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Figure 1. Discovered object parts at selected frames of video sequence C (see Figure 9 for open-loop
segmentation).

Abstract

This paper addresses the fundamental problem of auto-
matically discovering an unknown moving deformable ob-
ject in a monocular video sequence. No prior model of the
object is used; it is only assumed that the object is com-
posed of a set of apparently rigid parts that are not nec-
essarily visible simultaneously, making it possible to cir-
cumvent the typical constraint of model initialization. A
set of rigid parts describing the object is incrementally ex-
tracted in a modeling-tracking loop with reinforced mem-
ory. In this framework, low-level segmentation is consid-
ered as a necessary but non reliable process that helps ini-
tiating hypotheses. Motion-based layer segmentation from
feature points and edges is applied only when and where no
modeled parts can be tracked. Using the quantity of mo-
tion measure, it is further shown how to deal with temporal
scale. The interest for this approach in applications such
as human tracking is demonstrated for a set of various se-
quences including a rapidly evolving shape.

1. Introduction

Tracking of deformable objects in video sequences is
a challenging computer vision problem. Model-based ap-
proaches to this problem require the construction of a model

and its initialization [8]. In practice, models are often hand-
crafted when object types are known a priori and initial-
ization, when not performed manually, relies on strong hy-
potheses concerning the initial pose of the object. Once the
model is initialized, tracking may be conducted in several
ways [6, 12].

In this paper, we address the problem of discovering the
parts of a target object without making any assumption on
the topology of its model. The number of parts and their
shapes are initially unknown. They are learned (discovered)
in an incremental and continuous processing of video se-
quence images. The system is simply initialized with a sin-
gle part corresponding to the initial image foreground. Parts
are then extracted through a motion-based layer segmenta-
tion, but segmentation is only activated locally when cur-
rent parts can no longer be tracked. Hence new sets of parts
(models) are dynamically created and may coexist during
tracking. While re-observed models are reinforced, those
models that have not been tracked for a long period of time
are eventually forgotten.

For example, Figure 1 illustrates an application of the
approach on a rapidly evolving shape. A human is initially
in a squat position before raising himself and waving his
arms. The system starts with the foreground area where
segmenting a human body using existing model-based ap-
proaches would be almost impossible. As soon as the first
arm starts to rise, the system dynamically discovers a sec-
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ond part. Then, when the whole body starts to move, the
main part is reconsidered (re-segmented) several times to
produce a final model in 6 parts at the end of the sequence.

Since no a priori model is assumed, the approach de-
scribed hereafter is applicable to the motion analysis of any
moving deformable object, including the motion of human
bodies. It is assumed that deformable objects are composed
of rigid parts whereby a deformation refers to a relative dis-
placement between parts. This type of object encompasses
but is not limited to articulated objects. For human motion,
the idea is to stay away from strong hypotheses like stand-
ing pedestrians, and to allow the tracking of people carry-
ing objects. Our main current restriction is that motion, to
be trackable and stabilized, should be mostly 2D, that is the
apparent shape (projected aspect in images) of rigid parts
should not change too much during motion.

Related work includes offline approaches, where a video
sequence is processed as a whole [5], as opposed to our on-
line approach. In this case, an optimal model is extracted
from the analysis of the complete set of images of a volume
sequence. In [15], 2D rigid parts are learned sequentially
from the video sequence, starting with the background, and
optimized using EM in a layer-based framework. Tracking
allows for 2D transformation of known parts and is used in
order to accelerate the search of new parts. Another rele-
vant approach is used in [10], where a model including ar-
ticulations is first segmented into piecewise rigid segments
and assembled, then tracked in subsequent images. How-
ever, all parts of the model must be visible and in motion in
the keyframes selected for segmentation. Recent work [9]
added the tracking of 3D models in 2D images, but the issue
of selecting keyframes for segmentation is still open.

The main contribution of this paper is to use object mod-
eling at the heart of the system (Figure 2), minimizing the
impact of segmentation which is a complex operation that
is not reliable in all situations. Anticipating that valid seg-
mentations will be obtained in some situations, the system
reinforces low-level segmented regions through high-level
tracking and memory of models. Model memory is a sec-
ond contribution of this paper that stabilizes the overall sys-
tem by making it more robust to segmentation and track-
ing errors, as well to inevitable wrong decisions because of
the many parameters which are mainly present in segmen-
tation algorithms. This paper also contributes to motion-
based segmentation in two ways: the measure of quantity
of motion is used in order to deal with temporal scale and
the combination of feature points and edge templates allows
the segmentation of less textured images.

The paper is organized as follows. Section 2 describes
the proposed approach. Details of the feedback loop that in-
volves model management, tracking, and segmentation are
included. Section 3 provides results and analysis for three
different video sequences.

Figure 2. Data flow in the system.

Figure 3. Modeler processing structure.

2. Modeling object parts

The Modeler is based on a constant feedback loop that
gives priority to tracking over segmentation (Figure 3). At
any given time, the Modeler tracks a number of model can-
didates Mj , each one being a set of rigid parts: Mj = {P j

i }.
Rigid parts are first segmented as regions Ri based on their
apparent motion in the images, then assembled into models
as parts. The system tracks the available models in the video
sequence based on their appearance. Since the Segmenter
and the Tracker produce occasional bad results, the Mod-
eler processes models as hypotheses in an effort not to de-
pend on a single segmentation or tracking result. Therefore,
it is constantly assessing the quality of segmented regions
and their subsequent tracking as models. It also detects the
apparition of new moving regions in the sequence. By do-
ing so, it acts as a buffer between the Segmenter and the
Tracker, which do not communicate directly with each other
(Figure 2). This constant feedback makes the Modeler ro-
bust to erroneous segmentations, departure in tracking and
also to its own bad decisions. In order to favor the emer-
gence of better models, the confidence of models that are
successfully tracked is continuously reinforced while mod-
els that cannot be tracked are eventually forgotten.

The model hypotheses that are incrementally built by the
system are composed of a variable number of rigid parts.
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We shall discuss the case where a single viewpoint is avail-
able and where the 2D projection of the observed object is
stable over time. A 2D model is composed of a set of sup-
port maps representing the geometry of its parts, a set of
images representing their appearance and a set of 2D rigid
transformations representing their time-variant pose. In the
following, it is assumed that the foreground mask Ft of the
image at time t is extracted in a pre-processing step.

2.1. The Modeler

The Modeler manages the feedback between the Tracker
and the Segmenter by requesting results from these modules
when necessary. Its decisions are based on its memory of
model candidates.

Model tracking estimates the best pose of all of the model
candidates when a new image of the sequence is fed to the
system. Each model candidate, which is a possible explana-
tion for the scene, is tracked independently by the Tracker
in order to obtain its pose parameters and its appearance in
the current image. The Modeler then proceeds to evaluate
models based on the result of this operation.

Model evaluation has to determine if at least one model
has been successfully tracked in the current image. Three
complementary error measures are used: an SSD error for
each part to evaluate if the modeled appearance matches
with the image; a measure of the subsethood of each part
with respect to the foreground mask, which determines if
its support map is still within the moving portions of the
image and a measure of the subsethood of the foreground
mask with respect to each model to determine if all moving
regions of the image are modeled:

ESSD(P j
i ) =

∑
p∈P j

i
D(p)T D(p)

area(P j
i )

, (1)

Epart(P
j
i ) = 1 − area(Ft

⋂
P j

i )
area(P j

i )
, (2)

Emodel(Mj) = 1 − area(Ft

⋂∪P j
i )

area(Ft)
, (3)

where p are image pixels and D(p) is the vector difference
of all color channels between the fitted part appearance and
the underlying image pixels. Each error measure is com-
pared to a threshold: the tracking of model Mj is successful
if ESSD(P j

i ) < τSSD and Epart(P
j
i ) < τpart, ∀P j

i ∈ Mj and
Emodel(Mj) < τmodel. If tracking is successful for more than
one model, then the one with the most reinforced memory
(see memory management below) is chosen to be the suc-
cessfully tracked model for the current image.

Thresholds are adaptive and computed from past errors
that were found to be acceptable. Given the history of a

measure Hx = {Ek
x} where k < t, which is the set of error

measures x ∈ {SSD, part, model} of successfully tracked
models before time t, the threshold at time t is given by
τ t
x = mean(Hx) + 2σHx where σHx is the standard devia-

tion of Hx. The system keeps a history of ESSD and Epart

for each rigid part and a global history of Emodel. Every
time a model is accepted, its error measures are added to
their corresponding histories. Thresholds are initially set to
infinity before a minimum number of τH observations have
been available. In practice, τH is set to 2.

Model segmentation is necessary when the evaluation of
all models have failed. However, the system first tries to
salvage valid parts of existing models. A part is deemed
valid if ESSD(P j

i ) < τSSD and Epart(P
j
i ) < τpart. The ex-

isting model with the most reinforced memory and with at
least one such valid part is chosen as a start model Ms.

If a start model exists, only the portions of the im-
age foreground mask (Ft) intersecting parts for which
ESSD(P s

i ) or Epart(P s
i ) is too large have to be resegmented,

in addition to portions of Ft not intersecting any part if
Emodel(Ms) is too large. The new model Mn is then as-
sembled using the regions of the new segmentation and the
valid parts of Ms. If no start model exists, the whole fore-
ground needs to be resegmented and Mn is assembled with
the regions of this new segmentation.

Model comparison is performed to decide if a new model
Mn is in fact an update of an existing model Mj . It is an up-
date if Mn and Mj have the same number of rigid parts and
their matched parts overlap above a threshold. The match-
ing of Mn and Mj optimizes the proportion of support map
pixels in both models that belong to matched rigid parts:

O(Mn, Mj) =

∑
p∈(Mn∪Mj)

δ(p)

area(Mn ∪ Mj)
(4)

where δ(p) is set to 1 if the part of Mn overlaying p is
matched to the part of Mj overlaying p and set to 0 other-
wise. The overlap is large enough if it is above a threshold
τoverlap which is set to 80% in the experiments. When a new
model is an update, the newly segmented parts are used to
update their matched existing parts and the updated model
is chosen as the best explanation for the current image. An
existing part is updated by replacing its support map and
appearance with resegmented values. If it is not an update,
the new model is accepted as the best explanation for the
current image.

Memory management ensures that not all model candi-
dates are tracked indefinitely and avoid accumulating hy-
potheses. To this end, each model accumulates an amount
of memory credits Cj . At the end of each cycle, the Modeler
gives a memory credit to the model Mm that is the best ex-
planation for the current image: Cm ← Cm +1. One credit
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is taken off all other models: Cj ← Cj − 1, ∀j �= m. As
soon as a model has no credit (Cj = 0), it is removed from
the memory. Therefore, models that are often re-observed
will remain active for a longer period of time even if they
are sometimes not tracked successfully (because of occlu-
sions or erroneous segmentation for example) and transition
models which are not re-observed will be quickly forgotten
by the system.

2.2. The Segmenter

Image segmentation based on object motion is carried
out in the same spirit as in [10]. Special attention was given
to make it less dependent on image texture and velocity of
motion with respect to the frame rate. To handle less tex-
tured images, the Segmenter uses edge templates in addition
to feature points. Edge templates do not need textured im-
ages, but need a large neighborhood in order to provide a re-
liable motion estimate based on the geometry of the scene.
Feature points give a more local motion estimate, but rely
on textured images and are also less stable. Both are used
since local texture-less regions are frequent in real images.

Since segmentation is based on motion between images,
the temporal scale must be carefully chosen so there is
enough motion within the considered images. This is an
important difficulty not addressed in other systems. The
Segmenter uses the Quantity of Motion concept [4], which
is a global measure of the amount of detected motion. It
is defined on the foreground mask Ft of the image to seg-
ment at time t and that of its temporal neighbors Fk at times
t − N ≤ k < t:

QoM(N) =
area(

⋃t
k=t−N Fk)

area(Ft)
− 1. (5)

The temporal scale N is chosen so that QoM(N) is above a
threshold that is fixed to τQoM = 10% in the experiments.
Therefore, the temporal neighborhood of the segmented im-
age is not selected by absolute frame indexes, but rather by
a selected QoM value.

Figure 4 outlines the layer-based segmentation algo-
rithm. This algorithm aims at segmenting the regions of the
image based on their motion. Motion cues are obtained by
using a set of images {Ik} in the temporal neighborhood of
the currently segmented image It. Each pair (Ik, It) is first
processed independently to segment selected features in It,
then the results are combined to compute motion parame-
ters of regions. These parameters are then used to segment
It in a global optimization framework. All processing is
done in a mask (region of interest) defined on It.

Feature segmentation extracts transformations describing
the motion of regions between It and Ik . Since we are only
interested in the transformations, any feature can be used.

Figure 4. Segmenter processing structure.

Feature points and edge templates are segmented indepen-
dently and then combined in a later stage.

Feature points [14] are selected in It and then a set of
templates centered at feature points is used to match them in
Ik [2]. The resulting motion vectors are clustered: motion
fields are estimated as described in [16] except that we use
a fuzzy partition of feature points instead of a crisp one.

Edge template masks are obtained with the Canny algo-
rithm, both in It and Ik. The rigid transformation mini-
mizing the error between the transformed edges of It and
those of Ik is then obtained using an algorithm which is
implemented as the well known Generalized Hough Trans-
form [1]. The angular error ε between corresponding edges
of the templates are calculated, then these error maps are
thresholded. To automatically define a threshold, a subset
Sε which includes only good matches by hypothesis is de-
fined on the smaller errors. In the experiments, we choose
the lowest 40% errors to be part of Sε. The threshold is
given by the largest error in that subset plus one robust stan-
dard deviation, σrSε

, computed in the subset:

τedges = max(Sε) + σrSε
. (6)

The two thresholded error maps give the unmatched edges
in It and Ik. These thresholded maps become the new edge
masks and the algorithm is repeated. The iterations stop
when there is not enough unmatched edge in the thresholded
error maps (we set this minimum to 10 in the experiments).

Fusion and clustering of features is performed on results
arising from the segmentation of all Ik and all feature types.
Each segmentation corresponds to a set of transformations
from It to a particular temporal neighbor. A membership
value µ

T
Ik
l

(f) to each possible transformation Tl in Ik is

associated with each feature f . These values are collected in
a vector µ(f) and all features are clustered to obtain the final
segmentation of features that will combine feature types and
temporal neighbors.

The membership value of a feature f to a transforma-
tion T Ik

l is a function of the error that stems from using that
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transformation to move the feature from It to Ik. We use
the sum of squared differences (SSD) over a neighborhood
of the feature to estimate the error Err(T Ik

l , f). The mem-
bership value is a ratio between the error coming from all
of the transformations T Ik

j :

µ
T

Ik
l

(f) =
Ẽrr(T Ik

l , f)
∑

j Ẽrr(T Ik

j , f)
, (7)

Ẽrr(T Ik

l , f) =

∑
j Err(T Ik

j , f)

max(Err(T Ik

l , f), ε)
.

The membership vector of a feature is then the collection of
all membership values associated with segmented transfor-
mation T Ik

j , ∀Ik.
Features are clustered using a fuzzy k-means algorithm

[7]. The initial prototype vectors are obtained through a bi-
narization of the membership vectors: µ

T
Ik
l

(f) is replaced

by 1 in the binary vector if µ
T

Ik
l

(f) = maxj{µT
Ik
j

(f)} and

by 0 otherwise, for each Ik. The occurrence of binary vec-
tors are counted and the most common ones are used as ini-
tial prototype vectors. The clustering algorithm is run with
different K numbers of prototype vectors. The Bayesian
Information Criterion [13] selects the best KBIC among the
resulting clusterings, typically selecting values between 1
and 5 in the experiments. Given the partitions, a transfor-
mation T Ik

c from It to each Ik is computed for each of the
KBIC clusters (c) using features belonging to that cluster.

Image segmentation is performed by a Graph Cut algo-
rithm [3] which optimizes class assignment given dynamic
and static costs. A dynamic cost is attributed to all of the
image pixels p located in the foreground Ft for all transfor-
mations T Ik

c (all clusters c). This dynamic cost is the SSD
error between a neighborhood of p in It and a neighborhood
of the corresponding pixel p(T Ik

c ) in Ik. The SSD error is
computed for all images Ik. Errors are added, then normal-
ized so that the total dynamic costs associated to p is 1. A
static cost is also attributed to neighboring pixels that do not
belong to the same class, this cost is also limited to 1.

The creation of a new model from the region segmentation
consists in creating a rigid part for each region, which is
used to define support maps in the segmented image. The
appearance of each part is extracted from the image texture,
and the initial pose parameters are set to identity.

2.3. The Tracker

Given a model and its parameters (pose, appearance,
support map) up to time t − 1, the Tracker estimates a new
set of pose parameters such that the model optimally fits
It. For each part of the model, the 3 parameters of a rigid
2D transformation (rotation and translation) are estimated

so that the SSD between its appearance and It is mini-
mized [11]. The rigid transformation is not a restriction, the
Tracker could estimate a similarity or an affinity, but a rigid
transformation works well for the kind of images that we
use and the reduced set of parameters is easier to optimize.
Unless a self-occlusion of the model is predicted, a penalty
is added for overlapping parts. This penalty replaces the
SSD error for pixels overlapping other parts. Ideally, the
Tracker would optimize all free parameters of the model at
once, but in order to lower the processing time, the para-
meters of the model are optimized sequentially: the largest
parts of the model (measured by their area) are tracked first
(this strategy is also used in [15]). Since perfect results are
not expected from the Tracker, this shortcut should not be
seen as a problem for the system. For each part P of the
model, the final pose πt is attained when the total error is
minimized:

πt = arg min
π

∑

p∈P (π)

(SSDe(p) + Oe(p)) (8)

where P (π) is the part with pose π, p are the pixels in the
support map of P (π), and SSDe(p) and Oe(p) are SSD and
overlap errors, respectively. The search is carried out on dis-
crete values of π chosen near the previous pose πt−1. Oe(p)
is set to a constant penalty εO (set to a very large value, half
of the maximum possible SSDe(p) in the experiments) if
there is an overlap at p and SSDe(p) = D(p)T D(p). After
the minimization, the appearance of the rigid part is updated
using the current image and positioned support map [11].

3. Results

We demonstrate our system on three video sequences.
The input and output sequences are available on our Web
page1. All system parameters remain the same for all se-
quences, and the thresholds are computed in the same way.
No fine-tuning of the many thresholds and parameters is
necessary. For instance, τH is set to 2, τoverlap = 80%
and τQoM = 10%. The only difference in parameters, from
one sequence to the other, is the background subtraction,
which has been adjusted to give a satisfactory foreground
when using a single reference background image for se-
quences A and C, and was manually obtained for sequence
B. Processing time for a sequence is linear with the number
of images and is constant, O(C), for any given frame, thus
preventing process overload with time. For all of the test
sequences, the Segmenter uses a past neighborhood cho-
sen with QoM and a future neighborhood fixed to 3 frames;
therefore the first available result is for frame #3.

Figure 5 shows the estimated time scale (equation (5))
for sequence A. The length N of the past neighborhood

1http://vision.gel.ulaval.ca/∼sdrouin/tracking/
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Figure 5. Time scale obtained from QoM for
sequence A.

used by the Segmenter is plotted for each frame of the se-
quence. A higher value of N means less motion, as at the
begin of the sequence, where N extends the past neighbor-
hood up to the very first frame. A smaller N , as at the end of
the sequence, means more motion. In this case, both arms
move at the same time.

Figure 6 shows the output of the Modeler for selected
frames of sequence A. In these results, the parts are shown
in different gray levels according to their label and are su-
perimposed on the original image. The external contours of
each part is shown for visualization. At the top of each im-
age, a toolbar shows the model candidates in the memory of
the system. In sequence A, the subject moves his left arm,
then his right arm. For the first segmentation (Figure 6a),
there is not enough motion for the arm, so the whole fore-
ground is modeled as a single part. As the arm moves, this
model becomes invalid when ESSD becomes too large. A
new model with two parts is created in Figure 6b; this new
model is successfully tracked until the second arm starts
moving (Figure 6c). At this point, the system starts gener-
ating a series of new model hypotheses that always include
the already discovered arm (Figures 6d to 6f). These new
models compete with the already strong two-part model as
can be seen in Figure 7a, which shows the memory credits
attributed to each model as a function of time. New models
are created starting shortly after frame #40, but it is not un-
til frame #100 that a three-part model is created (Figure 6f),
that will eventually surpass (in memory credits) the two-part
model. Its final state is shown in Figure 6g.

Additional insights in the process of model evaluation
can be obtained from Figure 7b, which plots ESSD and τSSD

for the first two models (Figures 6a and 6b). Each value
is shown for the single-part model and the two-part model,
from their creation frame until they are forgotten by the sys-
tem (near frame #20 and #80, respectively). The first part of
Model 3 has high ESSD and τSSD since its boundary (where
outlier errors are more frequent) counts for a larger propor-
tion of the whole part. Thresholds are automatically adapted
independently for both parts, which results in a smaller
threshold for the main body part (with a value closer to the

first model). Also, even after the two-part model stops being
successfully tracked as a whole (after frame #40), ESSD for
the arm always remains below its thresholds, which sug-
gests that this part of the model was successfully learned.
Therefore, when the final three-part model is created by the
system at frame #100, this part, which was first segmented
in frame #10, is kept. This demonstrates the ability of the
system to incrementally discover the parts of an object.

Figures 6h to 6j show the result of the Tracker at frame
#66 of sequence A. The first model (Figure 6h) is the two-
part object which accumulated many memory credits in the
first half of the sequence. The system is still tracking it,
but only the part corresponding to the arm is successfully
tracked. The second model (Figure 6i) is the three-part
model that was segmented near frame #40. At the selected
frame, the arm on the left side of the image cannot be suc-
cessfuly tracked because its part includes a portion of the
torso, which causes too much error. The Modeler then re-
quests a new segmentation and creates a new model (Figure
6j) which is based on Model #3 (because it has more mem-
ory credits than Model #12, which could also have been
used as a base model). The unmodeled portions of the fore-
ground (body and arm on the right side of the image) are re-
segmented from scratch and result in a single part because
the Segmenter cannot identify two parts from motions in
that particular frame. This new model, however, is the first
of a series of transition models which will result in the final
three-part object of Figure 6f.

Figure 8 shows the output for sequence B, which is a
robotic arm moving in a plane nearly parallel to the image.
This sequence is interesting because there are very few fea-
ture points on the robot, thus the Segmenter mainly relies on
edges. The robot first moves as a single rotating rigid part,
then other joints are progressively rotated until all three sec-
tions move relatively to each other. This progression can be
seen in the results of Figures 8a to 8c, where parts corre-
sponding to the three sections of the robot are sequentially
added to the active model. The results illustrate the use of
model memory at frames #41 and #42 where the system
decides to use a model with a part overlapping two of the
sections of the robot (Figure 8d) and then comes back to
the previous model in the subsequent frames (Figure 8e). It
is the role of model memory to reinforce valid models over
time. Models that are often re-observed (tracked) will re-
main active and transition models which are not re-observed
will be quickly forgotten by the system. The final model is
correctly segmented despite poorly textured images through
the use of edge templates. The system was able to add parts
as they started moving in the sequence, and then continue to
track them at the end of the sequence even when one joint
stopped rotating.

Figure 1 shows the output for sequence C where a hu-
man subject moves from a crouching to a standing position.

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



(a) Frame #3 (b) Frame #10 (c) Frame #34 (d) Frame #48 (e) Frame #66

(f) Frame #100 (g) Frame #114 (h) Model #3 in frame #66 (i) Model #12 in frame #66 (j) Model #20 in frame #66

Figure 6. Discovered object parts at selected frames of sequence A and tracked model candidates.

(a) Memory management of models (b) SSD error of rigid parts and adaptive threshold (dotted lines)

Figure 7. Memory management of models and SSD error of rigid parts for sequence A.

(a) Frame #3 (b) Frame #8 (c) Frame #17 (d) Frame #41 (e) Frame #42

Figure 8. Discovered object parts at selected frames of sequence B.

(a) Segmentation #3 (b) Segmentation #11 (c) Segmentation #14 (d) Segmentation #22 (e) Segmentation #29

Figure 9. Open-loop segmentation for selected frames of sequence C.
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Since this motion of the subject does not result in rigid 2D
transformations, we expect the system to resegment quite
often and to sometimes find strange models in the transi-
tion. This is shown in the results, where a first rigid model
composed of two rigid parts (Figure 1a) is progressively
transformed into a six-part model (Figure 1e). During the
transition, the non-rigid 2D motion produces parts which
are quickly forgotten, for instance in the lower portion of
the model in Figures 1b and 1c. However, the right arm
of the subject, which moves rigidly in the plane, is always
modeled in the same way throughout the sequence. This re-
sult shows that the system can learn parts of the model at
different points in time, as the observed shape evolves.

Figures 9a to 9e show the results of applying the motion-
based segmentation algorithm (in open loop) to the selected
frames of the same sequence C. These results show the un-
reliability of the segmentation which does not always iden-
tify the arm as a region (Figures 9b to 9d) or, because it
cannot build upon multiple observations, identifies regions
which overlap multiple sections of the subject (torso-arm-
leg region in Figure 9e). It is worth noting that this motion-
based segmentation, as opposed to a colour-based segmen-
tation, allows a part to be composed of multiple colours or
multiple adjacent parts to share the same colour as shown
in Figures 1, 6 and 9. From these results, it would appear
that the modeling-tracking with segmentation on demand
produces a more stable overall segmentation.

4. Conclusion

This paper addressed the fundamental problem of auto-
matically discovering the parts of an unknown moving ob-
ject in a monocular video sequence. The Modeler lies at the
heart of the system and minimizes the impacts of erroneous
segmentations and departures in tracking. It was shown how
the memory of models stabilizes the detection by reinforc-
ing valid models and managing motion-based segmentation
of rigid parts of a same model at different points in time.

Further work needs to be done to generate articulated
models from the discovered object parts. This additional in-
formation would improve tracking by imposing model-wide
constraints on the pose of the parts. The system could also
be improved by generalizing the approach to 3D motions
[9] but without the need for keyframes.
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