
Sensor Control for Temporal Coverage Optimization
Vahab Akbarzadeh, Christian Gagné, and Marc Parizeau

Laboratoire de vision et systèmes numériques
Département de génie électrique et de génie informatique
Université Laval, Québec (Quebec), Canada G1V 0A6

Emails: vahab.akbarzadeh.1@ulaval.ca, christian.gagne@gel.ulaval.ca, marc.parizeau@gel.ulaval.ca

Abstract—This paper proposes a new sensor control algorithm
to adapt the operation parameters of the sensors in order to op-
timize temporal coverage. Traditional sensor control algorithms
rely on non-probabilistic sensor coverage models and simple
target trajectory prediction methods, while the new algorithm
overcomes all these limitations. The proposed approach make an
optimization of one sensor at the time, processed in a random
order. The performance of the proposed algorithm is compared
with a state-of-the-art general purpose optimization method (i.e.,
CMA-ES). Results show that our algorithm produces the results
in a much shorter time in all the cases considered, while the
final coverage of the network was superior in a smaller map and
competitive in larger maps. Therefore, the new algorithm can be
used in scenarios where response within some time limit is of
great importance (e.g., real-time control of the sensors).

I. INTRODUCTION

The aim of temporal coverage optimization in Sensor Net-
works (SNs) is to derive a mechanism which effectively and
efficiently uses the sensing capabilities of sensors during a
period of time in order to maximize the coverage of the
network over a phenomenon, which itself can be changing
over time (e.g., targets moving in a field).

Temporal coverage optimization consists itself of two main
problems: predicting trajectories of the targets and controlling
the sensors. For trajectory prediction, the goal is to predict
the future location of moving targets. In this paper, we
rather focus on sensor control, which aims at adjusting the
parameters of the sensors (e.g., pan and tilt angles, zoom
factor) based on trajectory prediction, so that the final network
is able to properly cover the targets as they move within the
environment. Coverage level over the targets and computation
time of the algorithm are the two main performance criteria
to consider for designing a sensor control algorithm.

Sensor control is closely related to the placement problem in
SNs when a weighted coverage objective is used (as described
in [1]). However, there are two main differences between the
placement and sensor control problems: the time requirements
and the capacity for the sensors to change over time (or not).
As for the time requirement, the running time of the algorithm
can be arbitrarily long for the placement problem as it is a
one-time process done offline. In other words, once the best
location and direction for sensors are determined there is no
need to run the algorithm again, therefore the running time of
the algorithm is not a critical issue. On the other hand, for
the sensor control problem, the frequency of the runs is much
higher and the system is operating online. Indeed, the sensor

control algorithm should return the results before the next time
step, otherwise the results are of little use. This means that the
computation time is an important issue for sensor control done
in real-time.

As for the static/dynamic nature of the problem, that comes
from the fact the we only need to find the best location and
direction for the sensors once for the placement problem, in
order to achieve maximum coverage over the environment
with the solution retained. For the sensor control problem,
the location of the sensors are fixed, but their directions
are variable. Therefore, sensor control can be viewed as
spatial coverage optimization problem for sensors having fixed
locations but constantly adapting their configurations over a
weighted environment that is also dynamic.

This sensor control problem was discussed in the literature
by different authors. For example, Cai et al. [2] suggested the
application of the cover set algorithm to the spatial optimiza-
tion of the directional sensors with fixed locations. At each
iteration of a greedy method they designed for the problem,
the target location that can be covered by the minimum number
of sensor directions is selected and added to the solution
set. Authors also proposed a distributed version of the algo-
rithm for large-scale applications. In the distributed approach
each sensor has only access to coverage information of its
neighbours. A drawback of the proposed method proposed is
that it does not work with multiple probabilistic predictions
for location of the targets, while in many applications, the
trajectory prediction produces different possibilities for the
future location of a target.

Similarly, Ai et al. [3] proposed the maximum coverage
by the minimum sensors method which follows the same
principles as the one proposed in [2]. The proposed a cen-
tralized greedy algorithm that iteratively selects a sensor and
calculates the number of targets that could change state from
uncovered to covered using the sensor. Next, the direction
which maximizes the coverage over uncovered targets is
selected. The iteration continues until all of the targets are
covered or all of the sensors have been selected. The main
problem with the proposed approach is that the coverage of
sensors over the targets is binary, therefore, the algorithm is
not applicable if the sensor has partial coverage over the target.

In [4], Chen et al. defined a weight for each of the targets
and each direction the sensor can take, which are called the
target weight and orientation weight respectively. The target
weight is calculated based on the number of sensors that can

cover a target. Orientation weights are defined based on the
total number of targets in the environment, the number of
targets the orientation can cover, and the target weight for each
of the targets in the coverage range. Wang et al. [5] proposed a
priority based target coverage algorithm, where the importance
of targets is different for the system. A genetic algorithm
was applied on the direction of sensors to find the direction
which best covers all of the targets. The main drawback of
both algorithms is that they do not take into consideration
any limitation on the movement speed of the sensors. In other
words, they assume that sensors move from any direction to
another direction in one time step. The other drawback of
the proposed methods is that they only consider one variable
parameter per sensor, and therefore iterate over all possible
directions of the sensors. This approach is not reasonable
when a sensor has two or three variable parameters, as the
computation needed to iterate over all possible combinations
becomes cumbersome.

In this paper, we introduce the Greedy Sensor-wise Cover-
age Optimization (GSCO) algorithm. The algorithm is specif-
ically designed to find the best direction for sensors, to cover
prediction of targets’ location in the environment. The input to
the algorithm handles different degrees of certainty for target
locations, works with probabilistic coverage model of sensors,
and finally accepts limitations speed of sensors movements.
Besides, the computational need of the algorithm is very
reasonable.

In the following, we first present more formally the sensor
control problem we are tackling in Sec. II, along with some
details on the specific sensor model used. Then, in Sec. III,
we are presenting the GSCO method proposed to achieve
effective and efficient sensor control. The paper concludes with
a presentation of the experimental methodology and simulation
results obtained with this method in Sec. IV, showing its good
performance in comparison with an optimization conducted
with a black-box method (namely CMA-ES).

II. SENSOR CONTROL PROBLEM

In temporal optimization, the goal is to cover a number of
targets moving in the environment using a SN. In this paper,
we focus on Pan-Tilt-Zoom cameras (PTZ) as our sensors. The
pan and tilt angles, and the zoom factor are variable through
time, and this provides the capability for the sensors to change
their coverage direction and to provide a maximal coverage
over a set of moving targets. To provide this coverage, first the
targets should be detected in the environment, their trajectories
should be modelled and finally the parameters of the sensors
should be modified so that the targets remain under coverage
while they are present in the environment. We briefly explain
the trajectory prediction problem in section II-C. The focus
of our paper is on adapting the sensor parameters to the
environment according to the task to achieve (i.e., sensor
control).

More precisely, assume that we have a sensor network
N = {si|i = 1, . . . , n} consisting of n sensors (cameras

in this paper) si with the pan, tilt, and zoom control pa-
rameters. Each sensor is attributed with a time parameters
t = {1, 2, . . . ,M}, where M is the total simulation time. In
this setting, the state of each sensor at time t is defined as
s

(t)
i = (pi, θ

(t)
i , ξ

(t)
i , f

(t)
i), where pi = (xi, yi) is the position

of the sensor in the coordinate system, θ(t)
i is the pan angle,

ξ
(t)
i is the tilt angle, and f (t)

i is the focal length of the sensor.
It is also assumed that the sensors are positioned τ meters
above the ground. The environment Ξ is defined by a Digital
Elevation Model (DEM), where the elevation of each location
(x, y) ∈ Ξ is given as the function k(x, y), and where the
number of discrete locations in this model is denoted by |Ξ|.
Therefore, the elevation of each sensor is zi = k(xi, yi) + τ .
As it can be seen, the location of the sensor is fixed through
time (pi), but the pan, tilt, and zoom parameters are variable
(θ(t)
i , ξ

(t)
i , f

(t)
i).

The goal of the network N is to optimally cover J moving
targets T = {Tj |j = 1, 2, . . . , J}. Each target Tj is first
detected at time uj in the environment, then it makes nj
displacements, until it exits the environment at time uj + nj .
Therefore the trajectory of each target can be represented as
the sequence [T

(uj)
j , . . . ,T

(uj+nj)
j].

In the sensor control problem, the goal is thus to find
the configuration for the variable parameters of the sensors
(e.g., pan, tilt, and zoom), to have maximal coverage over
the moving targets in the environment. The commands that
the network applies to sensor si through time is defined by
Πi = {π(t)

i |t = 1, . . . ,M}, where π
(t)
i = (∆θ,∆ξ,∆f) is

the command given to sensor si at time t for updating its pan,
tilt, and zoom values. The set of commands for the n sensors is
summarized as Π = {Πi|i = 1, . . . , n}. Each sensor also has
a set of characteristic parameters which define the maximum
and minimum value of each control parameters, along with
their associated speed of change:

〈(θmin, θmax, vθ), (ξmin, ξmax, vξ), (fmin, fmax, vf)〉. (1)

It is clear that the given command at each time step should
satisfy each sensor’s movement constraints. More precisely we
have as constraints:

|∆θ| ≤ vθ, θmin ≤ θ(t)
i + ∆θ︸ ︷︷ ︸
θ
(t+1)
i

≤ θmax, (2)

|∆ξ| ≤ vξ, ξmin ≤ ξ(t)
i + ∆ξ︸ ︷︷ ︸
ξ
(t+1)
i

≤ ξmax, (3)

|∆f | ≤ vf , fmin ≤ f (t)
i + ∆f︸ ︷︷ ︸
f
(t+1)
i

≤ fmax. (4)

where the boundaries for each sensor was defined in Eq. 1.

A. Global Coverage Optimization

Now the coverage C(s
(t)
i ,q) of sensor si on point q =

(xq, yq) in the environment at time t is defined as a function
of distance d(s

(t)
i ,q) = ‖pi − q‖, pan angle θ(s

(t)
i ,q) =

∠θ(q − pi) − θ(t)
i , tilt angle ξ(s(t)

i ,q) = ∠ξ(q − pi) − ξ(t)
i ,

and visibility v(si,q) of the sensor:

C(s
(t)
i ,q) = f [µd(‖pi − q‖), µθ(∠θ(q− pi)− θ(t)

i),

µξ(∠ξ(q− pi)− ξ(t)
i), v(pi,q)], (5)

where ∠θ(q − pi) = arctan (yq − ypi
, xq − xpi

) is the pan
angle between sensor si and point q, and ∠ξ(q − pi) =
arctan (zq − zpi

, ‖pi − q‖) is the tilt angle between sensor
si and point q. In other words, for q to be covered by sensor
si, we need to take into account its range, viewing angles, and
visibility. The focal point f (t)

i indirectly affects the coverage
through pan and tilt angles, and range. This effect will be later
discussed in Sec. II-B. Let µd, µθ, µξ ∈ [0, 1] represent some
membership functions of the mentioned coverage conditions,
then Eq. 5 can be rewritten as a product of these memberships:

C(s
(t)
i ,q) = µd(‖pi − q‖) · µθ(∠θ(q− pi)− θ(t)

i)

· µξ(∠t(q− pi)− ξ(t)
i) · v(pi,q). (6)

Function v(pi,q) is usually binary. Given a position pi, if
the line of sight between sensor si and q is obstructed, then we
assume that the visibility cannot be achieved (v(pi,q) = 0),
otherwise the visibility is fully attained (v(pi,q) = 1).

Value C = 1 means full coverage while C = 0 indicates no
coverage. If more than one sensor covers q, a way to compute
the local network coverage Cl of network N over location q
at time t is:

Cl(N,q) = 1−
∏

i=1,...,n

(
1− C(s

(t)
i ,q)

)
.

We define the following objective function for a given
command set as the coverage it provides for all of the targets
through time:

O(Π) =

M∑
t=1

∑
q∈Ξ

r(t)
q Cl(N,q), (7)

where r
(t)
q ∈ R(t) is the predicted probability of targets

being at location q in the environment (provided by the
trajectory prediction algorithm). In other words, the value
of each location r

(t)
q within the prediction map defines the

importance of that location for the coverage task. Then, the
goal is to find a command set Π∗ which maximizes this
objective function:

Π∗ = argmax
Π

O(Π). (8)

Notice in this formula, the trajectory prediction step defines
the weights assigned to different locations in the environment
through the weight parameter r(t)

q , and the sensor control step
finds the command set Π∗ based on that prediction. Therefore,
both the prediction and control steps, affect the result of
objective function. The defined objective function provides
an estimate on the actual coverage that the network provides

over the targets. The actual coverage is calculated using the
following formula:

Cg(Π) =
1

MJ |Ξ|

J∑
j=1

M∑
t=1

∑
q∈Ξ

1(T
(t)
j ,q) Cl(N,q), (9)

where function 1(T
(t)
j ,q) returns one if target Tj is at location

q at time t, and zero otherwise. The formula provides the
average coverage of the network over all the targets during
the whole simulation time.

B. PTZ Camera Coverage Model
The following real-valued membership functions are used

in our sensor model. These functions provide a monotonically
decreasing membership value over distance and relative angle
of position to the sensor.

We propose to use the following function, based on the well-
known sigmoid function, to evaluate the distance membership:

µ
(t)
di = µd(‖pi − q‖︸ ︷︷ ︸

di

) = 1− 1

1 + exp
(
−βd(di − α(t)

di)
) ,
(10)

with α(t)
di and βd as the parameters configuring the membership

function. These parameters can be estimated using experimen-
tal observations on sensor behaviours (e.g., object recognition
rate as a function of distance). Parameter βd controls the slope
of the function and α

(t)
di determines the distance where the

sensor has 50% of its maximum coverage.
As for the pan angle membership functions, we propose the

following function also based on the sigmoid function:

µ
(t)
θi = µθ(∠θ(q− pi)− θ(t)

i︸ ︷︷ ︸
θ′i

) =
1

1 + exp
(
−βθ(θ′i + α

(t)
θi)
)

− 1

1 + exp
(
−βθ(θ′i − α

(t)
θi)
) , (11)

where α
(t)
θi controls the “width” of the function and βθ

controls the slope of the function at the boundaries. Note
that the proposed function has a range of θ′i ∈ [−180, 180]
degrees. Therefore, any calculated angle should be brought
into this range accordingly. Similarly, membership function
µξ is defined as:

µ
(t)
ξi = µξ(∠ξ(q− pi)− ξ(t)

i︸ ︷︷ ︸
ξ′i

) =
1

1 + exp
(
−βξ(ξ′i + α

(t)
ξi)
)

− 1

1 + exp
(
−βξ(ξ′i − α

(t)
ξi)
) , (12)

which has the range ξ′i ∈ [−90, 90]. The pan and tilt mem-
bership functions are related to the focal length value through
the α(t)

θi and α(t)
ξi parameters. More precisely, these parameters

define the angle of view for the sensor, so we have:

α
(t)
θi = 2 arctan(Lh, 2f

(t)
i), (13)

α
(t)
ξi = 2 arctan(Lv, 2f

(t)
i), (14)

where Lh and Lv are the horizontal and vertical sizes of the
camera sensor, respectively.

The distance membership function is also related to the focal
length value f (t)

i through the following formula:

α
(t)
di =

[
αdmax

− αdmin

fmax − fmin
(f

(t)
i − fmin)

]
+ αdmin

, (15)

where αdmax and αdmin are the maximum and minimum
value that α

(t)
di can take. In practice, the value of these

parameters depends on the camera type, size of the targets,
the minimum number of pixels inside the images needed for
accurate detection of targets, and so forth.

C. Trajectory Prediction

Trajectory prediction is the process of estimating the fu-
ture location of a given target using the information of its
previous movements. More precisely, assume T(t)

j is an on-
going trajectory of target j in the environment Ξ, currently
being observed at time t, where T(t)

j = (L
(t)
j ,∆L

(t)
j). Here,

L
(t)
j = (x

(t)
j , y

(t)
j) represents the location of the target and

∆L
(t)
j = (∆x

(t)
j ,∆y

(t)
j) its previous time step displacement.

We wish to measure the location of the target after one time

step (i.e., T̂(t+1)
j) as accurately as possible. Here we propose

a probabilistic model for the future location of each target.
More precisely, for a target Tj at time t + 1 we define a
discrete random variable X

(t+1)
j over the sample space of

all the locations q ∈ Ξ. X(t+1)
j is defined by a probability

mass function P (X
(t+1)
j = q) which returns the probability

of target Tj being at location q at time t+ 1. For brevity, we
note this measure as P(t+1)

jq . The goal is to incrementally learn
the probabilistic model for each target as it moves within the
environment.

The result of the trajectory prediction at time t is a pre-
diction map R(t). The prediction map, sums up the result
of prediction for different targets which are moving in the
environment. In other words, if the prediction method predicts
that two targets are moving into one location with high
probability, then that location is getting a high value in the
prediction map. More precisely, for each element r(t)

q ∈ R(t)

we have:

r(t)
q =

∑
j

P∗(t+1)
jq . (16)

In this paper, we use weighted probabilistic method to
predict the displacement of each target in the environment.
More precisely, the predicted probability that the target T(t)

j

moves to location q in the next time step (P(t+1)
jq) is given

by:

P(t+1)
jq = N2(q; ∆̂L

(t+1)

j ,Σ), (17)

where ∆̂L
(t+1)

j is the mean of the bivariate distribution, and Σ
is the covariance matrix. For simplicity we assume Σ = σ2

pI.

The mean is the exponential average of the recent movements
of the target, given by:

∆̂L
(t+1)

j = (1− η) ∆̂L
(t)

j + η ∆L
(t)
j , (18)

where η ∈ [0, 1] is the learning rate. Here, we assume η = 0.8
and σp = 1. For more on the trajectory prediction problem,
readers are referred to [6].

III. GREEDY SENSOR-WISE COVERAGE OPTIMIZATION
(GSCO)

There are several points which should be considered when
designing the sensor control algorithm. First, the prediction
map (R(t)) contains probabilities and not binary values as
the predicted location of the targets. Therefore, the algorithm
should be able to handle probabilistic predictions. Second,
the sensors themselves have probabilistic coverage over the
targets and this should be taken into consideration. Third, the
movement of sensors is limited for each time step. These
limitations put a boundary on the sensor’s parameter values
for the next time step. Finally, each sensor has several variable
parameters and therefore a simple iteration over all possible
combination of values is usually not possible.

Looking at the formulation of the problem, we observe
that the sensor control problem has a combinatorial nature
and therefore convex optimization algorithms do not apply for
the problem. Besides, the algorithm is designed for an online
setting, therefore we are aiming to have an algorithm which
has linear complexity with respect to the number of sensors in
the environment, so that we can get some guarantees on the
running time of the algorithm in real settings.

Considering all of the mentioned criteria, we propose the
GSCO algorithm. The main idea behind the GSCO algorithm
is that target locations which have higher prediction value,
and at the same time, can be covered by a fewer number of
sensors should be given higher priority in the coverage task.
In other words, in the GSCO algorithm, at each time step, the
prediction map R(t) is divided by the accessible coverage map
Ψ

(t)
q (which defines the number of sensors that can cover any

location in the environment), to define a weight map which
determines the importance of each location for the coverage
task. This weight map is later used to iteratively optimize the
direction of all sensors in the environment.

The algorithm is shown in Algo. 1.
Different steps of the algorithm are explained in more detail

below:
• Calculate ψ(t)

i : For each sensor calculate the accessible
coverage map ψ

(t)
i . This map holds the locations in the

environment that the sensor si can effectively cover in
the future. For its calculation, we take into consideration
the current parameters (θ

(t)
i , ξ

(t)
i , f

(t)
i), and the maximum

speed (vθ, vξ, vf) for each sensor parameter.
Another parameter used for the calculation of ψ(t)

i is
a threshold parameter φ. This threshold was defined
because (theoretically based on Eq. 6), the coverage of a
sensor over all the locations from which it is visible is

Algorithm 1 The proposed GSCO algorithm for sensor con-
trol.

1: inputs Sensor network N , parameter φ, the prediction
map R(t), and the environment Ξ

2: output Command set Π
3: while N 6= ∅ do
4: for all si ∈ N do
5: Compute coverage map ψi
6: Ψq = Ψq + ψiq, ∀q ∈ Ξ
7: end for
8: Uq =

R(t)
q

Ψq
, ∀q ∈ Ξ

9: sj = Rand(N)
10: Optimize parameters of sj using U.
11: for all q ∈ Ξ do
12: r

(t)
q = r

(t)
q − (r

(t)
q . C(s

(t)
j ,q))

13: end for
14: N = N \ sj
15: end while

Fig. 1. Assuming that a sensor is positioned at (50,50) heading upward, the
dark shaded area shows the current coverage of the sensor and the light shaded
area shows the accessible coverage map (ψ(t)

i) of the sensor in the next time
step.

non-zero, while the coverage over most of these locations
is close to zero. Therefore, by using the φ threshold, we
only consider points for which the sensor can significantly
change the coverage of the points it is covering. For an
example of ψ(t)

i , look at Fig. 1, where we have shown the
current coverage of a sensor and its accessible coverage
map.

• Ψ
(t)
q = Ψ

(t)
q + ψ

(t)
iq : Using ψ

(t)
i , update the global ac-

cessible coverage map Ψ(t) for the environment. Each
cell q in Ψ(t) has a value Ψ

(t)
q representing the effective

accessible coverage of all sensors over this location. The
Ψ(t) value for each location shows the potential of that
location to be covered by different sensors. Notice that
the values of different locations in the possible coverage
map are real values (unlike previous work (e.g., as in [4],
[5]) in which the values are integers). This is a natural
consequence of the probabilistic coverage model we used

for our sensors.
• U

(t)
q =

R(t)
q

Ψ
(t)
q

: Create a weight map U(t). In this new
weight map, the weight of the locations which can
be covered by more than one sensor is proportionally
reduced. This is the core of the algorithm, which assigns
more weight to location that can be covered by less
number of sensors.

• sj = Rand(N): Randomly choose a sensor sj from the
sensors whose direction has not been optimized yet.

• Optimize parameters of sj using U(t): optimize the
parameters of the sensor sj . The optimization is done
using random sampling. Random sampling was shown
to be more effective search method compared to other
simple methods such as grid search [7], therefore we
chose it as our optimization algorithm. For that purpose ω
samples are randomly chosen from the range of possible
pan and tilt angles, and zoom factors. The parameter set
which achieves the best final coverage is chosen as the
final direction of the sensor. The important point is that
the evaluation for different parameter sets for a sensor is
based on the weight map U(t).

• r
(t)
q = r

(t)
q − (r

(t)
q . C(s

(t)
j ,q)): Once the direction and

zoom level of the sensor sj is found, its coverage is
proportionally decreased from the prediction map. For
example, assume that location q has the value of (r(t)

q =
0.8) in the prediction map. Also assume that the direction
of sensor sj is fixed and the coverage of the sensor over
the location is C(s

(t)
j ,q) = 0.7. Having this, the new

value of the location in the prediction map becomes:
r

(t)
q = 0.8− 0.8× 0.7 = 0.24.

• N = N \ sj : Remove the sensor sj (for which the
direction has been optimized) from the set of sensors.

The iteration continues until the parameters of all the
sensors are determined.

IV. EXPERIMENTS AND RESULTS

In the experimental section we compare the performance of
the proposed GSCO algorithm with the CMA-ES method [8],
a state-of-the-art metaheuristic for real-valued optimization.
Notice we could not compare our method with other methods
mentioned in Sec. I, given that none of the mentioned algo-
rithms uses a probabilistic coverage model for sensors, and
therefore our sensor coverage model is not applicable in those
algorithms.

A. Simulated Dataset

In order to make the experiments for the trajectory predic-
tion, we need an environment in which the targets displace
and produce trajectories. Next, we explain this environment
and how the target trajectories were simulated.

1) Map: For the experiment we used a map of Université
Laval campus, in Québec, Canada. The map has 300 rows and
300 columns, with a resolution of one meter per dimension.

Fig. 2. There are eight gates on the campus map. Each gate is presented by
a cyan circle. Targets can enter from any of the eight gates, walk around the
campus and exit the environment through another gate. The trajectory of a
sample target is also shown using the white line. The pedestrian paths inside
the campus are shown using the dashed black line. The target follows the path
to move between gates.

2) Targets: In our experiments each target is a simulation
of a pedestrian walking on the campus. The target enters the
environment from one gate of a building, walks inside the
environment and exits from another gate (see Fig. 2). In this
figure, blue areas represent buildings, green areas represent
streets and parkings, and red areas are ground. Trajectories of
targets are generated based on the current location of a target
and on the temporary goal location it is trying to reach. The
temporary goal is generated based on the shortest path between
the initial gate and the final gate on the pedestrian path of the
campus. Here, the pedestrian path is represented as a graph
with intersections on the path being the vertices of the graph
and the paths themselves being the edges. Each intersection
on the shortest path between the two gates can be a temporary
goal for a target.

At each time step, the next location of a target is randomly
chosen from a distribution which itself is produced by the
multiplication of two other distributions, namely the beta
distribution and the Gaussian distribution. More precisely, at
each time step, a Gaussian distribution is applied on the angle
between the target’s location and its temporary goal and a
beta distribution is applied on the distance to determine the
step size. The multiplication between these two distributions
is normalized to sum up to one and then used to determine the
probability of each location in the environment to be selected
as the next location of the target. The Beta distribution has
two parameters α and β and the Gaussian distribution has

TABLE I
PARAMETER VALUES FOR THE TRAJECTORY GENERATION.

Parameter Value Parameter Value
α 2 β 2
µ 0 σ2

a 125

Fig. 3. The location of sensors is represented by the yellow squares on the
map.

parameters µ and σa. The chosen values for these trajectory
generation parameters are summarized in Table I.

Notice that the dataset lacks the information for the sensors.
The position of the sensors is presented in Fig. 3. In this figure
the sensor locations are represented by yellow squares.

Sensors placed in the environment are the Pan-Tilt-Zoom
cameras. The specification of the cameras is explained in
Sec. II-B. For a reasonable model of a camera, we propose to
use the parameters shown in Table II.

TABLE II
THE PARAMETER VALUES FOR A REALISTIC MODEL OF A PTZ CAMERA.

Parameter Value Parameter Value
Lh(mm) 5.37 Lv(mm) 4.04
αdmax (m) 50 αdmin

(m) 25
fmin(mm) 4.7 fmax(mm) 9.4
βd, βθ , and βξ 1 τ(m) 1

ξmin −90o ξmax 90o

vθ ±30o/t vξ ±5o/t

vf (mm) ±1.33 θmax 360o

θmin 0o

TABLE III
PARAMETER VALUES FOR THE SENSOR CONTROL METHODS.

CMA-ES parameter Value GSCO parameter Value
σCMA 0.33 φ 0.1
λCMA 14

0 100 200 300 400 500 600 700 800

time(min)

55

60

65

70

75

80

85

co
v
e
ra

g
e
(%

)

CMA-ES

GSCO

Fig. 4. Coverage percentage for experiments with 50 targets using CMA-ES
and GSCO optimization methods over 200 time steps.

B. Sensor Control

We use the weighted probabilistic method (as explained in
II-C) as the prediction method to determine the future location
of targets. Then, the mentioned two optimization methods find
the best commands for the sensors. The value of the parameters
for the sensor control methods is summarized in Table III.

To test different scenarios, we produced simulations with
different densities of targets. Therefore, at each time step, a
number of targets equal to the ratio between the total number
of targets to the simulation time enter the environment. For
the experiments, we created simulations with 50, 100, and 150
targets in the map, with a total simulation time of M = 200
time steps. We produced 30 different simulation settings with
each parameter set, and performed the experiments on them.
The performance measure was previously defined (Eq. 9) as
the average coverage the network provides over all of the
targets through the whole simulation duration.

One of the critical parameters for the CMA-ES algorithm
is the maximum number of iterations that the algorithm
run for. This parameter directly affects the final perfor-
mance and the running time of the algorithm. As it is a
critical measure, we tested CMA-ES method with differ-
ent values for the maximum number of iterations, ranging
from 1 to 100. More precisely, the iteration numbers are
[1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

The same argument applies to the number of random
samples ω taken by the GSCO algorithm. We performed
several experiments, in which the ω parameter has the range

0 100 200 300 400 500 600 700 800

time(min)

55

60

65

70

75

80

85

co
v
e
ra

g
e
(%

)

CMA-ES

GSCO

Fig. 5. Coverage percentage for experiments with 100 targets using CMA-ES
and GSCO optimization methods over 200 time steps.

0 100 200 300 400 500 600 700 800

time(min)

55

60

65

70

75

80

85

co
v
e
ra

g
e
(%

)

CMA-ES

GSCO

Fig. 6. Coverage percentage for experiments with 150 targets using CMA-ES
and GSCO optimization methods over 200 time steps.

of [1, 10, 50, 100, 200, 300, 400]. The results are presented in
Figs. 4, 5, and 6. The variance bars in the figures represent the
result of the CMA-ES algorithm with one specific maximum
number of iterations or the GSCO algorithm with a specific
ω parameter over the 30 different simulation settings. In these
experiments, we are looking for small running times and large
coverage. Therefore, the best algorithm should produce results
closer to the top-left corner of the figure. Also notice that the
time axis represents the total simulation time over the 200
time steps in each simulation setting. In other words, to get
the computation time of each algorithm for one time step, the
total simulation time should be divided by 200.

We observe that in all of the experiments, the GSCO algo-
rithm converged faster than the CMA-ES algorithm. This is an
important aspect as the convergence time is crucial for sensor

control algorithms, given that the results should be produced
online, because the system needs to update the direction of
the sensors at each time step, and therefore computation time
becomes very important.

In terms of coverage performance, we observe that in the
case of 50 targets, the GSCO algorithm performed better than
the CMA-ES algorithm, while for the 100 and 150 targets
cases, the performance of the CMA-ES was slightly better.
Although in all the cases, the performance difference between
the two algorithms is less than 1%, and not statistically
significant.

We also observe that as the number of targets increases the
overall coverage percentage decreases, which is also reason-
able, as covering more targets is a more difficult task. The
point is that the decrease in the performance of the GSCO
algorithm is more significant than the CMA-ES algorithm.
The reason could be that, the CMA-ES algorithm solves the
sensor control problem as a general optimization algorithm and
therefore the number of targets has less important effect on the
algorithm, while the performance of the GSCO algorithm is
directly related to the heuristic used to design the algorithm. It
could be that the heuristic is more applicable to less crowded
scenes with a lower number of targets.

We can argue that GSCO algorithm has a demonstrated
advantage over CMA-ES for the problem of sensor control.
Indeed, the final result of the two algorithms in terms of
the coverage is similar while the GSCO algorithm converges
faster and produces the result in less time, which is important
for online control systems. Therefore, the GSCO algorithm is
suitable for the systems which have real-time constraints.

V. CONCLUSION

In this paper we have presented the GSCO algorithm
to optimize the parameters of the sensors in the temporal
coverage optimization problem. The proposed algorithm has
several advantages compared to other algorithms proposed
in the literature, such as the capability to work with the
probabilistic sensing model for sensors, to handle different
certainties for target locations and to model the limitation of
sensor movements.

We also compared the proposed method with a general
purpose optimization algorithm (CMA-ES), and observed that
our algorithm produces the results in a much shorter time in
all the cases considered. Besides, the result of our algorithm
was superior to that of the CMA-ES algorithm in simulations
with a lower number of targets and competitive in simulations
with more targets. Therefore the GSCO algorithm can satisfy
the real-time requirements of systems without compromising
on the performance in terms of the overall coverage of the
network.

ACKNOWLEDGEMENTS

This project was funded by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada. Computational
resources were provided by Calcul Québec / Compute Canada.

REFERENCES

[1] V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, and M. Mostafavi,
“Probabilistic sensing model for sensor placement optimization based
on line-of-sight coverage,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 2, pp. 293–303, Feb 2013.

[2] Y. Cai, W. Lou, and M. Li, “Cover set problem in directional sensor
networks,” in Future Generation Communication and Networking, vol. 1,
Dec 2007, pp. 274–278.

[3] J. Ai and A. A. Abouzeid, “Coverage by directional sensors in
randomly deployed wireless sensor networks,” Journal of Combinatorial
Optimization, vol. 11, no. 1, pp. 21–41, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10878-006-5975-x

[4] U.-R. Chen, B.-S. Chiou, J.-M. Chen, and W. Lin, “An adjustable target
coverage method in directional sensor networks,” in IEEE Asia-Pacific
Services Computing Conference. IEEE, 2008, pp. 174–180.

[5] J. Wang, C. Niu, and R. Shen, “Priority-based target coverage in
directional sensor networks using a genetic algorithm,” Comput. Math.
Appl., vol. 57, no. 11-12, pp. 1915–1922, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.camwa.2008.10.019

[6] V. Akbarzadeh, C. Gagné, and M. Parizeau, “Target trajectory prediction
in PTZ camera networks,” in Proc. of the IEEE Workshop on Camera
Networks and Wide Area Scene Analysis (WCNWASA 2013), June 2013,
pp. 816–822.

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Resarch, vol. 13, pp.
281–305, Feb. 2012. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2188385.2188395

[8] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation
in evolution strategies,” Evolutionary Computation, vol. 9, no. 2, pp. 159
– 195, 2001.

