
The Visual Keyboard: Real-Time Feet

Tracking for the Control of Musical

Meta-Instruments

Frédéric Jean a,∗ Alexandra Branzan Albu b

aDept. of Electrical and Computer Engineering
Laval University, Québec, QC, Canada, G1K 7P4

bDept. of Electrical and Computer Engineering
University of Victoria, Victoria, BC, Canada, V8W 3P6

Abstract

This paper proposes a new perceptual interface for the control of computer-based
music production. We address the constraints imposed by the use of musical meta-
instruments during live performance or rehearsal by tracking feet motion relatively
to a visual keyboard. The visual attribute stands for the fact that, unlike its physical
counterpart, our keyboard does not involve any force feedback during key-presses.
The proposed tracking algorithm is structured on two levels, namely a coarse level
for foot regions, and a fine level for foot tips. Tracking works in real-time and
handles efficiently feet regions merging/unmerging due to spatial proximity and
cast shadows. The output of the tracking is used for the spatiotemporal detection
of key-”press” events.

Key words: computer vision, motion tracking, real-time event detection

1 Introduction

The computer-mediated interaction between musician and instrument exhibits
a significantly increased bandwidth of communication compared to the tradi-
tional musical performance act. As shown by Schloss and Jaffe [1], this new
interaction paradigm goes beyond the one-on-one correspondence between the

∗ Corresponding author. Tel.: +1 418-656-2131 ext. 4786; fax: +1 418-656-3594.
Email addresses: fjean@gel.ulaval.ca (Frédéric Jean), aalbu@ece.uvic.ca

(Alexandra Branzan Albu).



performer’s actions and the sonic result, which is characteristic for acoustical
instruments. Computer-mediated interaction defines meta-instruments, which
use algorithms for music generation. While playing a meta-instrument, a par-
ticular gesture of the performer can have practically any musical result, which
depends in fact on the software generating the music. Hence, there is no in-
trinsic relationship between the performer’s actions and the sonic result.

The main issue raised by this fundamental change in the paradigm of inter-
action is related to the musician’s perception of causal relationships when
playing meta-instruments. In order to enable this perception, the one-on-one
acoustical correspondence can be extended to a limited selection of sonic map-
pings of the performer’s gesture. Specifically, the performer can choose among
a limited number of mappings by controlling the software for music generation.

The technique proposed in this paper is generic allows for controlling the meta-
instrument via foot gestures. Our work is generic and compatible with any
type of foot-controlled meta-instruments. The current implementation of the
proposed technique has used as musical meta-instrument the Mathews/Boie
Radio Drum, which is a sensor able to track the position of two mallets in 3D
and in real-time.

The musician controls the sound mapping of the Radio-Drum using a bank
of organ-style foot pedals. The bank of organ-style foot pedals currently used
with the Radio-Drum exhibits some significant usability limits. First, its lim-
ited portability and considerable weight makes it difficult to transport during
concert-related travels. Second, the interaction is prone to errors caused by
hitting two keys at the same time.

To address these limits, this paper describes a new prototype of keyboard,
thereafter called visual keyboard, which functions using computer vision algo-
rithms; the visual attribute shows the fact that, unlike a physical keyboard,
our prototype does not involve any force feedback during key-presses. While
a brief description of our study appeared in Jean et al. [2], the present paper
contains a significant amount of new conceptual and algorithmic content with
respect to [2]. The remainder of the paper is structured as follows. Section 2
describes related work in the area of vision-based perceptual interfaces, while
section 3 presents our proposed approach. Section 4 shows our experimental
results and their validation. Section 5 draws conclusions and describes future
work.

2



2 Related Work

Since human perception is dominated by vision, humans are very skilled at
visual methods of communication. A seminal work in social psychology by
Mehrabian [3] shows that words contribute only with 7% to a message’s mean-
ing in face-to-face communication, while the tone of voice contributes with 38%
and the body language contributes with 55%. Since the gestural component
plays a major role in human-to-human communication, vision-based percep-
tual interfaces have partially translated this paradigm to human-computer
interaction. The partial attribute comes from the fact that computer vision
algorithms are currently able to recognize only a limited set of human ges-
tures, as opposed to the human ability to detect a large variety of gestures,
and also to differentiate among subtle nuances and extract meaning from the
way a person performs a certain gesture.

Vision-based perceptual interfaces are based on algorithms for real-time track-
ing, modeling and recognition of human gestures from video input. Such
interfaces have been developed for a variety of applications, ranging from
health care (i.e. non-contact interfaces for the operating room [4]) to video
games (Eye-Toy [5]) and to music generation and control. Tracking algorithms
for vision-based perceptual interfaces can be classified into two main cate-
gories according to the motion modeling paradigm. The first category uses
rigid appearance-based motion models and includes spatio-temporal template
matching techniques (for instance Betke et al [6]) and blob-based tracking
[7,8]. The second category uses deformable motion models or snakes in order
to extract a representation of the bounding contour of the body part and to
dynamically update it over time. For instance, Isard and Blake proposed in
[9] and extension of the Condensation algorithm [10] which enabled them to
develop a tracker able to follow the natural drawing action of a hand holding
a pen.

The application context is essential for the process of selecting meaningful
and easy-to-recognize gestures, as well as for determining the necessary level
of accuracy and the maximal latency in gesture tracking and recognition.
Therefore, the remainder of this section will focus only on perceptual interfaces
for musical applications.

In 1919, Lon Theremin invented the world’s first non-acoustic musical in-
strument based on proximity sensing; the Theremin sensed the distance to a
performer’s hands using changes in capacitance. Since then, technological ad-
vances have enabled the development of a wide diversity of interactive systems
that perceive human motion and respond to it by affecting some aspect of the
music generated or modified by computer. As shown by Winkler [11], such sys-
tems can be classified into two main categories. In the first category, human

3



motion is used as direct input for generating music; in the second one, motion
data controls musical parameters only. These two categories are non-exclusive,
since some systems can both generate and control music using human motion
information.

Systems that perceive human motion for music generation purposes are typi-
cally designed for entertainment or educational applications. Wren et al. [12]
mention that such applications are based on a particular class of hyperinstru-
ments, a term coined by Machover [13]. This specific class of hyperinstruments
contains systems primarily designed for people with little musical background
who still wish to participate in musical/multimedia creations. The computer
that coordinates the music generation process provides the basic layer of mu-
sical knowledge necessary for the creation act. In addition to music, some
systems produce related visual effects for a more immersive multimedia expe-
rience.

Creating music using human body motion is an intriguing idea, since it reverses
the traditional causal relationship between music and dance. This concept has
been explored in EyesWeb by Camurri et al. [14], and more recently in Castel-
lano et al. [15]. In [14], human motion information is extracted using simple
computer vision algorithms for the detection and tracking of the centers of
mass of the silhouette and ten body joints; these algorithms use user-specified
regions of interests and colour thresholds via a graphical user interface. In
[15], the focus is on extracting whole body motion information rather than
the motion of body parts.

DanceSpace, described in Wren et al. [12] and Sparacino et al. [7], is another
perceptual space where dancers can generate music and graphics through mo-
tion. A performance in DanceSpace mimics the one of a street artist who has
several instruments attached to her body parts. Compared to EyesWeb, the
computer vision technology in DanceSpace is more sophisticated and mature;
this technology, described in Wren et al. [8], uses a multi-class statistical model
of color and shape for background subtraction and for tracking body parts in
a wide range of viewing conditions.

Other applications targeting the creative participation of users with little mu-
sical background deal with interactive music rendition rather than generation.
In Sim et al. [16], the style of the music performance (fast or slow, loud or soft)
is controlled by the listener by interacting with the playback system via hand
motions. Hand and finger motions are first tracked using a simple algorithm
based on skin colour detection; next, information about the area of the moving
body part (arm versus finger) and about the speed of motion is extracted.

The second category of music interfaces using human motion is focused on
the control of musical parameters during live performance, rehearsal or re-

4



play. Such interfaces are mostly designed for professional musicians and for
integrating prerecorded with live performances. The system proposed by Lee
et al. [17] enables performers to freely manipulate the tempo of the recorded
audio and video. Their approach first extracts the user’s beats, and then maps
these beats to the music rhythm by performing synchronized audio and video
time stretching. Computer vision techniques are used during the user beat ex-
traction process. The work of Behringer [18,19] deals with conducting digitally
stored music by the visual tracking of the baton and the hand motion. This
work has applications in conducting mixed ensembles of human musicians and
electronic instruments. The visual tracking algorithm is based on extracting
characteristics of conductor’s hand trajectory during particular beats (i.e. a
“three” beat).

Selecting the optimal body part(s) and their associated motion(s) for the
control of music interfaces is a central design issue influencing the algorithm’s
computational complexity (and thus its ability to function in real-time), as
well as the usability of the interface (i.e. how “natural” the interaction is). A
comprehensive picture of the state of the art of computer vision techniques
for large-scale body movement, gesture recognition, and gaze detection for
multimodal human computer interaction is to be found in Jaimes and Sebe
[20].

Some computer vision approaches for musical interfaces define their set of
gestures among facial motions and/or expressions. The Mouthesizer proposed
by Lyons et al. [21,22] extracts basic shape parameters of the mouth cavity
such as height, width and aspect ratio and maps them to musical control
parameters. The system described in Merril [23] processes infrared data for
recognizing head nods, tilts, and shakes; these gestures are used for the discrete
and continuous control of an effects unit.

One limitation of controlling musical interfaces via head or face movements is
the extra cognitive load imposed on the performer. Nishikawa et al. [24] show
that interacting via facial gestures is distracting and has a negative impact
on the human performance when the task to be performed has a significant
intrinsic cognitive load; this is also the case in live performance and rehearsal.
Moreover, with regard to the live musical performance context, facial expres-
sions play a central role in non-verbal communication and in connecting with
the public. Therefore, controlling an interface with face or head gestures does
not seem to be an appropriate solution for live concerts.

Other vision-based techniques for the control of musical interfaces track hand
gestures. The system in Bradski and Davis [25] uses motion history gradients
to recognize simple gestures and thus to control a vocal music synthesizer. For
instance, waving gestures control the music tempo; waving with the left/right
arm moves the music left/right. Hand gestures are not applicable for the con-

5



trol of a wide category of instruments, where hands are directly involved in
playing the instrument.

The approach proposed in this paper belongs to the area of perceptual inter-
faces for the control of music production. We address the constraints imposed
by the use of meta-instruments during live performance or rehearsal by track-
ing feet motion relatively to a visual keyboard. At the best of our knowledge,
this is the first vision-based perceptual interface using feet gestures. The choice
of this novel interaction paradigm is justified by application-specific user and
task models. Indeed, the design of the visual keyboard is directly inspired
from the traditional, organ-style bank of foot pedals. In the proposed pro-
totype, colour cues and elevated height for the keys corresponding to black
organ keys (see Figure 1(a)) are used to help performers locate the desired
key. Moreover, a similar set of foot motions are used for controlling the inter-
action with the visual keyboard as in the traditional set-up. This similarity
has a positive impact on the learnability and efficiency of the performer’s in-
teraction with the visual keyboard. The following section provides a detailed
description of the proposed approach.

3 Proposed Approach

The structure of the proposed system is modular. The system is first initial-
ized with user input about workspace and parameter values to be used by
subsequent processes. Next, background subtraction is performed in order to
find feet regions in the workspace. Tracking is necessary for establishing cor-
rect inter-frame correspondence between foot regions, and between foot tips.
The output of the tracking module consists in spatiotemporal trajectories of
labeled foot tips. These trajectories are used for the temporal detection and
for the spatial localization of key-“press” events. Once a key-“press” event is
temporally detected, its spatial localization is performed by identifying the
key containing the contact point between the foot tip and the keyboard.

The system has real-time processing capabilities, since it is able to detect a
key-“press” one frame (1/30 second) after its occurrence. Therefore, the entire
sequence of steps with exception of initialization is performed on a frame-by-
frame basis. The following subsections describe the algorithms involved in each
of the modules of the system.

6



(a) (b)

Fig. 1. Defining the workspace and the keyboard corners’ position during the ini-
tialization process. a) User-defined workspace boundary, specified as a discrete set
of contour points (white circles); corners of the keyboard (black squares) are also
user-specified. b) Binary mask W of the workspace; algorithms will only consider
the region formed by black pixels.

3.1 Initialization

This process is performed only at the beginning of the musician-keyboard
interaction. It assumes that both camera and keyboard have fixed positions
during the musical performance. During initialization, the user specifies via a
simple graphical interface the spatial location of the keyboard on the image
plane as well as a “workspace” W (x, y) surrounding this keyboard (see Figure
1). This workspace represents the region of the image where the feet and the
foot tips will be tracked. The specification of a binary workspace mask is nec-
essary for increasing the robustness of background subtraction and tracking.
During initialization, the user also specifies all threshold values to be used
in the further steps of the approach. The specification of these parameters is
necessary in order to handle the variability in environmental conditions, as
well as in the performer’s key-“press” style. Details about these thresholds are
to be found in the subsections describing the processes that are using them.

3.2 Background Subtraction

The algorithm used in this work computes statistics of the background when
it is static, with feet not present in the workspace; for robust statistics, 2-3
seconds of video with static background only are sufficient. First- and second-
order background statistics are computed as follows:

7



IB,µ(x, y, c) =
1

T

T∑
t=1

IB,t(x, y, c) ,

IB,σ2(x, y, c) =
1

T − 1

T∑
t=1

[IB,t(x, y, c)− IB,µ(x, y, c)]2
(1)

where x and y define the spatial location of the pixel, c is the colour component
(c = 1 for red; c = 2 for green; c = 3 for blue), T is the number of the
considered static frames, and IB,t(x, y, c) is the colour image corresponding
to frame index t. IB,µ(x, y, c) and IB,σ2(x, y, c) are the mean and variance
images respectively. The background subtraction process uses these statistics
for generating the foreground image IM,t(x, y) as follows:

IM,t(x, y) =

1 if I∆,t(x, y) ≥ τb

0 otherwise
; (2)

I∆,t(x, y) =

3∑
c=1

[IB,t(x, y, c)− IB,µ(x, y, c)]2

3∑
c=1

IB,σ2(x, y, c)
W (x, y) (3)

where τb is a user-defined threshold in the initialization step. The use of a user-
specified threshold allows for a correct background subtraction under various
levels of environmental lighting. One may notice that the background sub-
traction process is based on the quadratic difference I∆,t(x, y) , which conveys
how different the intensity at location (x, y) is from the average background
intensity. Figure 2 illustrates a typical output of a background subtraction
process. Note that the result does not perfectly outline the feet location in the
workspace, due to shadow, non-uniformities in the colour distribution of the
feet etc.

3.3 Tracking

Tracking is performed at both a coarse level (foot) and a fine level (foot tip)
on a frame-by-frame basis. This two-level tracking approach is able to follow
in real-time the two main types of feet movements involved in operating a
keyboard. Specifically, while placing the foot in front of the desired key in
preparation for the key-“press” is a quasi-horizontal translatory motion, the
actual key-“press” is a rotation in a plane orthogonal to the image plane.
When a key is meant to be “pressed”, the heel of the foot is placed on the
ground in front of the key. The key-“press” is performed using a downward

8



(a) (b)

Fig. 2. a) Original frame with feet present in the workspace; b) Result of feet
detection via background subtraction; τb = 8; T = 150 static frames.

motion of the foot using the heel as pivot; thus, only the foot tip exhibits a
vertical downward motion in the image plane.

One may note that, in order to detect key-“presses”, only the downward mo-
tion of the foot tip needs to be detected. Coarse-level tracking provides search
regions for the foot tips, thus it is a necessary preprocessing step for fine-
level tracking. However, in some circumstances where foot regions merge (see
section 3.3.4), fine-level tracking is performed first, and the resulting foot tip
labels are propagated to foot regions.

The global flowchart of the tracking algorithm is shown in Figure 3. The
following subsections describe approaches for foot region detection (coarse-
level tracking), foot tip detection (fine-level tracking), as well as for inter-frame
feet correspondence involved in both levels of tracking.

3.3.1 Detection of Feet Regions

To find the foot regions in the current frame t, all non-zero regions are first
found on the foreground image IM,t(x, y) by performing a connected compo-
nent analysis. The interaction with the keyboard at frame t may involve one
foot, two feet, or no feet at all, if no interaction is present. Therefore, only the
two largest regions in the foreground image are selected, if they exist. The num-
ber of foot regions under consideration at frame t, denoted by NR(t), can take
three values: 0 (no region), 1 (one region), or 2 (two regions). For NR(t) = 2,
each region represents one foot. For NR(t) = 1, the region can represent either
one foot or both feet; the latter case occurs when feet are positioned close to
each other so that their corresponding regions merge into one. Region merging
is discussed in section 3.3.4. Each region Ru(t), u = 1 . . . NR(t) is represented
by its rectangular bounding box; this representation will be further used for
searching foot tips and for establishing inter-frame feet correspondence. Each
bounding box is specified by its four corners given by their x and y coordi-

9



Find foot
regions

Feet
correspondence

merged ?

Foot regions

Find the marker
in each foot region

Markers
correspondence

frame ?

Foot regions

merged in previous

Markers
position

Binary foreground
frame

in feet region
Find two markers

no

yes

yes no

Fig. 3. Flowchart for tracking algorithm.

nates as follows: Ru
xL(t) (left x), Ru

xR(t) (right x), Ru
yT (t) (top y), and Ru

yB(t)
(bottom y).

3.3.2 Detection of Foot Tips

To enable foot tip detection, the video sequences in the experimental database
were acquired with shoes having their forward extremities outlined in white
(see Figure 1(a)). Foot tip detection is therefore based on gray scale informa-
tion; bright pixels (i.e. with a gray value greater than a user-specified threshold
τg) in the foot regions are likely to belong to a tip. One should note that the
brightness cue can be easily replaced with other cues such as colour, etc. and
represents a convenient solution for outlining foot tips in a musical perfor-
mance context.

For two disjoint foot regions, one tip region is detected inside each of these us-
ing connected component labeling. Specifically, in each foot region the largest
connected component composed of bright pixels is associated to the foot tip.
When region merging occurs, the two largest connected components composed
of bright pixels are associated with foot tips. Figure 4 shows a typical example
of detecting foot and foot tips.

10



(a)

Feet regions

Foot tip regions

Workspace mask

(b)

Fig. 4. Example of foot region and foot tip detection. a) Original colour frame; b)
Workspace mask, foot regions, foot tips; τb = 8; T = 150 static frames; τg = 175.

Foot tip regions are denoted T v(t), v = 1 . . . NT (t) where NT (t) is the number
of tips detected at frame t in a given foot region with possible values 0 (no
foot tip), 1 (one foot tip), 2 (two foot tips). A foot tip region is represented
by its rectangular bounding box given by the four coordinates of its corners
as follows: T vxL(t) (left x), T vxR(t) (right x), T vyT (t) (top y), T vyB(t) (bottom y).

Two additional parameters are computed from the foot tip regions in order
to enable temporal key-“press” detection (see section 3.4) and to identify the
“pressed” key (see section 3.5). Specifically, the foot tip position is given by
the coordinate vector of the mass center of the foot tip region, p̄vmc(t) =[
pvx,mc(t), p

v
y,mc(t)

]
, v = 1 . . . NT (t). The contact point between the foot tip

and the “pressed” key (in the eventuality of a key “press” event) is defined

as p̄vcontact(t) =
[
pvx,mc(t), T

v
yB(t)

]
, v = 1 . . . NT (t). Thus, the x-coordinate of

the contact point coincides with the x-coordinate of the mass center of the
foot tip region, and the y-coordinate coincides with the bottom y of the tip’s
bounding box.

3.3.3 Establishing Feet and Feet Tips Correspondence

Feet correspondence is necessary for extracting the spatiotemporal trajectory
of each feet tip; these trajectories will be further used for detecting key-“press”
events. Feet correspondence is performed on a frame-by-frame basis by com-
paring the spatial location of feet bounding boxes in every pair of adjacent
frames. This work uses two different techniques for feet correspondence, based
on whether region merging between frames t and t− 1 is present or not. The
first technique is applicable when no region merging occurs, while the second
handles region merging cases. Both techniques, as well as the procedure for
detecting region merging are described below.

11



3.3.4 Detection Region Merging and Unmerging

Region merging between frames t− 1 and t occurs when frame t− 1 contains
two foot regions (NR(t−1) = 2), and only one foot region is present in frame t
(NR(t) = 1). In addition, the foot region in frame t overlaps partially with both
foot regions in frame t−1, that is R1(t)∩R1(t−1) 6= ∅ and R1(t)∩R2(t−1) 6= ∅.
Region unmerging is the inverse process of region merging. Specifically, region
unmerging between frame t and t − 1 occurs when frame t contains two foot
regions, and only one foot region is present in frame t− 1. The partial overlap
condition remains the same as for region merging.

3.3.5 Simple Feet Correspondence

Simple feet correspondence is characterized by the absence of region merging
between frames t − 1 and t. For this case, feet correspondence is computed
using as criterion the largest overlap ratio between the bounding boxes of the
foot regions in frames t and t− 1 respectively.

Let us consider ϑ(B1, B2), the overlap ratio between two bounding boxes B1

and B2. This ratio is defined as

ϑ(B1, B2) =
A(B1 ∩B2)

max (A(B1), A(B2))
(4)

where operator A returns the area of a bounding box, and B1 ∩ B2 is the
intersection of the two bounding boxes B1 and B2.

A 2×2 correspondence matrix C is formed, where each element cij is computed
as follows:

cij =

ϑ(Ri(t), Rj(t− 1)) if 0 ≤ i ≤ NR(t), 0 ≤ j ≤ NR(t− 1), t > 1

0 otherwise
(5)

where the bounding boxes Ri(t), Rj(t − 1) belong to the i-th foot region in
frame t, and to the j-th foot region in frame t− 1 respectively.

The labeling process considers a set containing two labels, {l, l̄} namely. A
complement operator functions over this set. Therefore, the two labels in the
set are mutual complements, that is l = ¯̄l . The purpose of labeling is not to
distinguish between the left and right foot, but to maintain a correct inter-
frame correspondence between feet regions in motion, and thus to enable the
correct extraction of feet tip trajectories.

12



The initialization of the labeling process is random. When a foot region is
first detected in frame t0, and frame t0 − 1 contains no feet regions, then the
label of the detected foot region is randomly set to either l or l̄. When two
feet regions are first detected in frame t0, each region is randomly assigned
one different label.

Tracking feet over the frames succeeding t0 implies labeling feet regions in
correspondence over pairs of adjacent frames (t, t − 1). All regions Ri(t) in
frame t are labeled according to the inter-frame correspondence pattern (t, t−
1) as follows:

L(Ri(t)) =

L(Rj∗(t− 1)) if i = i∗

L(Rj∗(t− 1)) otherwise
,

with [i∗, j∗] = arg max
1≤i,j≤2

(cij)

(6)

where cij are elements of the correspondence matrix computed for frames
(t− 1, t) with (5). Note that (6) holds only if at least one element in the cor-
respondence matrix is non-zero. If this condition is not satisfied, then labeling
is randomly reinitialized in frame t.

Let us consider the case where both frames t and t − 1 contain two distinct
feet regions, that is NR(t − 1) = NR(t) = 2. The labeling process puts first
in correspondence the regions the most likely to belong to the same foot in
motion, namely the regions Ri∗(t) and Rj∗(t − 1) whose overlap coefficient
ci∗j∗ in matrix C is maximum. Hence, region Ri∗(t) receives the same label
as region Rj∗(t− 1). The second region in frame t receives the complemented
label, since it represents the other foot in motion.

Another simple correspondence case handled by (6) is the one where frame t
contains 2 regions, while frame t− 1 contains 1 region only. This case occurs
when one foot is present in both frames t and t − 1, while the second foot
appears in frame t. In this case, the only non-zero element in matrix C is the
maximum element ci∗j∗ . According to (6), the feet regions belonging to the
foot present in both frames t and t − 1 are labeled with the same label l ,
while the foot appearing in frame t receives the complemented label l̄.

It is worth mentioning that the random initialization of labels does not allow
for recovering information about the motion of one specific foot throughout
successive appearances and disappearances from the workspace; each foot,
either left or right, may receive in turn the same label over the course of a
video sequence.

13



3.3.6 Foot and Foot Tips Correspondence in the Presence of Region Merg-
ing/Unmerging

The occurrence of region merging/unmerging between frames t − 1 and t is
detected as in 3.3.4. In the presence of region merging/unmerging, tracking is
shifted at the feet tip level. The correspondence between frames t− 1 and t is
hence computed using the spatiotemporal overlap of feet tip bounding boxes.
As for simple correspondence, the elements c′ij of a 2×2 correspondence matrix
C ′ are computed as follows:

c′ij =

ϑ(T i(t), T j(t− 1)) if 0 ≤ i ≤ NT (t), 0 ≤ j ≤ NT (t− 1), t > 1

0 otherwise
(7)

where bounding boxes T i(t), T j(t − 1) belong to the i-th foot tip in frame t,
and to the j-th foot tip in frame t− 1 respectively. The labeling process uses
the same set of labels as in the simple correspondence case. The difference with
respect to the simple correspondence is the fact that labels are assigned using
the maximum overlap criterion applied to feet tip bounding boxes instead
of feet regions. Therefore, labeling is computed sequentially by substituting
c’ij to cij in (6). The formula using this substitution, thereafter called (6′),
handles all the correspondence cases already discussed for (6), namely pairwise
correspondence (see Figure 5(d)), as well as the detection of only one pair of
foot tips in partial overlap (see Figure 5(e)).

In case of feet region merging, frame t−1 has two foot regions (each containing
one foot tip respectively), while frame t has only one foot region containing
two foot tips. Assuming that the foot regions in frame t−1 have already been
labeled using simple correspondence, then their corresponding foot tips inherit
the label of the foot region whom they belong to. Next, the two foot tips in
frame t are labeled by evaluating their overlap with foot tips in frame t− 1 as
in (6′).

Conversely, in case of feet region unmerging, frame t − 1 has one foot region
containing two tips, while frame t has two foot regions (each containing one
tip respectively). Since foot tips in frame t − 1 have already received labels
using (t− 2, t− 1) inter-frame correspondence, foot tips in frame t are labeled
with (6′). The labels of foot tips in frame t are then propagated to their
corresponding foot regions.

There can be a number of frames between the occurrence of one region merging
and its corresponding region unmerging. All these frames contain one foot
region only with two foot tips. The labeling process is carried these frames at
the foot tip level using (6′). Once region unmerging occurs, the foot tip labels

14



(a) (b)

(c) (d)

(e) (f)

Fig. 5. Two-level tracking process over a sequence of 5 successive frames.

are propagated to their corresponding feet regions, and tracking at the foot
region level is resumed.

Figure 5 illustrates an example of the two-level tracking process using a typical
scenario of region merging-unmerging over a subsequence of successive frames.
For clarity purposes, the frames in this subsequence are further referenced as
1 to 5. Bounding boxes (BB) in the current frame are shown with continuous
borders, while those projected from the previous frame have dashed borders.

Figure 5(a) shows a simple feet correspondence computed between current

15



frame (1) and its predecessor (0, not shown); both frames contain two distinct
feet regions, and only one foot is in motion (overlapping BBs in shades of blue).
Figure 5(b) shows the simple feet correspondence between current frame (2)
and its predecessor (1); the viewpoint is slightly zoomed in with respect to
Figure 5(a). Again, one may notice that one feet remains stationary (red BB),
while the other continues its motion (overlapping blue BBs). As feet get closer
to each other, region merging occurs in frame (3), which is the current frame for
both Figure 5(c) and Figure 5(d). The detection of region merging is shown in
Figure 5(d), which contains one red BB in current frame (3) in partial overlap
with two dashed BBs projected from previous frame (2). In the presence of
region merging, inter-frame correspondence is shifted at the foot tip level, as
shown in Figure 5(e). Region merging persists in frame (4), which is the current
frame for Figure 5(e). In frame (4), only one foot tip is in partial overlap
with its correspondent for the previous frame (3); interframe correspondence
is still correctly performed using the maximum partial overlap criterion and
complemented labels. Figure 5(f) shows region unmerging in frame (5); labels
are propagated from feet tips to their corresponding feet regions.

3.4 Temporal Detection of Key-“press” Events

As in the case of physical foot pedals, the velocity of the foot descending upon
the key is maximal just before the hit occurs. Therefore, the keyboard hit
detection is based on a maximum velocity criterion and is performed using the
trajectory of the y coordinate of the foot tip’s centre of mass. Key-“presses”
performed with either foot are identified, since the spatiotemporal trajectories
of feet tips are built using feet labels produced by the tracking process.

As specified in section 3.3.2, let p̄mc(t) denote the projection onto the image
plane of the trajectory of one foot tip tracked with the algorithm in 3.3. The
y component of this trajectory is denoted by pmc,y(t). The dynamics of the
foot tip motion, namely its velocity vy(t) and acceleration ay(t), are computed
using first and second order differentiation. For that purpose, each foot tip in
the current frame t must have been detected and labeled at frames t, t − 1,
t− 2, t− 3. The foot associated with that foot tip through the common label
l is considered to have hit the keyboard at frame th if the following conditions
are simultaneously met:

vly(th − 1) = plmc,y(th − 1)− plmc,y(th − 2) > τv (8)

aly(th) = vly(th)− vly(th − 1) < 0

= plmc,y(th)− 2plmc,y(th − 1) + plmc,y(th − 2) < 0
(9)

16



1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210
−15

−10

−5

0

5

10

15

Frame no.

Y
 V

e
lo

c
it
y
 (

p
ix

e
ls

/f
ra

m
e

)

Keyboard hit detection

Foot 1 velocity

Foot 2 velocity

Velocity threshold

Foot1 idle after hit

Foot2 idle after hit

Foot 1 hit

Foot 2 hit

Fig. 6. Key-“press” and idle state detections. Keyboard hit times are shown by
triangles; the following idle status is shown with a continuous line; τv=7 pixels/sec;
τi=5 pixels.

aly(th − 1) = vly(th − 1)− vly(th − 2) > 0

= plmc,y(th − 1)− 2plmc,y(th − 2) + plmc,y(th − 3) > 0
(10)

The above conditions associate a keyboard hit with the occurrence of a local
maxima in the vertical velocity of the marker. To preserve only “significant”
local maxima as opposed to those induced by noisy marker locations, the y-
velocity in the previous frame th−1 must be above a certain threshold τv. Our
experiments have consistently used τv = 7 pixels/second. The exact temporal
location of the keyboard hit event is indicated by a zero-crossing (positive
towards negative) in the vertical acceleration.

Key-“presses” can be events of short duration (user “presses” the key and
immediately “releases” it), or they can last a longer time (foot remains in idle
state on the key). The foot idle state indicates that the user has intentionally
prolonged his key-“press” in order to continue the action associated with the
“pressed” key. Once a key-“press” by foot l is detected at frame th, foot l is
considered in idle state at frame tc if the spatial location of its tip’s center of
mass stays unchanged during [th, tc] as follows:

∥∥∥plmc(t)− plmc(th)
∥∥∥ ≤ τi ∀ t ∈ [th, tc] (11)

where τi is a threshold (in pixels) for the maximum acceptable distance be-
tween the locations of the foot tip’s centre of mass. τi is typically set to 5
pixels. Figure 6 shows the vertical velocity of two feet for 100 frames, as well
as the temporal occurrences of key-“press” events and idle states.

17



3.5 Spatial Localization of Key-“press” Events (Key Identification)

Once a key-“press” event is temporally detected at time th, its spatial location
needs to be determined as well. Thus, it is necessary to find out which key
has been “pressed”, and thus to trigger the specific music software response
associated to that key. The temporal detection of the key-“press” also locates
the contact point between the foot and the keyboard, which belongs to the
foot tip who “pressed” the key. As specified in section 3.3.2, this contact point
is denoted as p̄contact(th); its coordinates are given in the image plane.

To identify the “pressed” key from the contact point, the region of the frame
occupied by each key must be found. Since the location of keyboard corners in
the image plane is known from manual initialization (section 3.1), a homogra-
phy matrix H is built using the correspondence between the keyboard corners
b̄i in the image and the real corners of the keyboard model b̄M

i , i = 1 . . . 4.
The homography maps any point inside the keyboard model into a point in
the image. Of particular interest for key identification are the corners of each
key in the keyboard. The mapping of the known key corners in the model
k̄M
s to their corresponding key corners in the image plane k̄s, s = 1 . . . 30 is

computed as follows:

k̂s = Hk̂Ms (12)

where k̂Ms = [k̄M
s , 1]T, k̂s = [e · k̄s, e]T are expressed in homogeneous coordi-

nates with e being the scale factor. The coordinates of the key corners in the
image plane k̄s can be simply retrieved by dividing the x and y components
of k̂s by e. These coordinates determine 12 distinct polygonal regions in the
keyboard, one for every key in the image plane (see Figure 7(d)). Therefore,
the key identification process finds the “pressed” key by determining the index
of the polygonal region in the image plane which contains the contact point
p̄contact(th).

4 Experimental Results

The keyboard prototype built for this work represents one octave of a piano
keyboard and it is made of wood, glue, and paint. Its length and width-related
dimensions are shown in Figure 7(b). In addition, small keys have a 2.5 cm
height, which enables the user to differentiate easily between small and large
keys. Video data was acquired with a Logitech R© Quickcam R© Pro 4000 with a
320× 240 frame resolution and a frame rate of 30 fps. The acquisition process
was performed under uncontrolled ambient lighting.

18



(a)

2 3 4 5 6 71

5
84

12.5

30

12

8 9 10 1211

(b)

(c) (d)

Fig. 7. a) Photographed keyboard; b) Keyboard model, with dimensions given in
cm; c) Keyboard appearance in the image plane; d) Indexed polygonal regions in
keyboard retrieved via homography of key corners.

The proposed approach was validated on 6 minutes (8307 frames) of video
footage acquired with a music performer simulating foot actions which are
typically used for the control of a meta-instrument with foot pedals. Specifi-
cally, video data contains slow and rapid foot motions, idle states, as well as
simultaneous motion of both feet pressing on different keys. Table 4 summa-
rizes the experimental validation of our approach.

The video footage was parsed into two sequences, acquired at different times
and thus with a slightly different lighting. Based on the values shown in Ta-
ble 4, the average ratio of missed key-“press” detections is 11.5%, while the
average ratio of false key-“press” detections is 1%. The average error in key
identification is 9.4%.

The main source of error for missed detections consists in the low values of
speed at which the specific key-“presses” were performed. This issue may be
addressed by learning the speed pattern of key-“presses” for a specific user
from a training sequence.

The error in key identification occurs mostly for the elevated keys, which have
a lower area than the keys located on the ground plane; also, the height of
the elevated keys introduces a small error in the homography process (which
assumes that the entire keyboard is planar). Future work will focus on mini-

19



Statistical performance measures Sequence 1 Sequence 2

Total no. of frames 8307 1225

Total no. of detected key-press events 391 157

No. of key-press events detected correctly 328 145

No. of missed key-press detections 63 12

No. of false key-press detections 4 0

No. of errors in key identification 37 0

Table 1
Experimental results

mizing the key identification error by integrating information about the color
of the “pressed” key with the approach described in 3.5. Color information
can be obtained by automatic segmentation in the color space.

The proposed approach detects all key-“presses” one frame (i.e. 1/30 seconds)
after their occurrence. Since all events are detected in real-time, our approach
fulfils a critical requirement for a no-latency interaction between the visual
keyboard, the MIDI software, and the musical meta-instrument.

5 Conclusion

This paper proposes a new system for interacting with a visual keyboard for
the purpose of controlling music generated by meta-instruments. This system
uses visual information only, with no force feedback, for the spatiotempo-
ral detection of key-“press” events. As shown by our experiments, the sys-
tem functions with high spatial accuracy and with very low temporal latency
(1/30 seconds). Our proposed approach has significant advantages over the
traditional marker-based tracking. Its spatio-temporal accuracy matches well
the requirements of the application; there is no need for increasing the ac-
curacy with optical marker-based technology. Moreover, optical-based marker
systems are expensive, with low portability and thus difficult to deploy on
stage.

From a practical standpoint, the approach described in this paper is, at the
best of our knowledge, the first approach using feet motion for interacting
with a perceptual interface. Tracking feet gestures represents an intuitive so-
lution for the replacement of a physical organ-type bank of pedals with a vi-
sual keyboard. This solution enhances the learnability and ease-of-use of this

20



new interaction paradigm. Other applications of human computer interaction
based on feet gestures may be found for example in non-contact operating
rooms (where hand gestures are typically used for performing the surgical
intervention), virtual reality environments etc.

Our main theoretical contribution consists in the development of a two-level
tracking algorithm which works in real-time and handles efficiently feet re-
gions merging/unmerging due to spatial proximity and cast shadows. From
a computational point of view, we believe that our tracking paradigm suits
well the task at hand. As pointed by Isard and Blake in [9] , tracking algo-
rithms based on deformable motion models would have difficulty meeting the
real-time constraint, especially when dealing with the simultaneous motion of
both feet and with uncontrolled environmental conditions.

Future work will focus on adapting our two-level tracking method for the real-
time analysis of gestures performed with other body parts in motion. More
specifically, we will investigate tracking of hand gestures, where global hand
motion will be tracked at a coarse level and finger motion will be tracked at a
fine level. Specific hand gestures such as pointing will enable the detection of
hands and fingers based solely on skin colour and shape information.

References

[1] W. A. Schloss, D. Jaffe, Intelligent musical instruments: The future of musical
performance or the demise of the performer?, Journal for New Music Research
22 (3) (1993) 183–193.

[2] F. Jean, A. B. Albu, W. A. Schloss, P. Driessen, Computer vision based interface
for the control of meta-instruments, in: Proc. of 12th Int. Conf. on Human
Computer Interaction (HCII), Beijing, 2007.

[3] A. Mehrabian, Silent Messages, California: Wadsworth Publishers Co., 1971.

[4] C. Graetzel, T. Fong, S. Grange, C. Baur, A non-contact mouse for surgeon-
computer interaction, Technology and Health Care 12 (3) (2004) 245 – 257.

[5] Sony eyetoy.
URL www.eyetoy.com

[6] M. Betke, J. Gips, P. Flemming, The camera mouse: Visual tracking of body
features to provide computer access for people with severe disabilities, IEEE
Trans. on neural systems and rehabilitation eng. 10 (1) (2002) 1–9.

[7] F. Sparacino, G. Davenport, A. Pentland, Media in performance: Interactive
spaces for dance, theater, circus, and museum exhibits, IBM Systems Journal
39 (3-4) (2000) 479–510.

21



[8] A. A. C. Wren and, T. Darrell, A. Pentland, Pfinder: Real time tracking of
the human body, IEEE Trans. on Pattern Anal. Machine Intell. 19 (7) (1997)
780–785.

[9] M. A. Isard, A. Blake, A mixed-state condensation tracker with automatic
model-switching, in: Proc. of IEEE Int. Conf. on Computer Vision (ICCV’98),
1998, pp. 107–112.

[10] M. A. Isard, A. Blake, Visual tracking by stochastic propagation of conditional
density, in: Proc. of IEEE European Conf. on Computer Vision (ECCV’96),
1996, pp. 343–356.

[11] T. Winkler, Making motion musical: gesture mapping strategies for interactive
computer music, in: International Computer Music Conference, 1995.

[12] C. Wren, S. Sparacino, A. Azarbayejani, T. Darrel, J. Davis, T. Starner,
A. Kotani, C. Chao, M. Hlavac, K. Russel, A. Bobick, A. Pentland, Perceptive
spaces for performance and entertainment: Untethered interaction using
computer vision and audition, Applied Artificial Intelligence 11 (4) (1997) 267–
284.

[13] T. Machover, Hyperinstruments: A Composer’s approach to the Evolution of
Intelligent Musical Instruments, Miller Freeman, 1992, pp. 67–76.

[14] A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci, K. Suzuki, R. Trocca, ,
G. Volpe, Eyesweb: Toward gesture and affect recognition in interactive dance
and music systems, Computer Music Journal, MIT Press 24 (1) (2000) 57–69.

[15] G. Castellano, R. Bresin, A. Camurri, G. Volpe, Expressive control of music
and visual media by full-body movement, in: Proc. of Conf. on New Interfaces
for Musical Expression (NIME’07), 2007.

[16] T. Sim, D. Ng, Janakiraman, Vim: Vision for interactive music, in: Proc. of
IEEE Workshop on Applications of Computer Vision (WACV), 2007.

[17] E. Lee, T. Karrer, J. Borchers, Toward a framework for interactive systems to
conduct digital audio and video streams, Computer Music Journal, MIT Press
30 (1) (2006) 21–36.

[18] R. Behringer, Conducting digitally stored music by computer vision tracking,
in: Proc. of the Int. Conf. on Automated Production of Cross Media Content
for Multi-Channel Distrib. (AXMEDIS’05), 2005.

[19] R. Behringer, Gesture interaction for electronic music performance, in: Proc. of
12th Int. Conf. on Human Computer Interaction (HCII), Beijing, 2007.

[20] A. Jaimes, N. Sebe, Multimodal human computer interaction: A survey, in:
IEEE Int. Workshop on Human Computer Interaction in conjunction with
ICCV 2005, Beijing, 2005.

[21] M. J. Lyons, N. Testutani, Facing the music: a facial action controlled musical
interface, in: Proc. ACM CHI, 2001.

22



[22] M. J. Lyons, M. Haehnel, , N. Tetsutani, Designing, playing, and performing
with a vision-based mouth interface, in: Proc. of Conf. on New Interfaces for
Musical Expression (NIME’03), 2003, pp. 116–121.

[23] D. Merril, Head-tracking for gestural and continuous control of parameterized
audio effects, in: Proc. of Conf. on New Interfaces for Musical Expression
(NIME’03), 2003, pp. 218–219.

[24] A. Nishikawa, T. Hosoi, K. Koara, D. Negoro, A. Hikita, S. Asano, H. Kakutani,
F. Miyazaki, M. Sekimoto, M. Yasui, Y. Miyake, S. Takiguchi, M. Monden,
Face mouse: a novel human-machine interface for controlling the position of a
laparoscope, IEEE Trans. On Robotics and Automation 19 (15) (2003) 825–844.

[25] G. R. Bradski, J. Davis, Motion segmentation and pose recognition with motion
history gradients, Machine vision and applications 13 (2002) 174–184.

23


