (Eq. 26)
then

Compute the projected normals n′
i,j and n′

i,j+1 (Eq. 25)
Compute the distance between pv and the line segment (Eq.
23)
Compute the parameter uc such that Eq. 22 is satisfied
Compute the tangent t(uc) (Eq. 19) at the closest point pc

Update matrix C at voxel v (Eq. 13).
Update the sum of distance vectors ṽ with pc − pv (Eq. 9)

end
end

end
end

Algorithm 1: Computation of the vector field from a set of curves.

3.5 Registration using vector fields

Unlike range images, surface curves cannot be registered with each other one
pair at a time. The number of intersections between two curves depends on
the shape of the curves and is usually insufficient to compute the rigid trans-
formation needed to align them. In some cases, for instance in registering
surface profiles, such an approach would simply make the curves overlap. Fur-
thermore, registering all curves simultaneously has O(N2) complexity with
respect to the number of curves and quickly becomes limiting due to the large
number of curves that is needed to reconstruct an object. An elegant and
efficient way to circumvent these problems is to register curves to the recon-
structed model. Since the vector field contains all the information needed for
matching, the computational complexity remains linear with respect to the
number of curves.

Once the vector field is computed for a reasonable number of curves, registering
a curve becomes straightforward: for a control point p = [x, y, z]T on a curve,
the corresponding point pc on the reconstructed surface is given as the value
of the vector field at the closest voxel pv to the point p:

pc = p + f(pv), (27)
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Fig. 16. Matching a point p using the closest voxel centre pv. The closest point pc

is obtained using Eq. 29.

This closest voxel pv is computed as

pv = 	p
 = [	x/∆ + 0.5
, 	y/∆ + 0.5
, 	z/∆ + 0.5
]T , (28)

where ∆ is the voxel size (see Figure 16). Clearly, the voxel size introduces
an error that can be reduced by linearly interpolating the value of the field at
the voxel pv, i.e.

pc = p + f(pv) +
f(pv) < f(pv), (p− pv) >

‖f(pv)‖2
. (29)

This correction is illustrated in Figure 16. Note that since it is a linear inter-
polation, the closest point will in general not be located exactly on the surface.
However, as demonstrated in the next section, the error is small.

The curves can be registered to a completely or partially reconstructed model,
thus providing two strategies for registration: simultaneous and incremental.
For simultaneous registration, the model is first reconstructed from all avail-
able curves. That is, the vector field is computed using all curves. Then, each
curve is registered to this model, one at a time. Finally, the vector field is
recomputed and the whole procedure is repeated until no further improve-
ment is possible. In the case of incremental registration, an initial model is
created from a relatively small number of curves. Then, the next curves are
first registered and then integrated into the model.

As explained earlier, the field is updated by updating matrix C (see Eq. 12)
at each voxel that is located inside the envelope of at least one curve. Even
though the field is represented indirectly through the matrix C, in the pseudo-
code below we will refer to it as the vector field f . Two strategies are described
in the following pseudo-code.
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Initialize field f to zero;
for i = 1:M (number of curves used to create an initial model) do

Compute the field fi for curve i and add it to f ;

end
i←M + 1;
repeat

repeat
Find the matching points for the control points of curve i;
Compute and apply the rigid transformation on curve i;

until until convergence;
Compute the field fi for curve i and add it to f ;
i← i + 1;

until no curves left ;

Algorithm 2: Incremental registration

repeat
Initialize field f to zero;
for i = 1:Number of curves do

Compute the field fi for curve i and add it to f ;

end
for i = 1:Number of curves do

repeat
Find the matching points for the control points of curve i;
Compute and apply the rigid transformation on curve i;

until until convergence;

end
until until convergence;

Algorithm 3: Simultaneous Registration
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(a) (b) (c) (d) (e)(e)

Fig. 17. Light patterns used in experiments.

(a) (b)

Fig. 18. Reconstruction from real range data. a) Raw range data (cross-hair patterns
measured on the surface of the model). b) Reconstructed surface.

4 Results

The quality of the modeling algorithm has been assessed by experimenting
under varying levels of noise, registration errors, and different laser patterns
using both synthetic and real range data. The results obtained in these exper-
iments are presented in this section.

4.1 Reconstruction experiments

An example of reconstruction from multiple curves, using real range data is
shown in Figure 18b. The data for this model consists of 600 curves using
the 3D sensor described in [7] which acquires surface curves by measuring
distances to a cross-hair laser pattern (Fig. 17a) projected on the surface of
an object.

Figure 19 depicts an example of incremental reconstruction using a set of
circular light patterns. The figure also illustrates another important aspect
of reconstruction: surface filtering by integrating redundant data. When the
curves are well registered, adding more curves reduces the variance of noise
while preserving fine details. To further illustrate this concept, the reconstruc-
tion error has been measured as a function of the number of integrated curves
(see Figure 20). As a measure of reconstruction error we adopted the distance
of each vertex of the reconstructed surface to the closest point on the reference

25



Fig. 19. Filtering by averaging redundant data. From left to right: reconstruction
from 10, 120 and 240 curves. Bottom row: left eye detail of the reconstructed model.
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Fig. 20. Average error of the reconstructed surface as a function of the number of
curves.

model. The reference model of the head (the same model used to generate syn-
thetic range data) is a highly accurate model measured with a range sensor
whose precision is 25µm.

The most important parameter for reconstruction is the size of the envelope
(ε). On the one hand, since the reconstruction performs averaging in a neigh-
bourhood whose size is equal to ε, the envelope should be as small as possible
to prevent a loss of fine details. Furthermore, increasing the size of the enve-
lope slows down the algorithm since the number of points at which the field is
computed grows as a power of two with the size of the envelope. On the other
hand, too small an envelope results in poor performance in the presence of
noise and registration errors. In particular, if the envelope is smaller than the
level of noise (especially outliers), small isolated patches appear around the
reconstructed surface, as illustrated in Figure 21b. A solution to this problem
is to increase the size of the envelope (Figure 21c), but with the aforemen-
tioned performance penalty and detail loss. Alternatively, the small patches
can be removed easily in a post-processing step since they are not connected
to the main surface.
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(a) (b) (c)

Fig. 21. Influence of high level of noise and outliers on the reconstructed surface
(simulation). a) Noisy range data with 1% outliers. b) If the level of noise is larger
than the size of the envelope, small isolated patches appear around the surface. c)
Increasing the size of the envelope removes the isolated patches.
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Fig. 22. Average displacement of points as a function of the number of iterations.
a) Inner loop of the registration algorithm (Algorithm 3). b) Evolution of the inner
loop convergence during 5 iterations of the outer loop.

4.2 Registration experiments

As shown in Figure 22, the registration step of the algorithm converges quickly
and remains stable over a large number (300) of iterations, (see Figure 22a).
Convergence has been tested by measuring the average displacement of circular
curves (17c) as a function of the number of iterations. Other patterns behave
similarly. From algorithm 3, the inner loop converges in less than 30 iterations
on average. To visualize the effect of the field update in the outer loop, the
convergence curves in a) are drawn for three iterations of the outer loop. One
may observe the decrease in the initial state (Figure 22b).

The quality of registration has been assessed by registering synthetic curves
with varying levels of noise, outliers and initial registration errors. For that
purpose, 6 noisy synthetic data sets have been generated using the model of a
head and for 6 curvilinear patterns. Registration errors were introduced by per-
turbing the pose rotation angles randomly within [−δr, δr] and the translation
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0.00 0.36 0.72 1.08 1.44

Fig. 23. Colour encoded distribution of residual registration errors (mm). Curves on
the border of the scanned area are only partially matched and therefore unreliably
registered. Only three curves have a registration error larger than 1mm.

within [−δt, δt]. Noise was simulated by translating each point in the direction
of the laser projector for a random distance chosen within [−δn, δn] while the
outliers were generated by randomly choosing 1% of the total number of points
and displacing them for a random distance chosen within [−δo, δo]. Random
variables follow uniform distributions. The size of the model is approximately
20 cm while the size of a voxel is 1 mm.

The results summarized in Figure 24 show the performance of the registration
algorithm as a function of the initial registration errors and the level of noise.
Residual registration error has been obtained as the distance between the
registered points and their corresponding closest points on the reference model.
Prior to computing residual errors, all curves as a whole, i.e. as a rigid set,
were registered to the reference model using an ICP algorithm.

The average residual error as well as the variance slowly increase with noise
and initial registration errors. An average error of 0.25 mm or below is suffi-
ciently small to yield a reconstructed surface without visible artefacts. More
importantly the plots show that the performance of the algorithm gracefully
degrades as the level of noise increases rather than to collapse after a certain
level of noise.

The large maximum residual error in Figure 24a indicates that some curves
were not well registered. On the other hand, small variance and small average
error indicate that the number of curves having this high error is small. As
illustrated in Figure 23 the curves with large errors are located on the bound-
ary of the scanned area where the density of curves is low. In those regions the
field could not be computed so that curves are only partially matched against
the reconstructed surface, thus giving rise to an unreliable registration. Among
450 curves, there were only three curves with an error higher than 1mm. This
problem can be solved by rejecting curves that are partially matched.

Finally, it should be noted that all laser patterns gave similar results. How-
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Fig. 24. Residual registration errors as a function of initial displacements of curves
and the level of noise. The values δr, δt, δn and δo (see the text for their meaning)
are related to the X-axis index σ as : δr = σ(deg), δt = σ(mm), δn = σ(mm) and
δo = 5σ(mm). The thick black line indicates initial registration error.

ever, as shown in Figures 24b and c, patterns having the most uniform and
dense distribution of points perform slightly better. A thorough analysis of
the different patterns is beyond the scope of this paper.

Another way to evaluate the performance of the registration component of
the algorithm is to compute the distance between corrected positions of all
points and their exact positions. This is however an incorrect measure since
the curves can slide over the surface during registration, thus increasing the
distance to the exact positions, but without significantly degrading the final
result. For example, a curve measured in a planar region of the surface can
be translated and rotated arbitrarily in the same plane without increasing the
distance to the surface. This ”sliding” effect is illustrated in Figure 25 where
the two measures (distance to exact position of each point, and the distance
to the closest point on the reference model) are compared. As expected, the
distance to the exact positions is higher in relatively flat regions of the surface.

Registering real range data of the head model obtained with the sensor de-
scribed in [7] data leads to similar results. Initial average registration errors
were 0.35 mm with a variance of 0.09 mm2. After registration, those errors
were reduced to 0.26 mm (average) and 0.07 mm2 (variance), which is in con-
formity with results obtained with synthetic data. The residual registration
error was evaluated using the reference model.

The last experiment shows the performance of the implemented algorithm. The
incremental reconstruction from curves having 250 points each is performed in
real-time at the frame rate of the sensor (30fps). Thereafter, the registration
algorithm is run. Execution time of the inner loop of the registration algorithm
3 for 450 curves is less than 2 seconds in average . Field recomputation takes
more time depending on the size of the envelope: 9 sec for ε = 3 mm and 23
sec for ε = 5 mm. The total registration and reconstruction time is 55 sec for
ε = 3 mm and 140 sec for ε = 5 mm. In all cases the volume grid size was
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(a) (b)

Fig. 25. Measuring the residual registration errors. a) The residual registration error
(colour encoded, brighter colour indicates larger error) measured as the distance
between the corrected positions of points and their exact position. The regions of
larger errors are featureless regions of the surface, forehead and cheeks. b) The
residual registration error measured as the distance towards the closest point on
the reference surface. The errors are uniformly distributed over the surface. Large
errors are concentrated in low measurement density regions.

200× 200× 200. The execution times were obtained using a PC with 1.2GHz
AMD Athlon processor.

5 Conclusion

A volumetric approach for modeling from curves measured on the surface of
a free-form object is proposed. Algorithms for both registration and recon-
struction are of linear complexity with respect to the number of curves. The
reconstruction is incremental thus allowing integration of a single curve at a
time. In addition, the reconstruction is order independent. No intermediate
surface representation is required: an implicit volumetric representation of the
surface is created directly from the curves. Any curvilinear light pattern can
be used for this purpose as long as the resulting curves intersect to provide
redundant data for registration and reconstruction. Experimental results on
both real and synthetic data provide evidence that the algorithm is robust
with respect to the noise and registration errors.

Several extensions with respect to efficiency and generality of the presented
algorithms and vector field object representation can be suggested. First, the
surface reconstruction algorithm from curves, along with already proposed
algorithms for modeling from unorganized sets of points and range images, al-
lows the reconstruction from range data regardless of its dimensionality. How-
ever, volumetric representations of different range data types are not compat-
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ible; this means that the created volumetric representation, say, from range
images cannot be updated with a set of curves or a set of points and vice
versa. Unifying the volumetric representation for all types of range data would
greatly simplify the modeling process since it would allow mixing of range data
acquired with different range sensors. For example, an object could be scanned
using a range image sensor that provides 3D images while filling the hard to
reach areas with a hand-held sensor that acquires surface curves.

Another important aspect of a modeling algorithm is the efficient use of com-
puter resources. With respect to computational complexity, the presented al-
gorithm is very efficient, having linear complexity, but the price to pay is a
very inefficient use of computer memory. Even though already proposed com-
pression schemes such as run length encoding or hash tables can be used to
reduce memory requirements, it is still not as efficient as surface based rep-
resentations since these methods encode only occupancy of voxels regardless
of the geometry of the object. We do believe that compression of volumetric
data based on the geometry of the object is possible and it will be, along with
the aforementioned problem of unified representation, the object of our future
work.
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