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Abstract This paper presents a weed/crop classifica-
tion method using computer vision and morphologi-
cal analysis. Subsequent supervised and unsupervised
learning methods are applied to extract dominant mor-
phological characteristics of weeds present in corn and
soybean fields. The novelty of the presented technique
resides in the feature extraction process that is based
on spatial localization of vegetation in fields. Features
from the weed leaf area distribution are extracted from
the cultivation inter-rows, then features from the crop
are inferred from the mixture model equation. Those
extracted features are then passed to a naive bayesian
classifier and a gaussian mixture clustering algorithm to
discriminate weed from crop plant. The presented tech-
nique correctly classifies an average of 94% of corn and
soybean plants and 85% of the weed (multiple species)
without any prior knowledge on the species present in
the field.
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1 Introduction

In agriculture, weed control is a critical operation for
maintaining crop yields. Under conventional farming
practices, this is done by spraying herbicide on the en-
tire surface of the field. According to CropLife Canada',
herbicides account for 76% of the 1.91 billion CAD in-
vested in pesticide in 2009 in Canada alone. In corn and
soybean fields, herbicide is applied over the entire field
even if weeds cover non-uniformly less than 30% of the
field area. Furthermore, herbicides are known to have
potential harmful consequences on the environment [5,
8]. To improve their efficiency, herbicides should be ap-
plied with the help of precision agriculture technologies
specifically on weed-infested sites rather than uniformly
on the field [23]. The main drawback for the widespread
acceptance of this approach is the lack of economical
and reliable application-specific sensors for automated
data collection [21]. For post-emergence herbicide appli-
cation, sensors capable of detecting weeds in presence of
crops would be necessary to perform site-specific appli-
cation or spot-spraying [12]. Computer vision has been
intensively used for this kind of automatic visual detec-
tion task in multiple domains, from industrial inspec-
tion to process control. It is therefore the appropriate
choice when it comes to identify, at high speed, portions
of a field that contain weeds. Moreover, with cameras
placed in front of a tractor, a proper detection system

I http://www.croplife.ca/web/english/plant_science_
industry/
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would be able to modulate the herbicide dose spread in
function of the weed infestation level.

There exist two major trends to assess where herbi-
cide should be applied using computer vision. The first
one aims at identifying each particular plant as either
weed or crop. Aitkenhead et al [1]| present two methods
to differentiate carrot (Daucus carota L.) plant from
ryegrass (Lolium perenne) and Fat Hen (Chenopodium
album) weeds. The first approach directly uses the leaf
shape as the only discriminant and gives correct classifi-
cation rates between 52% and 74%. The second method
consists in a self-organizing neural network that dis-
criminates plant types with an accuracy above 75%
without prior knowledge. Hemming and Rath [9] use
fuzzy logic to combine different measures of the struc-
ture of each plant in a digital image to classify them as
either weed or crop. Their method, tested under field
conditions, classifies between 51% and 95% of the plants
correctly.

The second trend tries to identify patterns on crop
rows and inter-rows to locate weed spots. Tellaeche et al
[22] divide digital images of the field into cells delimited
by crop row centres and fixed horizontal space. Each
cell content is then provided to a trained support vec-
tor machine classifier to identify whether it should be
sprayed with herbicide or not. They correctly identify
85% of the cells to be sprayed. Yang et al [24] propose
a method which uses fuzzy rules on the coverage and
weed patchiness to calculate the amount of herbicide to
apply.

In this paper, we propose an intermediate approach
that uses information from rows and inter-rows to learn
the difference between crop plants and weeds. A naive
bayesian classifier is used to discriminate crops from
weeds based on statistics computed from row and inter-
row leaf area. An unsupervised learning procedure is
applied afterward to refine the preceding classification.
The proposed technique novelty resides in exploiting
the structure of the data to extract otherwise unavail-
able information on the vegetation. Two major advan-
tages arise from this technique: no prior knowledge on
crop or weed species is necessary nor does it require any
prior training. Furthermore, in our real-time herbicide
application context, methods requiring prior training
are unacceptable in terms of work and financial effort.

The rest of the paper is organized as follow. First,
Section 2 presents in details the problem addressed by
this paper and the methodology adopted to resolve it.
Then, Section 3 describes the whole feature extraction
process, while Section 4 presents the naive bayesian
classifier and the gaussian mixture model used to re-
fine the classification. Finally, results of the application

of our method on images of corn and soybean weed in-
fested fields are presented in Section 5.

2 Rationale

As stated above, determining whether or not herbicides
should be applied on a specific part of a field can signif-
icantly reduce the financial and environmental impact
of weed treatment. This paper addresses the problem of
discriminating weeds from crops using computer vision
and machine learning in order to evaluate the degree of
infestation in a section of a field.

The proposed technique applies to fields where crops
are seeded in rows. All photographs are acquired early
in the growing season corresponding to the appropriate
phenological stage for post-emergence herbicide appli-
cation. At this time, there is little foliage overlap since
all plants are usually relatively small. Hence, the green
area observed on digital images taken horizontally can
be representative of the leaf area index (leaf area per
unit ground area) [13].

The approach is described by the classification pro-
cess given on Figure 1. Processes are given in closed
boxes while data appears in open ones. The system
takes as input a colour image of a section of a field and
it outputs the number of pixels respectively associated
to weeds or crop plants. The whole operation is divided
into three steps: segmentation, feature extraction, and
classification. Each part will be described in the follow-
ing sections. The image acquisition process is currently
not fully integrated to our system, it is therefore not
represented in Figure 1. However, since the images are
essential to our system, the next section will described
how they are acquired.

2.1 Acquisition

All images are taken using a camera mounted on a cap-
turing/carrying custom mobile platform as presented in
Panneton and Brouillard [16]. The self-propelled plat-
form consists of a pyramid-shaped aluminum chassis
covered with opaque shading material and equipped
with two high power flash lights combined to a custom
reflector to ensure uniform illumination and minimum
shadow for all pictures. An operator steers the unit and
monitors its speed. The camera is linked to a distance
sensor located on one wheel so that it takes a picture
every three meters. The device is built to hold the cam-
era at its apex (about 2.5m above the ground) with
its optical axis perpendicular to the ground, covering a
rectangular area of 3 m by 2m with each picture (4 rows
of corn at 75cm spacing). A Nikon D100 RGB digital
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Fig. 1 Complete classification process from field images to weed/crop

camera is used. Around 6 million pixels (3034 x 2024)
covers the 3m by 2m area giving a resolution of ap-
proximately 1px/mm?.

2.2 Segmentation

The colour image is segmented to split the vegetation
from the ground. The algorithm, based on the principal
component analysis, extracts the component associated
with the vegetation in the image. The Otsu method [14]
is then used to find a threshold that will discriminate
between vegetation and soil based on that component
score. The image is segmented by masking all the soil
pixels, leaving the vegetation pixels to their original
colour. Because the current work focuses on the feature
extraction and the classification processes, the segmen-
tation procedure is not fully presented and can be found
in Panneton [15] and Panneton et al [17]. In fact, the
segmentation method could be replaced by an alternate
one as long as it can efficiently mask the ground leaving
only vegetation pixels in the output image.

2.3 Feature Extraction

Once the image are segmented, the important features
can be extracted. In the proposed approach, the feature
extraction process is influenced by the spatial location
of the plants. Thus the first step consists in identify-
ing the crop rows in the image. This is done using the
Hough transform that finds the straight lines made by
the densest vegetation. Interestingly, vegetation lines
are found by such a procedure even if alignment is not
perfect with respect to the field geometry or image ac-
quisition process. These straight lines are more likely
to be crop plants because they are seeded in rows using
a mechanical planter. Row borders are found by ana-
lyzing the plants that cross the row centre lines. Then,
based on our primary assumption, every plant outside
the rows is considered to be weed. The data provided
by these plants outside the rows is used to compute the
probability density functions (PDFs) of morphological
characteristics of weeds. Considering that the plants in-
side the rows are a mixture of weeds and crop plants,

the inside row data is used to infer the PDFs of morpho-
logical characteristics of crop based on the weed mod-
els. This novel feature inference method is described in
details in Section 3 along with the row identification
process.

2.4 Classification

Now that the morphological characteristics PDFs have
been found for weeds and crop plants, a naive bayesian
classifier based on the extracted features is used to
differentiate the two classes of plants that are in the
rows. It outputs two sets of labelled blobs. The set that
has been classified as crop plants is sent into a sec-
ond classifier in order to identify leftover weeds using
a gaussian mixture model. Weeds found by the gaus-
sian mixture model are added to the ones previously
found. Finally, the weed cover field-section percentage
can be estimated using the preceding classification. The
complete classification process is described in details in
Section 4.

3 Feature Extraction

As aforementioned, the proposed approach for feature
extraction is based on the spatial position of plants, i.e.
the presence of crop rows. Therefore, the first step is de-
tecting the rows. Then, features from plants inside and
outside the rows are extracted. This allows modelling
the PDFs of weed features, and inferring the PDFs asso-
ciated to features of crop. The whole feature extraction
process is detailed in the following sections.

3.1 Row Detection

Row information is crucial for gathering weed proper-
ties. This information will be used later to make as-
sumptions on the nature of plants according to their
relative position to the rows. In the proposed method,
the rows are detected using the Hough transform on
segmented and binarized images of the field. This tech-
nique has already been used in Asif et al [3], Jones et al
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going through A or B in the
p, 6 space.
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Fig. 2 Hough transform of an image containing two points. The
intersection of the two lines in (b) represents the parameters of
the single line in (a) going through both points A and B

[11], Slaughter et al [20], Tellaeche et al [22], and As-
trand and Baerveldt [25]. The current section explains
how the Hough transform is used for detecting the row
position, followed by the computation of row bound-
aries and details about the assumptions made on plants
located outside the rows.

3.1.1 Row Position

Introduced by Hough [10], the Hough transform is gen-
erally used in computer vision to find patterns in an
image via a voting procedure. In this case, it is used
to find straight lines defined by aligned crop plants in a
segmented image of a field section. When detecting lines
in an image that contains two points A = (z4,y4) and
B = (zp,yp) (Figure 2(a)), the transform first finds ev-
ery possible line that passes by A, i.e. every pair (p, 6)
that satisfies the line equation p = x4 cosf + y4 sin6,
where p € R is the distance between the line and the ori-
gin and 6 € [0,..., 7] is the angle of the vector from the
origin to the closest point of the line. The pairs giving
those lines are located on the continuous line of Fig-
ure 2(b). Then, it finds every line that goes through B,
satisfying the equation p = xp cosf + yp sin 6 (dashed
line of Figure 2(b)). Finally, every pair (p, 6) present on
the two lines of Figure 2(b) is given a vote. A single pair
has two votes, it represents the most dominant straight
line present in the image, i.e. the one that crosses both
points, A and B, in the image space. Generalizing this
idea to more natural binary images allows to locate the
points (pixels) that are relatively align on straight lines
even if they are discontinuous. The most dominant lines
are represented by the combination of parameters p and
6 with the most votes.

In our application, the parameters with the most
votes represent the lines with denser vegetation in the
image. We only consider the pairs (p,0) with § = 0 and

Number of Votes
Number of Votes

Origin of the Line Origin of the Line

(b) Threshold, peak number
1 is too low to be considered.

(a) Neighbouring size, peak
number 2 is discarded be-
cause of its proximity to peak
number 3.

Fig. 3 Rules to find the Hough peaks

p=10,0.5,..., \/image width? + image heigth}. From
this group of parameters, a subset representing row cen-
tres are selected following three simple rules:

1. each maximum must be separated by a neighbouring
size of wyp;

2. a maximum must be higher than a threshold hy;

3. a maximum of n, greater peaks are kept.

Rules one and two are illustrated in Figures 3(a) and
3(b) on a one parameter Hough transform. Using the
first rule, maximum number 2 is eliminated because it
is too close to the higher maximum number 3. Using
the second rule, maximum number 1 is not considered
because it is under the threshold. The selection of wyy,
and h¢ is based on the input image, while n, has to
be set according to the maximum number of crop rows
that can be found in an image, as shown by Equations
1 and 2.

image width

(1)

Wnh =
2ny,

max (votes)

ht: 4

(2)
3.1.2 Row Boudaries

The boundaries of a row are computed using the bound-
ing box of each blob that crosses the row centre line c.
The centre lines are given by the Hough transform. The
left width w; and the right width w, are computed us-
ing the average distances from the row centre line to
the left and right ends of each bounding box.

A blob is considered to be part of a row if at least
one pixel from that blob is contained in [¢ — wy, ¢ + wy].
Figure 4 presents an example of blobs that are inside
and outside a row.

3.1.3 Row Relative Assumptions

Proper detection of rows is important because it allows
the formulation of hypotheses on the blobs according
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Fig. 4 Blobs in and out a row. Blobs 1, 2 and 3 are used to
determine w; and wy. Every blob is inside the row except for
blob 6

to their position with respect to the rows. Indeed, the
proposed method freely identifies a plant outside a row
as a weed. Rows have to be properly located; if a row
is not detected, its entire content will be classified as
weeds and will bias the weed PDF towards the crop
PDF. Further classification presented in Section 4 will
be applied only to blobs located inside the rows.

3.2 Modelling Probability Density Functions

PDFs are modelled for some morphological characteris-
tics of the two groups of plants based on their position
on the image: weeds only between the rows; and crop
plants and weeds combined inside the rows. The PDFs
must be estimated since the process that generated the
characteristics of each plant is unknown. The estima-
tion of the PDFs is made using kernel density estima-
tion, also known as Parzen-Rosenblatt window [18, 19].
From a set of independent and identically distri-
buted random variables, the form of the function p(z)
that generated n samples x; can be approximated by

ﬁ(m)-@iff(ﬁﬂv ®

where K(-) is a kernel function and h is a smooth-
ing parameter. A gaussian kernel is used for modelling
the morphological features of the plants. Since mea-
sured characteristics are always positive, we apply a
constraint on the probabilities by applying a transfor-
mation. The density is estimated with the data scaled
logarithmically. When computing the probability for a
certain value, the result is transformed back to the orig-
inal scale. h is set in function of the gaussian optimal
smoothing rule of thumb described in detail in Bowman
and Azzalini [4] along with the log scale transforma-
tion for bounded data. The estimator p(z) is used to
evaluate PDFs both inside and outside the rows given
respectively by p(x|Z) and p(x|O).

3.3 Inferring Probabilities

The goal of the classification is to distinguish crops
from weeds and vice versa. Unfortunately, the infor-
mation about crop plants cannot be inferred directly
from the images. However, weed cover characteristics
can be deduced as they are the only plants outside the
row boundaries. Since weeds located outside the row
boundaries are probably similar to weeds located inside
the rows, it is possible to subtract the PDF estimated
from outside the rows to the one estimated inside the
rows to assess the crop PDF.

Two things are known in terms of conditional prob-
ability: the probability of occurrence of a characteristic
z knowing the plant is a weed p(z|W) and the prob-
ability of occurrence of a characteristic z knowing the
plant is a weed or a crop p(xz|C UW). This allows us
to calculate the probability p(z|C) of a characteristic =
knowing the plant is a cultivated one, with the mixture
model equation

k

p(x) =Y p(Gi)p(«|Gi), (4)

i=1

where p(x) is the probability of occurrence of x, p(G;) is
the probability of occurrence of class G; and p(x|G;) the
probability of occurrence of z knowing it is part of class
G;. Applying Equation 4 to the two classes problem
mentioned above gives

p(x|CUW) = p(C)p(z[C) + p(W)p(xW). ()
Isolating p(z|C) in Equation 5, we find

p(x|CUW) — pOV)p(z|W)
p(C)

In this last formulation the priors p(C) and p(W) are
still missing. They can be estimated using the pixel den-
sity of weed per area unit outside the rows p, and the
pixel density of the whole vegetation inside the rows p;.
Assuming that the weed pixel densities outside and in-
side the rows are similar, p; should be equal to p, plus
the crop density. Weed and crop pixel densities inside
a row are then given by

p(|C) =

(6)

pc = pi — Pos (7)
pW = Po- (8)

The priors are then normalized to

(C) = ’;—C 9)
S — P
pov) = £, (10)
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Fig. 5 Estimation of the PDFs for crops p(z|C) based on the
data outside p(z|O) and inside p(z|Z) the rows. It can be seen
as subtracting (according to the priors) the density p(z|O) from
p(z|Z) resulting in the density p(z|C) using Equation 6.

If this estimation fails, i.e. pixel density outside the rows
is superior to pixel density inside the rows, an equiprob-
able estimator is assumed: p(C) = p(W) = 0.5.

Figure 5 presents how the inferring process is used
to estimate the PDF for crop plants p(z|C) and weeds
p(z|W). First, the PDFs for the vegetation inside p(z|7)
and outside p(x|O) the rows are modelled by a Parzen-
Rosenblatt window using the respective data for a char-
acteristic . The rows contain both crops and weeds,
while the inter-rows contain only weeds. Thus, p(z|Z)
and p(z|O) are respectively equal to p(z|C U W) and
p(z|W). Then, using the priors given by Equations 9
and 10 in the inference Equation 6, we find the crops
hidden PDF.

4 Classification

The classification of vegetation present in the rows is
based on the PDFs inferred from the morphological fea-
tures of each blob. Two probabilities (weed and crop)
by feature are computed using the Bayes’ theorem and
the final classification is done by choosing the higher of
those two probabilities. In order to refine the classifi-
cation, a technique based on gaussian mixture models
is employed to filter out from the group of plants clas-
sified as crop, the weeds that were wrongly classified
using the naive bayesian approach. The newly identi-
fied weeds are added to the already classified ones. The
present section describes those two classification meth-
ods.

4.1 Naive Bayesian Classification

Bayesian classification is done by using the preceding
inferred probabilities taken from a single image and by
applying them to the unlabelled data in order to estab-
lish to which class it belongs. The Bayes’ theorem gives

attribute a label based on the higher probability given
by the application of Equation 11 for 4 = 1...k. Note
that this naive bayesian classifier can easily be extended
to the multiple feature case.

Applied to the current problem and using the esti-
mators described in Section 3.3, the classifier becomes

o)
p(Clx) = (@) and (12)
pvla) = FOURERY), (13)

with the class given by argmaxg, ¢ ¢y p(Gilx), where
p(z|C) is given by Equation 6 with p(W) = p(W),
p(C) = p(C), p(xz[W) = p(z|0), and p(z|C UW) =
p(z|Z). For more details on bayesian classification the
reader is referred to Alpaydin [2].

4.2 Gaussian Mixture Model

Unsupervised learning is generally used to classify or
identify data generated by different, a priori unknown,
phenomena. After applying the naive bayesian classifi-
cation, it is highly probable that some weeds were clas-
sified as crops. The goal of the gaussian mixture model
(GMM) is to refine this classification by excluding, from
the classified crop data set, the data that does not fit
the crop general distribution.

The GMM identifies, in the provided data set D, k
underlying gaussian distributions that are most likely to
reproduce D. Equation 4 gives the probability density
function given k gaussian distributions G;. The fitting
of the distributions — finding the appropriate means and
standard deviations — is usually done with the expecta-
tion-maximization (EM) algorithm [6]. This algorithm
requires the number of inherent distributions to be pre-
defined. Figueiredo and Jain [7] propose an algorithm
that identifies the number of distributions that best fit
the data set while also precluding the possibility for the
EM algorithm to converge to a boundary configuration.

The algorithm from Figueiredo and Jain [7] is used
in the current method to identify the underlying dis-
tributions of the crop blobs area. Figure 6 presents the
distribution of the area of each blob classified as crop,
after using the bayesian classification of Section 4, for
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Fig. 6 Probability density function of the areas classed as crop
using three gaussians. The thin lines are each gaussian, the
dashed thick line is the mixture model and the bars are the under-
lying histogram of occurrence. The shaded rectangle represents
the part of the crops that are relabelled as weed.

a single image. The first gaussian, with mean about
334 px, is most likely to be produced by a different
phenomenon than the two next that are more similar.
Based on the assumption that weed blobs are generally
smaller than crop blobs, any group of pixels having an
area smaller than the smallest estimated mean is rela-
belled as a weed. In Figure 6, all blobs with an area
falling in the shaded rectangle (between 0 and 334 px)
are relabelled into the weed class.

We found experimentally that classifying every blob
belonging to the first gaussian distribution significantly
decreased the percentage of well classified crop blobs
while not increasing the percentage of well classified
weed blobs. For example, in Figure 6, this latter classi-
fication would have reclassified every blob with an area
up to 585 px into the weed class. However, the set of
blobs with an area between 334 and 585 px contains
a majority of crop plants. Being less aggressive in the
post-bayesian classification, using the smaller mean as
criterion, allows us to maintain a very high percentage
of properly classified crop blobs while increasing sub-
stantially the percentage of accurately classified weed
blobs.

5 Experiments

This section presents our method for classifying crops
and weeds applied over a set of 149 images taken from
two different crops: corn (C) and soybean (S), at the
second to fourth leaf stage of corn and at the second to
third trifoliate leaf stage of soybean. Each crop grows
on two different sites located in the province of Québec
(Canada): Acadie (A) and Beaumont (B). In the im-
ages, three different levels of infestation were identi-
fied: low (L), medium (M), and high (H). Examples of
each infestation level for corn and soybean fields are
presented in Figures 7 and 8. In the current section,

images are identified using a three-letter acronym rep-
resenting respectively the site, the crop, and the level of
infestation. For example, the acronym ASL is used for
site Acadie (A) soybean fields (S) with a low weed in-
festation (L). Following are presented the experimental
procedure, the measures used for comparing the meth-
ods and the results of the proposed classifier for both
classifying the data and estimating the weed cover in
parts of the fields.

5.1 Experimental Procedure

The input images are segmented providing vegetation
only images. The resulting segmented images are then
filtered using an opening morphological operation with
a disc of 1px radius® in order to remove most of the
segmentation noise. In fact, 55% of the 872000 plant
blobs found in the 149 images have an area inferior to
4 px, but they represent only 1.1% of the total blob sur-
face. Clearing these blobs prevents their small size from
disturbing the statistics used by the bayesian classifier
without risking the loss of important data.

Next, row detection, using the Hough transform, is
applied to find the position and bounds of each row. The
value of n;, is set as the number of visible rows in each
image, inducing at the same time wyy. A 4-connected
scheme is used to identify blobs in the images, in or-
der to limit overlapping between groups of plants that
would be considered a single blob under a 8-connected
scheme (Figures 9(e) and 9(f)). PDFs of these features
for weed are then computed using the plants outside
of rows. The PDFs associated to these features for the
crop are then inferred using the data inside the rows.

The following morphological properties are the fea-
tures that were tested:

Area — the number of pixels in a blob (Figure 9(a));

Compactness — the shape descriptor being independent
P2

of any linear transformation and defined as =, us-
ing the perimeter P and the area A (Figures 9(b)
and 9(c));

Major Axis — the value of the greater axis of the ellipse
with the same normalized second moment than the

blob (Figure 9(d)).

The probabilities computed for weed and crop are
both used as the input of the naive bayesian classifier
which outputs the class for each plant. All blobs clas-
sified as crop are then passed to the GMM to refine
their classification. At this step, only the area is used
as a feature. Every blob with an area smaller than the
smallest mean found by the gaussian mixture algorithm

2 A disc with a radius of 1 px is a cross with a diameter of 3 px.
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(c) High infestation

Fig. 7 Infestation levels in corn fields
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Fig. 8 Infestation levels in soy fields
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(a) Area (b) Compact-
ness (compact)

(c) Compactness
(non compact)

(d) Major Axis (e) 4-connected (f) 8-connected

Fig. 9 Representation of the different morphological properties
used to distinguish between crops and weeds, (a) represents a blob
having an area of 5 pixels, (b) and (c) are examples of compact
and non compact forms, (d) is a representation of the major axis,
and (e) and (f) are blobs under a 4-connected and 8-connected
scheme respectively.

is relabelled as weed. The final output consists in two
sets of labelled blobs, one for crops and one for weeds.

5.2 Measures

In the remaining of this section the following measures
are used, with the cardinality |.4| giving the number of
pixels contained in a set A:

— |Z| is the total number of pixels in the image;

— |C*| is the actual number of crop pixels, with C* the
set of perfectly classified crop pixels;

— |W*| is the actual number of weed pixels, with W*
the set of perfectly classified weed pixels;

— |C N C*| is the number of pixels correctly classified
as crops, with C the set of crop pixels classified by
the proposed method;

— |(V\C) N W*| is the number of pixels correctly clas-
sified as weeds, with V\C the set of all vegetation
pixels excluding those contained in C.

In each image, weed pixels have been identified by a
weed scientist. These were used directly to determine
C* and W*. The use of V\C instead of W allows us to
reintroduce, as weed, the small blobs that have been
removed in the filtering phase of the method. The area
of these blobs, although small for the learning phase,
remain important when estimating the weed cover.

The classification performance for crop k. is given
by

cnex
Re = |C*| (14)

Corollary, the classification performance for weed
corresponds to

v = |(V\|CV)VT|W*. (15)

Also, the global classification performance « is given by

. ICNC*| 4+ |(V\C) N W
€| + v '

(16)

Finally, the relative weed cover estimation Yy is given
by
|((V\C) n W]

Xw |I‘ . (17)

Results for a particular method are denoted using
the exponent b for the naive bayesian classification and
gm for the GMM. For example, xP#™ denotes the global
classification performance for the bayesian classification
followed by the GMM technique. In order to strictly
demonstrate the classification efficiency, we worked on
the subset of images for which row positionning was
successful. This subset contains 129 of the 149 images.
The images that have been discarded had either too
many weeds or too few crop plants, making it impossi-
ble for the Hough method to identify the correct peaks.
This is not a concern since we present a classification
method that depends on prior knowledge provided by
the row identification method.

5.3 Classification Results

Table 1 gives the global classification average perfor-
mance measured with and without the GMM, for each
morphological properties used in the naive bayesian clas-
sifier. The combination of properties are not considered
since this classifier requires independent properties and
these are not. Knowing that the performance k8™ when
using only the GMM is 88.9%), it is clear that combining
the bayesian classification and the gaussian mixture im-
proves the classification rate. Moreover, it can be seen
that the best performance, 90.8%, is obtained using ei-
ther the area or the major axis. However, the smallest
standard deviation, 4.4%, is obtained when using the
area. It should be noted that these results are specific
to the current experimental problem and different prop-
erties could perform better in another context. A Stu-
dent’s t-test reveals that the hypotheses xkP&™ > x8M
and xP®™ > kP have a significance level higher than
99.95% each when using the area. Using both method
successively is thus significantly better than using them
separately. In consequence, the rest of this paper will
discuss this combined method.
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Table 1 Global classification average and standard deviation
performance using different properties for the bayesian classifier.
Classification percentage k8™ is 88.9% with a std dev. of 5.0.

Property | xP (std dev.) &P&™ (std dev.)
Area | 90.5% (4.5) 90.8% (4.4)
Compactness | 89.7% (5.2) 89.9% (5.1)
Major Axis | 90.5% (4.6) 90.8% (4.5)
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Fig. 10 Average classification performances n?‘gm and ﬁa’gm for

different crops and levels of infestation using the area as only
characteristic

Figure 10 shows the average percentage of good clas-
sification for crop and weed at different infestation lev-
els. Each subfigure represents for each field, one of the
two crops, corn or soy. The results were obtained using
the area as the only feature. One could notice that the
crops are generally better identified than the weeds.
A possible cause for this is that cultivated plants are
more uniform in size since there is only one type of
crop in a field and the crop was all planted at once on
the same day (i.e. same age); contrary to the multiple
weed species that each have their own emergence time
and pattern. In other words, the fuzziness induced by
the different kinds of weeds does not allow the classifier
to fit a narrow distribution around their characteris-
tics. The widespread distributions create uncertainty
that lower the probability of a blob to be classified as
a weed, favouring the crop class.

Figure 12 shows the resulting classification for a sin-
gle row of corn with medium weed infestation. We ob-
serve that the classification is generally good and most

250

200 b

150 1

100 b

Occurences

50 R

—cun) L n
00 200 400

L L L
600 800 1000 1200
Area (px)

Fig. 11 Histogram of the inter-row weeds area

of the weeds have been identified correctly. However, it
is possible to identify three types of error identified as
A, B and C. The first type, A, corresponds to a very
small part of the crops that have either been separated
of the main plant during the segmentation process or
misclassified by the specialist. In either case, the area
of those blobs is very similar to other weeds, therefore
letting us strongly believe that any other classification
method would take a similar decision. The second type
of error, B, occurs when a weed have been mistaken for
a crop. Knowing that blob B has an area of 872 px, Fig-
ure 11 shows that there are very few weeds between the
rows that have a similar area. Since few of this weed
type reside outside of the rows, the inference mecha-
nism can explain this type of error. The third type of
error, C, is caused by a weed that is merged with a crop.
Since decisions in our method are based on blobs, this
sort of error cannot be avoided.

Together, the three types of error create the follow-
ing confusion. In the corn field images, 12% of the weeds
were classified as crop plants and 6% of crop plants were
classified as weeds. In the soybean field images, these
are 18% and 6% respectively. Our results cannot be
compared directly to any other published work. How-
ever, Hemming and Rath [9] presented a technique close
to ours where images are taken much closer to plants
in cabbage and carrot cultures. They achieved a mis-
classification error of about 11% and 12% for cabbage
culture, while about 34% and 31% for carrot culture.
This shows that our technique compares readily to pre-
vious work in term of classification rate for differenti-
ating weeds from crops.

5.4 Weed Cover Estimation

The plant classification method allows weed cover es-
timation. A common unpublished technique is to esti-
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(a) Segmented Image

(b) Classification

Fig. 12 Output of the classification for a single row in a corn field, (a) the segmented image with centre of row marked by a full line
and boundaries marked by dashed lines, (b) the result of the classification and (c) the truth image, where white blobs are the corn

plants and black blobs are weeds.

mate the position and bounds of the rows® and com-
pute the number of pixels between each row, assuming
that every non-background pixel belongs to a weed. The
coverage is estimated by the ratio between the num-
ber of plant pixels in inter-rows and the inter-row total
area. This method will be referred to as the propor-
tional method (prop.).

Figure 13 presents the absolute error in weed cover
estimation using the bayesian classification in compar-
ison to the proportional method and the true coverage.
As we can see, on each field the estimation using the
bayesian classification is closer to the true value than
the proportional method. In fact, the coverage estima-
tion error is on average 3.7 times less with our method
than with the proportional method. We note that the
quantity of weed in an image is always underestimated
using the proportional method while it is underesti-
mated in 69% of the images using the bayesian classifi-
cation. However, since our estimation is quite closer to
the real value, we can conclude that our method offers
a good compromise with minimal error when compared
to the common trivial approach.

3 With this method, the boudaries of each row are computed
using the absolute minimum and maximum of the bounding box
of the blobs that cross the centre line.
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Fig. 13 Average estimation errors in percentage x&,’gm and

X P for different crops and levels of infestation using the area
as only characteristic for the bayesian classifier
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The weed cover estimation measure is subject to
bias and should be taken with care. The coverage could
be computed perfectly although the classification error
could not be negligible. This is because the area of weed
classified as crop could be compensated by the area of
crop classified as weed. We think that this bias may
occur in our experiments but the probability that it is
corrupting our results is very small given our classifica-
tion results.

6 Conclusion

In this paper we addressed the problem of evaluating
the degree of infestation in a section of a field repre-
sented by a single image containing one or more crop
rows. We presented an original technique for extracting
data in order to discriminate weeds from crops based
solely on the information available in the image. We
have shown that this technique provides a high classi-
fication rate on two distinct vegetation types and on
various levels of infestation. We have also illustrated
that the classification leads to a very good estimation
of the weed coverage on field sections. Both of these
results are steps toward smart herbicide application on
crop fields, thus helping to reduce the overall amount
of sprayed herbicide.

The presented technique has two major advantages:
no prior training nor prior knowledge on crop or weed
species are necessary. These constitute a requirement in
a real-time herbicide application context. Such a system
could be realized with an acquisition system, namely a
set of cheap cameras, placed in front of the tractor and
the herbicide applicator placed behind. The informa-
tion would serve to modulate the herbicide dose pass-
ing through the nozzles when they go over the scanned
area. The number of sensors could be increased to cover
the entire width of a boom (6 m or more) and the num-
ber of nozzles could be increased (each nozzle covering
a smaller area) for greater precision in the application
of the herbicide. Tractors speed is reasonably low when
applying herbicide (around 10km/h a~ 3m/s), which
gives our method approximately 1s to acquire and pro-
cess an image, and activate the required spraying noz-
zles, if the system is 3m long. Parallelism can also be
exploited as each row is treated independently, reducing
the time required to process an image.

The proposed method also has many other advan-
tages. Its intuitive probabilist reasoning makes it easy
to understand and adaptable to any sort of cultivation.
It is easily extensible, providing new characteristics to
the process is painless and can bring novel information
to the classifier. A possible venue for new type of in-
formation could imply using stereoscopic vision or time

of flight sensors to retrieve the height of each pixel. It
would also be possible to use ultra-violet/infrared sen-
sors to capture the non-visible signature of the plants.
Finally, the bayesian classifier also accounts for an ac-
ceptability parameter that could be tuned to favour the
classification of weed or crop. One that prefers missing
wort over missing weed can adjust this parameter to fit
his needs.

The present work can be extended in several ways.
First, it would be interesting to evaluate the perfor-
mance on images of entire rows instead of sections. The
herbicide application setup could be rearranged so that
it would not interfere with the real-time usage. Sec-
ond, cumulative knowledge in a single field could be
implemented so that the system could reuse knowledge
aquired earlier when processing images on the same
field. This could improve the quality of the inference.
Third, in order to fully benefit from the information
brought by multiple characteristics, the bayesian clas-
sifier could be modified to account for the interdepen-
dence between each selected property. Fourth, classify-
ing weeds in a single class stretch out the weed probabil-
ity distribution. This could be avoided by identifying, in
an unsupervised manner, multiple weed types, allowing
to tighten the distribution around those types. It could
also be considered that weed grows only between crops,
thus reducing the available area and their relative den-
sity in crop rows. Finally, a multiple classifiers voting
technique could help boosting the classification success
rate.
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