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ABSTRACT
With recent advances in mobile computing, swarm robotics
has demonstrated its utility in countless situations like recog-
nition, surveillance, and search and rescue. This paper pre-
sents a novel approach to optimize the position of a swarm
of robots to accomplish sensing tasks based on cooperative
co-evolution. Results show that the introduced cooperative
method simultaneously finds the right number of sensors
while also optimizing their positions in static and dynamic
environments.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—sensors, auton-

omous vehicules; G.1.6 [Numerical Analysis]: Optimiza-
tion—global optimization

General Terms
Algorithms, Performance

Keywords
Cooperative co-evolution, swarm robotics, mobile sensor net-
work, static and dynamic environment, visibility

1. INTRODUCTION
Swarm robotics is a research area of growing interest where

a group of relatively simple robots cooperate to achieve a
given goal that a single robot could not reach alone. Swarm
robotics is inspired from the fascinating world of social in-
sects, which demonstrates three valuable characteristics for
multi-robot systems: robustness, flexibility, and scalability
[5]. When applied to inspection and surveillance, swarm
robotics has a great potential to accomplish tasks in a myr-
iad of scenarios. For example, a swarm of robots could be
deployed to investigate hazardous or inaccessible environ-
ments, such as defective nuclear power plants (e.g. Fuku-
shima) or spatial exploration (e.g. surveying planet Mars).

This work focuses on automatic placement of a swarm of
mobile sensors in hostile and/or remote environments. More
specifically, we are motivated by telepresence applications
where an external user whishes to observe, from a specific
point of view, a scene that is inaccessible to humans for
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different reasons. A swarm of robots should then be able
to automatically configure itself so that the desired virtual

point of view can be reconstructed from the robots’ different
observation position of the environment. Sensor placement
optimization is thus essential if good coverage of the required
surfaces with a minimum number of sensors is desired.

To achieve this goal, we propose to use a cooperative co-
evolutionary algorithm to configure the swarm of robots to
observe the desired surfaces of the environment. The algo-
rithm should then be able to produce a configuration that
not only optimizes the position of the swarm but also esti-
mates how many robots are required to achieve our goal for
static and dynamic environments.

2. CO-ADAPTING MOBILE SENSORS
Co-adaptation of multiple species in an evolutionary al-

gorithm is a way to break down a hard problem into sev-
eral sub-problems that are resolved cooperatively by mul-
tiple sub-solutions [4]. Additionally, the sub-problems and
sub-solutions emerge naturally from the evolutionary pro-
cess. As the number of sensors needed to cover a general
environment is rarely known exactly a priori, cooperative
co-evolution offers a simple mechanism to adapt the num-
ber of species to the problem at hand.

In the co-evolutionary algorithm, the sensors are encoded
by three real numbers: the two position values (x, y) and the
orientation (angle θ). Evolved sensors are homogeneous, as
they share intrinsic parameters such as field of view, maxi-
mum range, etc. The individuals are thus represented as a
vector of three floating-point numbers. As pointed out by
Potter and De Jong [4], the inner loop of the co-evolutionary
algorithm can be of any type. We chose a simple real-valued
vector genetic algorithm with α-blend crossover, gaussian
mutation, and tournament selection.

The fitness of an individual is given as the coverage of a
group of collaborating sensors in the environment computed
through Monte-Carlo simulations. The coverage of a single
sensor is estimated by projecting rays in an occupancy grid
representation of the world and computing the footprint area
from the distance travelled by the rays and the orientation
of the surface hit. The computed collaboration fitness is
assigned only to the individual being evaluated, the fitness
of the other species representatives remain unchanged.

Each species contribution to the cooperative solution is
evaluated by the difference in coverage with and without the
representative of that species, allowing the identification of
species that are unproductive and should be removed. The



Figure 1: Static (left) and dynamic (right) worlds.

Figure 2: Co-adapted configuration of 11 sensors.

improvement of the algorithm is monitored by the quality of
the set of representatives at each ecosystem generation. If
the set of representatives has not improved after a number of
generations, then the mechanism to delete unfit species and
add a new one is executed. This mechanism allows for an
efficient adaptation of the number of sensors required to ac-
complish the task. The co-evolutionary algorithm presented
so far will allow: (1) a good enough configuration of sensors
to be found so that the entire environment is sensed; (2)
the number of sensors naturally from the geometry of the
environment to be adapted; and (3) the found configuration
when movements occur in the environment to be adjusted.

3. EXPERIMENTS
The experiments consist of optimizing, with the proposed

algorithm, the configuration of a homogeneous sensor net-
work starting with a single species (sensor) in a static and
a dynamic environment, shown in Figure 1. We wish to ob-
serve the walls of the environment entirely. For the dynamic
scenario, only two small blocks are present at the same time,
beginning with the north-west and south-east positions and
moving counter-clockwise.

Figure 2 presents the final configuration of the represen-
tatives found by one of the ten experiments conducted with
the co-evolution. We observe that the optimization process
is able to find a configuration covering most of the complex
environment. In fact, this process guarantees that the net-
work is composed only of sensors that are contributing to the
swarm coverage. More complete coverage can be achieved by
reducing the contribution threshold, with a risk of produc-
ing more unfit species [4]. In Figure 3, the convergence to
an optimal solution is compared with the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [2], and a canon-
ical Particle Swarm Optimization (PSO) [3], each with 11
sensors. It is clear that cooperative co-evolution is able to
adapt the number of sensors and configure them in a suitable
position in a reasonable amount of time.

Figure 4 presents the average fitness of the species rep-
resentatives fitness for ten successive changes in a dynamic
environment over five runs. From the algorithms point of
view, only the fitness is different between two changes, i.e.
the algorithms preserve all of their parameters and individ-
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Figure 3: Evolution of coverage in static mode.
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Figure 4: Evolution of coverage in dynamic mode.

uals. Sensors are not rewarded for the surface observed on
the moving blocks. For PSO, we included a quantum restart
technique on the main swarm [1]. CMA-ES and PSO evolve
seven sensors, while co-evolution evolves up to seven species.

As we observe, the co-evolution is able to reconfigure the
sensors conveniently and rapidly after a change, while CMA-
ES and PSO seem to have more difficulties to do so. We
also note that the most important mechanism of the co-
evolutionary technique in dynamic environments is the stag-
nation detection that acts as a restart for sensors that are the
most affected by a change. This mechanism, which deletes
unfit sensors and adds a new one, helps the algorithm to
reach a configuration that suits the current environment ge-
ometry quickly.
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