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Computer Vision and Systems Laboratory

Laval University, Québec, Canada
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Abstract

This paper presents a system for 3D reconstruction us-
ing a camera combined with an inertial sensor. The sys-
tem mainly exploits the orientation obtained from the iner-
tial sensor in order to accelerate and improve the matching
process between wide baseline images. The orientation fur-
ther contributes to incremental 3D reconstruction of a set of
feature points from linear equation systems. The processing
can be performed online while using consecutive groups of
three images overlapping each other. Classic or incremen-
tal bundle adjustment is applied to improve the quality of
the model. Test validation has been performed on object
and camera centric sequences.

1 Introduction

3D Reconstruction from multiple images has been a
widely studied field in computer vision over the last twenty
years. This process is also known as shape from motion
(SfM) and relies on basic photogrammetry principles for
obtaining 3D information from a set of 2D images. The
relative positions of a set of physical points can be cal-
culated up to a scale factor if their projections are iden-
tified and matched in different calibrated images. Cali-
brated means that the positions of the cameras as well as
their intrinsic parameters are known. Usually, calibrating
the images is made part of the 3D reconstruction problem
or at least, when intrinsic parameters are known and fixed,
the positions of the cameras are computed. Although re-
cent works have focused more on 3D reconstruction from
long video sequences, either closed or open, and very large
sets of images, one fundamental problem is still to identify
matches between images. Several systems have been pro-
posed [1, 2, 3, 4, 5]; usually either non-linear optimization
is applied or constraints are imposed to the projection model
or movement of the camera between images.

In this paper, we investigate the use of an inertial sensor
attached to a camera for 3D reconstruction over a sequence

of images. It is assumed that the intrinsic parameters of the
camera are known and fixed. A few studies have been con-
ducted on this combination in the fields of mobile robotics
and augmented reality [6, 7, 8, 9]. Our work is mostly in-
spired by the more recent research of Okatani and Deguchi
who demonstrated in [10] that the orientation provided by
an inertial sensor could be efficiently used to calculate the
translation between two camera positions. This paper goes
further by exploiting this combination to estimate the set of
translations between frames in a sequence of images. Fol-
lowing a similar strategy adopted in [11, 12], triplets of im-
ages are used as sub-sequences and are linked together in a
chain (1-2-3, 2-3-4, 3-4-5, etc.) in order to produce a 3D
model from the entire sequence, as new images are cap-
tured.

The contribution here is to build on [10] for develop-
ing a 3D reconstruction system that accepts as input triplets
of images taken freely in space. This makes it possible to
develop and to apply a linear type of sequential 3D recon-
struction algorithm: the positions of the camera can be es-
timated by solving systems of linear equations followed by
the computation of the 3D points using simple triangulation.
Moreover, since an estimate of the camera relative orienta-
tion is provided, feature point matching is simplified. The
3D reconstruction process can then be computed online and
the 3D model is updated incrementally as new images are
taken. It is our aim to avoid the necessity of processing
the entire sequence offline. A system for 3D reconstruction
over a sequence of images using an inertial sensor has al-
ready been introduced in [13]. However, that system relies
on tracked features over a video sequence. The downside of
this is that tracking usually breaks down too often so 3D re-
construction over long sequences cannot be easily achieved.
Here, we aim to match snapshot images with arbitrary mo-
tion - wide baseline.

The development of inertial measurement units (IMUs)
has been thrusted up by the needs in the automotive,
aerospace and military domains. In recent years, those sen-
sors have become smaller and cheaper so it is now possi-
ble to integrate them alongside the camera [6, 9]. It is also



worth noting that new sophisticated optical gyroscopes are
already available. Their high accuracy and low drift will
make them excellent devices when they will be more acces-
sible.

Section 2 describes how the matching process between
image pairs and triplets benefit from a rotation estimate.
The 3D model reconstruction algorithm is described in sec-
tion 3. The system setup is described in Section 4. It pre-
cedes reconstruction results where both object and environ-
ment centric sequences have been modeled.

2 Feature matching

2.1 Feature detection

The first stage of the matching process is the selection of
feature points in each image. It is expected that the selected
feature points correspond to physical points in the scene,
that are re-observable from a different viewpoint. In each
image, these points must have a signature neighbourhood
that characterizes them so that they can be discriminated
from other selected feature points. In this paper, the set of
points that are compositing the 3D model is limited to the
matched feature points between images. This is referred to
as a sparse model as opposed to obtaining a dense set of
points.

Edge contour points with high curvature in image,
namely corners, are good feature candidates. They are even
better when their neighbourhood depicts discriminative in-
formation with respect to other selected corners. Based on
the structure tensor, the well known Harris corner detector
is used here to select a set of features in each image. In an
image, the neighbourhood region of a corner can be repre-
sented by more or less sophisticated descriptors [14]. We
use a simple descriptor consisting of the local image patch
around the detected corner. However, the corners are local-
ized at subpixel resolution using a variation of the original
Forstner’s operator [15].

In the following expression,

H(x, y) = Det(J)− φTrace(J)2, (1)

Det(J) is the determinant of J , the gradient autocorrela-
tion matrix, and φ is a constant parameter fixed here at 0.04.
H(x, y) is an indicator of the presence of a corner. When
the entire image has been processed, local maximums of
H(x, y) are registered as feature points. Typically, the max-
imum number of feature points is limited to 500 per image.

2.2 Matching features

A good feature point in an image represents the projec-
tion of a unique physical point. If more than one image is

captured of that same physical point then one must match
its projections in the images. The set of all those corre-
spondences established between images will ultimately lead
to the 3D positions of the physical points as well as to the
poses of the camera.

2.2.1 Between image pairs

A first set of matched points is obtained by evaluating the
similarity between the image regions surrounding feature
points. The normalized correlation score is calculated for
each possible pair, considering the neighborhood W (typ-
ically 5 × 5) centered at each detected feature point. All
those scores are cumulated in a correlation matrix as poten-
tial matches if:

1. The score is higher than a predetermined similarity
threshold (typically 0.7).

2. The score is the highest in its associated row and col-
umn (symmetry constraint).

Every pair that meets with these two conditions com-
poses the set of initial matches. Nevertheless, the similarity
constraint is still generally insufficient since false matches
are typically found in the retained candidates. Although im-
proved descriptors may limit their numbers, there is still no
guarantee of uniqueness. Imposing the epipolar constraint
during the matching process further restricts the number of
matches. It imposes the correspondent of a given feature
point in one image to stay along a line in the second image.
To obtain the point-line relationship between two images,
one will estimate the fundamental matrix F .

Several linear and non-linear optimization methods have
been introduced in order to estimate F from two sets of
matched points between images [2]. These methods require
a minimum number of 7 matches and are often sensitive to
noise. This may also lead to a very large number of combi-
nations to explore even after applying a similarity threshold.
Interestingly, if one takes advantage of the orientation pro-
vided by an inertial sensor along with the intrinsic camera
parameters, the minimum number of matches then drops to
2. Actually, the only unknown is now the translation vec-
tor T3×1 that is computed up to a scale factor between two
camera positions. Then, since each matched feature point
provides one equation, 2 points suffice [10]. F can then be
estimated through the essential matrix E which expands to
([T ]XR). [T ]X denotes the (3× 3) skew symmetric matrix
encoding the translation,

[T ]X =

 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 , (2)

so that [T ]Xm = t×m for any 3× 1 vectors t and m. The
matrix R is the rotation matrix. The fundamental matrix can



be developed as follows

F = A−T ([T ]XR)A−1, (3)

where A is the 3×3 matrix of the intrinsics. It is worth not-
ing that this model equation subsumes that nonlinear distor-
tion was removed from the image beforehand. The small
number of matches is more suitable for a RANSAC type al-
gorithm [16] that is used to estimate F between every image
pair. Furthermore since its rank is intrinsically 2, the esti-
mate is more stable and robust (in wide sense) even in the
case of a planar scene. Actually, R is of full rank and [T ]X
is of rank 2. All points that are coherent with this estimate
are then processed to obtain the final least square estimate
of F .

We have now obtained the rotation and translation be-
tween both cameras. The translation is however only known
up to a scale factor and we will have to impose a single fac-
tor for the whole sequence of images.

2.2.2 Between image triplets

Even after imposing the epipolar constraint, matching be-
tween two images is still relatively difficult since the corre-
spondent of a point can be found anywhere along the epipo-
lar line in the second image. That is why we are using a
third image to impose an additional constraint to the match-
ing process and thus reduce the number of false matches.
To do so, the fundamental matrix is estimated for each pair
(1-2, 2-3 and 1-3) before obtaining an estimate of the trifo-
cal tensor [17]. A match between 2 images is validated by
computing its similarity factor with the corresponding point
in the third image, which is at the intersection of both epipo-
lar lines estimated from the two matched points. The triple
matches are further validated using the compound scale of
the translation T13 between the first and the third image.
This will be discussed in more detail in section 3.1.

3 3D model construction

The general principle of a structure from motion algo-
rithm is applied. By knowing the position of each snap-
shot, one can triangulate every single matched feature point
and estimate its position in 3D space. All we are missing
is a coherent scale factor for the translation between im-
ages. Actually, this estimation was performed in a different
coordinate system for each image pair so we must trans-
pose them into a common system. For that purpose, one
approach consists in processing the sequence by triplets of
images that overlap in the following way [11]: 1-2-3, 2-3-4,
3-4-5, etc. Every single triplet is thus related to the previous
one by a common rotation and translation. So by processing
every triplet one after the other, one can relate every camera
position to the coordinate system of the first triplet in the

sequence. The downside of this approach is that a certain
number of physical points have to be seen in 3 consecutive
images. This fact has to be taken into account when collect-
ing images.

3.1 A single triplet of images

3.1.1 Orientation

Since the IMU provides an orientation with respect to an
intrinsic reference, the orientation of each snapshot can be
obtained by compositing the instantaneous rotation matrix
with the inverse of the rotation matrix at the first position in
the sequence. That leads to the rotation matrix,

R1i = RiR
T
1 , (4)

where Ri is the orientation obtained from the IMU, that is
associated with image i for i = 1, 2, 3 of the triplet and R1i

is the relative orientation between images i and 1.

3.1.2 Translation

Since the translation vector obtained between each pair of
images is known up to a scale factor, we must relate the third
image to the first image so that all three images share the
same coordinate system. In order to do so, we use the fea-
ture points identified and matched in the 3 images. Then, we
estimate the translation T13 that minimizes, in the third im-
age, the projection error of 3D points X triangulated from
the first two images. The equation for the projection is u

v
w

 =

 α 0 u0

0 β v0

0 0 1

 (X ′ − T13), (5)

where

X ′ = R13X. (6)

In Equation 5, α, β and (u0, v0) are respectively the in-
trinsic scale factors and the principal point. These values are
the intrinsic parameters of matrix A. Equation 5 can then be
used to obtain 2 linear equations in the form MT13 = b,

x =
u

w
⇔


α
0
u0

−x


T

T13 = αX ′
x − xX ′

z + u0X
′
z (7)

y =
v

w
⇔


0
β
v0

−y


T

T13 = βX ′
y − yX ′

z + v0X
′
z (8)



where (x, y) is the corresponding feature point in the third
image. Since the translation vector T13 holds 3 degrees of
freedom, a minimum of two matches are necessary. Again,
a RANSAC [16] type algorithm is used to find a good esti-
mate.

3.2 A sequence of overlapping image
triplets

The orientation of any image snapshot in the sequence is
estimated using Equation 4. For computing the translation,
we need to transform the current triplet of images into the
coordinate system of the first triplet in the sequence. For
example, in a sequence of 4 images, we will link the second
triplet (images 2-3-4) to the first triplet (images 1-2-3) with-
out imposing a point to be viewed in the four images. In or-
der to do so, a similar procedure to the one described in sec-
tion 3.1 is applied. However, for triangulating the 3D points
X, we use the computed translations T12 and T13 from the
previous triplet (in this example triplet 1) instead of using
the relative position of the first two images in the new triplet
(in this example images 2 and 3). By doing so, the triangu-
lation of the 3D points is computed in the same coordinate
system as that of the previous triplet, which is related to the
first image of the sequence. The translation associated with
image 4 is then obtained in the same coordinate system, that
is T14. Applying this procedure incrementally, one can link
every single new image to the first image’s coordinate sys-
tem.

3.3 3D model reconstruction

The structure of the 3D model representation is image
based. This approach means that the list of observed fea-
tures are linked through consecutive image triplets. A dy-
namic array is used for that purpose; it evolves as new im-
ages come in. The array is first initialized with matches
found in the first triplet. It is then updated for any new input
image by comparing new matches with those related to the
last image in the array. A physical point can thus be seen in
more than 3 consecutive images. However, the model struc-
ture does not allow any physical point that would disappear
and reappear later on in the sequence, to be identified per
se without reprocessing the list. When that situation occurs,
we simply create a new 3D point identity that will be located
nearly at the same position. The position and orientation of
each new image are estimated as soon as they come in, so
the model is updated incrementally by simply triangulating
the matches found in the dynamic array. It is also possible
to optimize the 3D model using a bundle adjustment after
each new image or at the end of the entire sequence.

4 Experimental setup

For performing the experiments, a webcam (logitech
QuickCam) was coupled with a 3DM-G inertial sensor from
Microstrain (see Figure 1). This sensor is built on micro
electro mechanical sensor (MEMS) technology to produce
angle sensors with both static and dynamic response. The
3DM-G sensor estimates the orientation at rest by combin-
ing the gravity vector read from three accelerometers with
the magnetic north measured by three embedded magne-
tometers. The third vector is obtained by applying the cross-
product of the two previous vectors. This provides an abso-
lute and precise orientation within the earth referential over
a long period of time. These data are combined with the
readings of three gyroscopes by going through a set of in-
ternal filters. Rapid motions can then be detected from the
gyroscope readings while the orientation is corrected over
a long period of time by the accelerometers and the mag-
netometers. Table 4 shows the standard deviation of the
orientation over a period of 20 seconds with the sensor be-
ing at rest. A dynamic test was also conducted for verifying
the precision of the orientation in motion. To do so, the unit
was positioned in space, moved to a random motion and fi-
nally returned to the same starting position. The result can
be seen in Figure 2 where the pitch, yaw and roll angles are
plotted along time.

Figure 1. Experimental setup: camera and
IMU (below the platform).

Angle Std Dev.(◦)
Pitch 0.0541
Yaw 0.0261
Roll 0.1085

Table 1. Standard deviation of the orientation
of the sensor at rest (test performed over 20
seconds).

The camera intrinsic parameters have also to be esti-
mated using a standard camera calibration approach [18].



Figure 2. Dynamic test of the IMU. Roll, pitch
and yaw evolution curves.

The projection model includes two terms for radial distor-
tion. All image feature points are corrected (undistorted)
before estimating fundamental matrices. The orientation
transformation between the IMU and the camera has also
been estimated in order to apply the rotation with respect to
a common axis for both the IMU and the camera. For that
purpose, we use the estimated orientations of the camera
during the camera calibration process. Actually, the cali-
bration software provides the pose of the camera (the ex-
trinsics) with respect to the calibration target at each posi-
tion. The orientation provided by the IMU, Rsensi, is also
recorded at each of those ith positions. The equation link-
ing the orientations of the camera to those of the IMU, is

Rcamij = RscRsensjR
T
sensiR

T
sc = RscRsensijR

T
sc (9)

where Rcamij is the rotation matrix linking two poses i and
j of the camera and the rotation Rsc links the orientations
of the IMU and the camera. In the equation, the notation
Rsensij is used to describe the relative rotation between two
poses of the IMU. The estimation of Rsc requires a mini-
mum of 2 poses of the camera and at least one 3D point of
the calibration target. From Equation 9, a new equation can
be built for each 3D point as follows

RcamijX = (RscRsensiR
T
sensjR

T
sc)X + e. (10)

Using non-linear optimization, Rsc can then be estimated
by minimizing the squared error (e2)

e2 = ((RscRsens1R
T
sens1R

T
sc)X −Rcam12X)2. (11)

5 Results

5.1 Stabilizing the fundamental matrix es-
timate

First we demonstrate that the system efficiently stabilizes
the estimate of the fundamental matrix even in the case of a

Figure 3. Top: epipolar lines obtained when
exploiting the IMU. Bottom: epipolar lines ob-
tained without using the IMU.

planar scene. Actually, in this case the mapping is described
by a homography between both images. Following the de-
velopment in section 2.2, the addition of the inertial sensor
automatically constrains the estimated matrix to be of rank
2. It is thus more stable and robust to noise. This avoids
discrimating between the two cases using numerical analy-
sis. The result shown in Figure 3 depicts a typical case for
a planar scene. While both top images depict the epipolar
lines estimated with the orientation from the inertial sensor,
the two images at the bottom show the case where only im-
age information is considered. In this latter case, we can
see that the epipolar lines are much less coherent with the
camera displacement which was a left to right motion. In
recent years, more robust methods have been developed for
estimating fundamental matrices. The rank of the matrices
can be reinforced or assessed numerically. However, using
the IMU to help recover F makes the process more efficient.
This is particularly interesting when modeling scenes with
planar sections such as floor and walls.

5.2 Some examples of 3D reconstruction

In this section, models of object and environment cen-
tric are reconstructed. In each case, the entire sequence has
been incrementally processed frame by frame. For each se-
quence, the output model includes the computed camera po-
sitions as well as the set of observed 3D points.

5.2.1 Object centric modeling

The modelled object is a textured cylinder box. The draw-
ing on the box makes it possible to easily extract feature
points all around the object. The entire sequence is com-
posed of 37 images. Four of them are shown in Figure 4.



Figure 4. Images 1, 16, 28 and 37 of the cylin-
der box sequence.

Figure 5. 3D Reconstruction (2937 points) of
the cylinder without non-linear optimization
(squared pixel error: 3.76).

A top view of the model obtained at the end of the acqui-
sition is seen in Figure 5. It took less than one second per
image to build the model on a 2.4 GHz Pentium IV. It can
be seen that the cylinder form is perceptible, but that it does
not close well. This highlights the effect of the accumulated
error on the camera position over the sequence. Moreover,
if a position in the sequence has been estimated more or
less precisely due to a more important error on the orien-
tation provided by the sensor or due to a low amount of
matches, then all following positions will be affected. This
is a characteristic of incremental modeling approaches. An-
other cause of error is the inability of the system to manage
physical points previously tracked and then lost during the
sequence. To improve the model, it can be optimized by us-
ing a bundle adjustment [19]. The projection error is then
reduced to 2.03 squared pixel and, as seen in Figure 6, the
cylinder box model greatly improves. It is also possible to
improve the model by applying the bundle adjustment after
each new image. Various strategies can be adopted to im-

Figure 6. 3D Reconstruction (2937 points)
of the cylinder with non-linear optimization
(squared pixel error: 2.03).

prove computation efficiency such as limiting the number
of images. We discuss the strategy adopted in section 5.3.
The result shown in Figure 10 shows the final model after
applying incremental bundle adjustment.

5.2.2 Environment centric modeling

Figure 7. Images 1, 15, 25 and 38 of the room
sequence.

The environment to be reconstructed here is a bedroom
where many feature points can be extracted for the purpose
of modeling. As opposed to the case of an object, the cam-
era positions are enclosed within the scene and aim towards
the exterior. The entire sequence is composed of 38 images.
Four images of the sequence are shown in Figure 7. The
final model obtained after direct incremental modeling can
be seen in Figure 8. The required processing time was com-
parable to the previous case. It was a little bit higher than
one second per frame since for this model, the number of
points is larger. The behaviour of the system is similar to
the previous case. After applying a bundle adjustment to



the model, the projection error reduces from 3.13 to 1.72
squared pixels. The result can be seen in Figure 9.

Figure 8. 3D Reconstruction (3261 points)
of the room without non-linear optimization
(squared pixel error: 3.13).

Figure 9. 3D Reconstruction (3261 points)
of the room with non-linear optimization
(squared pixel error: 1.72).

5.3 Incremental bundle adjustment

An incremental bundle adjustment has also been imple-
mented to help reduce the accumulated error through the
sequence. To do so, a bundle adjustment is first applied to
the first three images. Then, for every following image, only
the pose is optimized. This process was tested with both the
cylinder and the room sequences. The results are shown in
Figure 10 and Figure 11 respectively. Interestingly, the error
is comparable to the error after applying the global bundle
adjustment. It converges to 2.17 and 1.72 squared pixels
respectively. The total required processing times increased
slightly for both sequences (46.03 and 39.03 seconds).

Figure 10. 3D Reconstruction (2856 points) of
the cylinder with the incremental bundle ad-
justement (squared pixel error: 2.17).

Figure 11. 3D Reconstruction (3621 points)
of the room with the incremental bundle ad-
justement (squared pixel error: 1.72).

6 Conclusion

We have shown how an inertial sensor can improve the
efficiency of matching and contribute to camera motion es-
timation and 3D recovery of feature points. This is accom-
plished by reducing the minimal number of points to match
as well as by making the system to be solved, linear and
stable even in the presence of planar sections. In a sequence
with wide baseline snapshot images, matching and camera
motion were performed incrementally by triplets. However,
it is clear that this type of sensor must be complemented
by vision - photogrammetry - measurements to improve the
model quality over the whole sequence. Actually, a standard
deviation of one tenth of a degree leads to significant accu-
mulation of error that was compensated for by using bundle



adjustment techniques, in their classic or incremental ver-
sions. Remarkably, inertial sensors have not been widely
used in computer vision systems yet. As new technologies
become accessible, new 3D modeling methods should be
developed.
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