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Abstract

This paper proposes a method to automatically track
human body parts in the context of gait modelisation and
recognition. The proposed approach is based on a five
points human model (head, hands, and feet) where the
points are detected and tracked independently. Tracking is
fully automatic (no manual initialization of the five points)
since it will be used in a real-time surveillance system. Feet
are detected in each frame by first finding the space be-
tween the legs in the human silhouette. The issue of feet
self-occlusion is handled using optical flow and motion cor-
respondence. Skin color segmentation is used to find hands
in each frame and tracking is achieved by using a bound-
ing box overlap algorithm. The head is defined as the mass
center of a region of the upper silhouette.

1. Introduction

Recently, a lot of research has been done in the field of
intelligent surveillance systems [5, 12]. The main purpose
of these systems is to track humans in uncontrolled indoor
and outdoor environments, and eventually to describe what
they are doing in order to detect abnormal and/or dangerous
behaviors. The work described in this paper is part of the ef-
fort for developing one such system, which is named MON-
NET (Monitoring of Extended Premises: Tracking Pedes-
trians Using a Network of Loosely Coupled Nodes) [3, 8].
This system for indoor surveillance is constituted of several
nodes, each consisting of two uncalibrated cameras (visible-
infrared) linked to a computer. Nodes can exchange differ-
ent human models in order to track and recognize people.

Different biometric methods can be used to effi-
ciently recognize humans [7]. One of these methods aims
at gait modeling and recognition. It can be used alone or
in conjunction with other non-intrusive recognition meth-
ods. General human movement analysis methods can be

classified into three categories [4]: 2D model-free meth-
ods, 2D model-based methods, and 3D methods. In the
context of the MONNET system, which uses uncali-
brated cameras, only 2D methods are relevant.

The 2D model-free methods are using low-level data (ex.
silhouettes, optical flow, edge map) to describe human gait.
These methods also embed in the gait model the shape and
appearance of people, which is not desirable here since it
introduces unnecessary photometric information in the gait
model. Model-based methods describe body part trajecto-
ries, which are more representative of the human gait dy-
namics, and they avoid introducing spurious features in the
model. However, body parts must be found and tracked in
order to modelize the gait. This paper presents a method
to dynamically track body parts of walking humans in or-
der to develop a gait modeling and recognition module for
the MONNET system.

Model initialization represents a central issue in 2D
model-based human tracking. Methods that need manual
initialization have focused on tracking features efficiently
in each frame of video sequences, but need the user to spec-
ify these features in the first frame. That is the case in [9],
where a chain structure of constrained patches are used as
the human model and patch motion is estimated in each
frame using an optical flow based method. Each patch loca-
tion must be defined by the user in the first frame by speci-
fying its four corners.

Some of the entirely automatic methods are using a
frame-by-frame model fitting technique. In [11], a fifteen
point stick-model is progressively fitted on a human sil-
houette using a distance transform. The fitting is done in-
dependently on each frame which often leads to incoher-
ent skeleton sequences, especially in self-occlusion cases
where there is no information available on some body part
locations. A five-link biped locomotion model [13] can be
fitted using some silhouette region for the shape model cal-
culation, and color and inner silhouette regions for tracking.
This method yields robust results only when the human sub-
ject is walking at90◦ with respect to the camera axis.



Methods that are similar to the one proposed in this pa-
per use silhouette regions to find the location of body parts.
In [1], the feet locations are defined as the local minima
of the silhouette signature, which can yield poor perfor-
mances in case of noisy background subtraction. The head
is represented by the upper edge of the silhouette bound-
ing box, which is also very sensitive to background subtrac-
tion noise. In [2], the bounding box silhouette is separated
into three main sections (head, pelvis and feet) and the body
part locations are described by the mass center of the fore-
ground pixels in those sections. The feet region is further
separated into two foot regions and the feet locations are
the farthest foreground pixel positions from the head in the
foot regions. The methods in [1, 2] do not take into consid-
eration hand motion, feet self-occlusion and body parts cor-
respondence. The method proposed in this paper will try to
address these issues.

The rest of the paper is organized as follows. Section 2
contains a description of our approach. The experimental re-
sults are discussed in section 3. Section 4 contains the con-
clusions as well as the future work directions.

2. Approach

The proposed approach is based on a five points human
model (head, hands, and feet) where the points are detected
and tracked independently. The approach is characterized
by a fully automatic initialization algorithm (no manual ini-
tialization of the five points) based on the only assumption
that people walk upright in the video sequences. The in-
put data is represented by color sequences from an uncali-
brated monocular camera. The sequences in the experimen-
tal database contain a unique human subject walking in a
typical indoor environment. The next sections present the
pre-processing prior to body parts tracking, followed by the
tracking algorithms which are adapted for movement char-
acteristics of each body part.

2.1. Pre-processing

Initially, a simple background subtraction method is ap-
plied to each frame of the video sequence in order to find
the silhouette of the person. The background subtraction
method uses mean and standard deviation of each pixel
computed from a subsection of the video sequence where
the background is static and no walking human subject is
present. Once the silhouette is detected, its bounding box
is split into three regions according to fixed height propor-
tions: head region, hands region and legs region. These fixed
proportions were found experimentally and are working for
all test sequences. Each of these regions will be used re-
spectively for head, hands and feet tracking. Figure 1 shows

Figure 1. a) Original input color image. b) Result-
ing background subtraction and silhouette bound-
ing box splitting.

the background subtraction and the silhouette bounding box
splitting process.

2.2. Feet Tracking

A flowchart of the feet tracking method is presented in
Figure 2. Input data for this method consist of the legs re-
gion belonging to the binary silhouette and the output is
the position and correspondence of the feet. Separation of
the legs is achieved for each frame, followed by localisa-
tion of the feet if the two legs can be separated. In that
case, feet correspondence will be established if the corre-
spondence is initialized, or correspondence is initialized if
the legs were successfully separated in the previous frame.
If the two legs cannot be separated in the current frame (oc-
clusion case), then the correspondence is established with
optical flow only if the correspondence was initialized. In
other cases, there is simply no correspondence.

Separating legs can be efficiently achieved by scanning
each line of the legs region and searching for foreground-
background-foreground (FBF) patterns. The background in
those patterns can potentially represent the space between
the 2 legs for a given line, which can be further used to sep-
arate them. To find that space, it is possible to identify con-
secutive background pixels intervals in a line that are delim-
ited by foreground pixels at both ends. If foreground pix-
els are represented by1 and background pixels by0 and
I(i, j) represents a pixel value at linei and columnj for
i ∈ [1, N ] , j ∈ [1,M ] (N andM are the height and width
of the legs region respectively), the setSi of starting and
ending positions of intervals in the linei can be written as :

Si :
{

(bi, ei) | I(i, bi − 1)− I(i, bi) = 1 ∧

I(i, ei)− I(i, ei − 1) = −1 ∧

∀j ∈ [bi, ei] , I(i, j) = 0
} (1)



Figure 2. Overview of the feet tracking algorithm
applied at each frame.

wherebi andei are the beginning and ending position of
an interval respectively. The first condition imposes that
an interval begins with a foreground-background variation,
while the second one imposes that an interval ends with a
background-foreground variation. Finally, the last condition
defines an interval as a consecutive set of zero pixels. De-
notingKi as the number of intervals found for linei, a spe-
cific interval can be defined assk

i with bk
i andek

i the starting
and ending position,k ∈ [1,Ki]. See Figure 3b for an ex-
ample of lines scan and intervals.

Once all intervals are found for a linei, overlaps between
these intervals and the ones of the previous line(i − 1) are
searched in order to indentify vertically connected intervals.
These vertically connected intervals are grouped together to
form a path, which is defined as a set of intervals. When all
lines have been scanned, the longest path will then be con-
sidered as the space between the two legs and a position will
be computed from it to separate the legs region in two. A
simple algorithm to find paths is shown in Figure 4. In this
algorithm, a setPi of continuing paths in linei is defined,
and each continuing path is denotedpl

i, l ∈ [1, Li], where
Li is the number of paths inPi. An intervalsl

i is the inter-
val that belongs to pathl in line i. Each intervalsk

i of cur-
rent linei that has an overlap with an intervalsl

i−1 that be-
long to pathpl

i−1 is included in that path. The resulting path
is then included in setPi since this path is continuing in line
i. If two intervals overlap with an interval of a path of the
previous line, this path is simply duplicated and the result-

Figure 3. Example for separating the legs. a) An
input noisy legs region. b) Lines are scanned to
find intervals. An example of four line scans is
shown, with lines named L1 to L4, and intervals
are drawn. c) Path continuation. In L1, the only ex-
isting path is P1. In L2, there is path P1 and a new
path P2 is created. In L3, P1 and P2 still exist, but
there are two intervals that overlap with the pre-
vious interval of P1, that is why a new path P3 is
created. In L4, only P1 and P2 still exist. d) Posi-
tion for splitting legs region is found (longest path
is P1).

For i = 1, 2, . . . , N

1. Pi ← {}
2. For k = 1, 2, . . . , Ki

(a) Sflag =0

(b) For l = 1, 2, . . . , Li−1

i. If sk
i overlaps with sl

i−1

A. Pi ← Pi ∪ {pl
i−1 ∪ {sk

i }}
B. Sflag =1

(c) If Sflag =0

i. Pi ← Pi ∪ {{sk
i }}

Figure 4. Algorithm for paths detection.

ing paths are included in setPi. A flag is used to indicate
for each intervalsk

i if it has belonged to previous path(s). If
it has not, then a new path is created with this interval. Ex-
amples of paths are shown in Figure 3c.

The next step is to find the longest pathpf :

pf = arg max
pl

i, i∈[1,N ], l∈[1,Li]

(∣∣pl
i

∣∣) (2)

where
∣∣pl

i

∣∣ is the number of intervals in the pathpl
i (length).

This path is accepted as representing the space between the



two legs only if it has a length that is greater than a fixed
percentage (20%) of the height (N ) of the legs region. If the
path does not respect this condition, then legs are not sep-
arated and this is defined as an occlusion case. When the
condition is respected, the path can be used to find a posi-
tion where the legs region bounding box can be separated
vertically to provide two bounding boxes that represent two
leg regions. The minimum and maximum positionbmin and
emax among intervals belonging to the pathpf must first be
found :

bmin = min
sf : [bf ,ef ] , sf∈pf

(bf )

emax = max
sf : [bf ,ef ] , sf∈pf

(ef )
(3)

wherebf andef are beginning and ending positions of an
interval of pf . It is now possible to find from the pathpf

the position of a vertical line separating the legs (see Fig-
ure 3d). This line represents a successful trade off between
minimizing the number of contained foreground pixels and
maximizing the distance of the vertical line position with re-
spect to the two feet regions. For a positionj ∈ [bmin, emax]
and a given(b, e) starting/ending position pair, a function
V (j, b, e) is computed as follows :

V (j, b, e) =

{
j − b if |j − b| < |e− j|
e− j otherwise

(4)

This function computes a score for a given positionj. If the
vertical line position is outside the range[b, e], the value
of the function is negative (bad score) which means that
the vertical line position contains a foreground pixel. How-
ever, if the position is in the range[b, e], a positive value
is obtained and the vertical line position does not intercept
a foreground pixel (the highest score is obtained at posi-
tion (b + e)/2 ). This function is used to compute a score
for a given vertical line positionj for all intervals belong-
ing to the pathpf . These score are summed to obtain a gen-
eral score for eachj position, and the positionjmax is the
one that produces the highest score :

jmax = arg max
j ∈ [bmin,emax]

( ∑
∀ [bf ,ef ] ∈ pf

V (j, bf , ef )
)

(5)

Finally, the legs region bounding box is split in two bound-
ing boxes at positionjmax (see Figure 3d).

Feet correspondence is computed when the legs region
has been separated into two regions (no self occlusion). It
uses each foot mass center from the current and previous
frame(s). To find the foot in each leg region, a pixel count-
ing algorithm is used to select pixels that will be used to
compute a mass center. It scans lines of each foot region
bottom-up and cumulates the number of foreground pix-
els it encounters. When this number is greater than25%

of the initial legs region area, all counted pixels are aggre-
gated into a foot region and the region center of mass is
computed. Figure 5 shows a typical result of this algorithm.

Figure 5. Aggregation of foreground pixels of
each leg region (from bottom) until 25% of the
number of foreground pixels in the legs region is
reached. The mass center of the aggregated pix-
els is then computed to define a foot position.

This method is more robust than fixed region methods (as
in [2]) because it relies on regions that are dynamically de-
fined by the legs separating algorithm. It also finds a foot no
matter what is its height in the legs region.

If in the current framet foot mass centers are defined as
f t

a andf t
b , and feet correspondence has not been initialized

yet, the correspondence is initialized with a nearest point al-
gorithm. The initialization can only be carried out if there
were2 feet detected in previous frame1 (t−1), where those
2 feet positions are defined asf t−1

1 andf t−1
2 . The nearest

point algorithm simply does a natural feet correspondence
as follows :

(a, b) =


(1, 2) if da1 < da2 ∧ da1 < db1

(2, 1) if da2 < da1 ∧ da2 < db2

(1, 2) if db1 < db2 ∧ db1 < da1

(2, 1) if db2 < db1 ∧ db2 < da2

(6)

whereda1 is the mass center distance of footf t
a andf t−1

1

and so forth. In the case where an initial correspondence
cannot be established (f t−1

1 andf t−1
2 are at equal distance

from f t
a andf t

b ), the initialization is simply delayed to the
next frame to avoid a bad foot correspondence initializa-
tion.

In the case where the correspondence is already estab-
lished in framet, the motion correspondence algorithm de-
veloped by Rangarajan & Shah [10] is used. This algo-
rithm basically builds a correspondence between moving
feature points assuming that points follow a smooth trajec-
tory and have a small spatial displacement between each

1 Feet must have been found with the pixel counting algorithm on the
two feet regions obtained from the legs separating method (i.e. no oc-
clusion in the previous frame).



frame (which is true in the present case). This algorithm
provides robustness to the proposed approach since the feet
correspondence can be preserved in case of a sudden noisy
human silhouette (ex. a leg part disappears from one frame
to the next). However, it requires that the correspondence
is correctly initialized in the two previous frames. This is
why the nearest point algorithm is used to initialize corre-
spondence as soon as there are two consecutive frames with
feet detected only with the separating legs and counting pix-
els algorithms. Since in those cases the feet are far enough
from each other and they do not move rapidly, the initial
correspondence can be established correctly with the near-
est point algorithm.

Self-occlusion occurs when two feet were detected in the
previous frame but they could not be separated in the cur-
rent one. The first step that is performed is to define a feet
region with the help of the same counting pixel algorithm
described previously, using two times the percentage used
for the case without occlusion (because the foreground pix-
els in the legs region contain two feet).

Feet self-occlusions that occur when a human is walk-
ing have the interesting particularity that there is only one
visible foot moving. Based on experimental observations,
the speed of the moving foot is at its maximum in the self-
occlusion case whereas the other foot is not moving at all.
With respect to the above remarks, it is possible to deter-
mine which foot was moving in the previous frame(t − 1)
by comparing the difference between each footx position
from the frame(t− 1) and the frame(t− 2) :

m =

{
1 if

∣∣f t−1
1x − f t−2

1x

∣∣ >
∣∣f t−1

2x − f t−2
2x

∣∣
2 otherwise

(7)

wherem represents the moving foot (foot1 or foot 2). The
position (mass center) of the stationary foot is simply con-
sidered to be the same as in the previous frame. To deter-
mine the position of the moving foot, optical flow is com-
puted using the method developed by Horn & Schunck [6].
This method uses data from the current and previous grey
frame only in the feet region, and therefore it is very fast.
The absolute value of the optical flow is computed at each
pixel of the foot region and only the pixel positions that
exceed an absolute value of10 are kept to form a mask
(this value has been determined experimentally and works
for all test sequences). Thereafter, morphological dilatations
are applied to the resulting mask and a logicaland opera-
tor is applied between this mask and the original feet re-
gion silhouette. This leads to another mask which repre-
sents what has moved only in the feet region silhouette. The
counting pixel algorithm is finally used on the mask with
the same percentage as without occlusion (resulting pixels
belong only to the moving foot). The mass center of the ag-
gregated pixels is computed and associated with the mov-

ing foot. In the cases where there are not enough pixels po-
sitions that exceed the predefined absolute value, the mov-
ing foot positions is approximated by a linear extrapolation
from the two previous moving foot positions. It is impor-
tant to note that the foot correspondence is implicit in the
occlusion case, since the stationary and the moving foot are
tracked differently.

2.3. Hands Tracking

Finding hands in each frame of a video sequence is
more difficult than finding feet since hands are often in self-
occlusion with the body (except for the frontal view, which
is not very meaningful for gait modelling). It is not possi-
ble to rely only on the human silhouette because of the fact
that hands detach from one side of the silhouette for only
a few frames and do not always reappear and detach from
the other side of the silhouette. One simple way of finding
the hands in this case is to use skin color detection in the
hands region (see Figure 1). Using this method, it is pos-
sible to detect the hands most of the time (with the excep-
tion of the frames where one of the hands is hidden by the
body).

Hands skin color detection is done using theHSV color
space in the hands region. Pixels in this region that belong
to skin color category are found using predefined thresh-
olds forH andS. Thereafter, too small skin regions are re-
moved and morphological dilatations followed by morpho-
logical erosions are applied on the remaining skin regions.
The two largest skin regions are kept - if they exist - and
the second largest region is further considered only if its
size is at least a given percentage (15%) of the largest re-
gion size. Finally, a hand position is found using the low-
est focus of the ellipse that has the same second moment as
the skin region. Considering the lowest focus position leads
to better results than considering the lowest skin pixel po-
sition, with respect to smoothness of the trajectory. If the
lowest focus does not fall on the silhouette, then the near-
est silhouette point position with respect to the focus is used
(see Figure 6).

Hand tracking is achieved by using a bounding box over-
lapping algorithm. This kind of algorithm is used since it is
not possible to determine a priori if the two hands will even-
tually be visible again or only one of them (or even none of
them). Therefore, it is not possible to initialize a motion cor-
respondence algorithm like the one used for the feet.

A hands correspondence must also be initialized and
computed. First, a bounding boxht is computed for each
hand pixel region that exists in the current framet. For each
detected hand in the previous frame(t − 1), an estimated
bounding boxht

est is computed for the current frame and it
is compared with the hand(s) bounding box(es) of the cur-
rent frame. The estimated bounding box is computed in a



Figure 6. Finding hands using skin color. a) and
e) Original color frames. b) and f) Results of skin
color segmentation, the two largest skin regions
en conserved. c) and g) Ellipses that have the
same second moment as each skin region are
found. d) and h) Hands position are defined as the
lower foci of ellipses.

different way depending on if the correspondence initial-
ization was carried out or not in the previous frame. If it
was not (see Figure 7a), the estimated bounding box isht−1

with thex position moved by the difference ofx positions
of the human silhouette mass centers between framest and
(t − 1). This method moves thex position considering the
global motion of the walking person. In the case where the
correspondence was established (see Figure 7b), the bound-
ing boxes of frame(t−1) and(t−2) are used to estimate a
bounding box in the current frame. Its width and height are
computed as a linear extrapolation of width and height of
the two previous bounding boxes. For example, if a bound-
ing box in frame(t − 2) has width5 and height10 and a
bounding box in frame(t − 1) has width4 and height12,
then the estimated bounding box will have a width3 and
a height14. The position of the estimated bounding box is
also linearly extrapolated from the corner of the two previ-
ous bounding boxes with the smallest variation in position.
For instance, if the corner with the smallest position varia-
tion moves from point(1, 5) to point(3, 4), then its new po-
sition will be(5, 3) and the bounding box is repositioned ac-
cording to the new position of that corner. Correspondence
algorithms are based on the fact that the hands have small
displacements and small changes in appearance (hand skin

area that can be seen) between consecutive frames.

Figure 7. Estimation of a bounding box in the cur-
rent frame. a) Correspondence initialization is not
carried out. The estimated bounding box is sim-
ply the one at frame (t− 1) with x displacement Vx

corresponding to displacement of the silhouette
mass center. b) Correspondence initialization has
already been carried out. The estimated bounding
box applies the growth rate in width and height of
the bounding boxes from frame (t− 1) and (t− 2).
The position is defined by the corner that has the
smallest displacement (black dots). In a) and b),
the actual bounding box found in frame t is shown
(plain line) to present the kind of overlap that oc-
curs with the estimated bounding box.

As said previously, the hands correspondence is achieved
by comparing their current bounding boxes with estimated
bounding boxes. The way the current bounding box over-
laps with an estimated bounding box determines if a cor-
respondence is established or not between hands. The first
condition for a correspondence between these bounding
boxes is that they must have an area ratio larger than a pre-
defined value (33%). The ratio is computed between the
smallest bounding box area and largest one. This condition
will not be met if the bounding boxes do not have a simi-
lar area. The second condition that must be met is that the
two bounding boxes must have at least a certain area in com-
mon (33%). The ratio between the area of the common re-
gion and the area of the smallest bounding box is a good
measure to verify that condition. If the ratio is0, that means
there is no overlap between the bounding boxes, and if the
ratio is1, that means that the smallest bounding box is to-
tally included in the largest one. These two conditions must
be met to establish a hand correspondence.

2.4. Head Representation

The head position can be represented in two ways : the
position of the very top pixel of the silhouette, or a mass



center of a region. The second approach has been retained
since it is less sensible to background subtraction noise than
the first one. To find the region of pixels for which the mass
center will be computed, the same counting pixel algorithm
presented previously is applied. Using a percentage (66%)
of pixels present in the head region, the counting pixel algo-
rithm is used top-down on the head region. The mass center
of the retained pixels is then computed and used as the head
position. The head is not tracked since it has the same dis-
placement as the whole body, which is not the case for the
hands and the feet. An example can be seen in Figure 8.

Figure 8. Finding head and computing its mass
center.

3. Experimental results

A special acquisition setup was designed in order to test
the proposed approach. As shown in Figure 9, four cameras
are used in order to obtain different views of a person walk-
ing on a straight line trajectory. The4 views are captured at
the same time so the camera sees exactly the same move-
ment made by the person. Video sequences of ten walkers
were acquired, which resulted in forty test sequences with
an average of500 frames per sequence. All algorithm pa-
rameters were the same for all human subjects and all views.

Figure 9. Setup for the acquisition of walking peo-
ple from different views. The optical axis of cam-
era 1 intersects the walking trajectory at 90◦, cam-
era 2 at 75◦, camera 3 at 60◦ and camera 4 at 45◦.

Results obtained with the proposed approach will be
compared with results from another approach [11] which

uses a skeleton model fitted on a human silhouette on each
frame of video sequences (see section 1 for details). This
comparative approach represents the class of algorithms
that use only spatial information to track human body parts
(and do not use spatiotemporal information as in the pro-
posed method). The aim of this comparison is to show that
the description of human movement is a complex issue that
cannot be well handled using only spatial information on a
frame-by-frame basis.

Figures 10, 11 and 12 show algorithms comparison for
walking people viewed from different angles. The first row
represents results of the proposed approach (namedP ) and
the second row represents results of the static skeleton ap-
proach (namedS), and the frames2 order is from left to
right. There are two different symbols for the hands and the
feet but none of them is associated with a specific body-
centered part (left or right). In the case of the proposed ap-
proach, the symbol associated with a given hand or foot re-
mains the same over each sequence. That is, no false corre-
spondence of hands or feet occurred with the proposed ap-
proach within the whole forty video sequences. This is a
very significant improvement over the static skeleton algo-
rithm which produced a large number of false correspon-
dences.

Figure 10. Walking sequence from camera 1.

One can see in the figures how well the proposed feet track-
ing algorithm works. In fact, using motion correspondence
and optical flow (temporal information) leads to more real-
istic feet trajectories, which is a great advantage for mod-
eling the human gait precisely. For the head, positions are
nearly the same.

2 These frames are distanced in time by two frames in order to show in-
teresting events without taking too much space.



Figure 11. Walking sequence from camera 3.

Figure 12. Walking sequence from camera 4.

One disadvantage of the proposed approach is the fact
that the position of the two hands is not always given. How-
ever, in the cases where they are found, the tracking and the
correspondence is established correctly. It is possible to see
one case in figure 12, frame1 to 3, where the skeleton al-
gorithms produce a better right hand position than the pro-
posed approach. Using the skin color information does not
always allow an accurate detection of the hands skin region,
which sometimes leads to erroneous positions.

4. Conclusion and Future Works

An entirely automatic method for dynamically tracking
the head, hands and feet of a walking person has been pre-
sented. Feet are tracked using a legs separating algorithm
and motion correspondence algorithms. Hands are detected
using skin color and are tracked using a bounding box over-
lap algorithm. Finally, the head is represented by the mass
center of a region of the upper silhouette part. The robust
tracking of the five points model proposed in this works
will be useful in the context of human gait modelization
and recognition.

Future work will be focused on refining hands de-
tection and tracking algorithms. Normalization of the
body parts trajectories is also envisaged in order to mod-
elize the human gait in a view-independent manner.
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