
Stream Clustering of Tweets
Sophie Baillargeon

Département de mathématiques
et de statistique
Université Laval

Québec (Québec), Canada G1V 0A6
Email: sophie.baillargeon@mat.ulaval.ca

Simon Hallé
Thales Canada

Research & Technology
Québec (Québec), Canada G1P 4P5

Email:
simon.halle@ca.thalesgroup.com

Christian Gagné
Département de génie électrique

et de génie informatique
Université Laval

Québec (Québec), Canada G1V 0A6
Email: christian.gagne@gel.ulaval.ca

Abstract—This paper proposes an approach to cluster social
media posts. It aims at taking full advantage of this recent
source of newsworthy information and at facilitating the work
of users who need to monitor public events in real-time. The
emphasis is on developing a stream clustering algorithm able to
process incoming tweets. A first implementation of the algorithm,
focusing on the tweets’ text, was tuned and tested on a dataset of
manually annotated messages. Results show that the algorithm
produces a partition of tweets similar to the manual partition
obtained from humans. In future work, we plan to extend this
algorithm with additional features and integrate the resulting
analytical capabilities to a real-time social media monitoring
platform called CrowdStack.

I. INTRODUCTION

Social media and news reporting platforms represent a
valuable source of information to monitor events occurring
around the world in real-time. Because of the size and speed
at which this information is generated and the fact that this
information is often produced in a free-text form, it can be
an overwhelming challenge to fully benefit from such data
sources.

In this paper, we propose a social media post stream
clustering solution for addressing this problem. Our focus is on
posts from the popular microblogging service Twitter, where
we aim at facilitating the exploitation of tweets by grouping
similar ones together.

The paper is organized as follows. We first briefly present
a real-time monitoring and investigation platform of social
media documents (posts) developed by Thales Canada. The
motivation behind this project is to investigate how new
analytical capabilities could be added to the latter platform.
Then the proposed stream clustering algorithm is described,
followed by a presentation of preliminary results obtained with
the algorithm. The last section deals with future work.

II. SOCIAL MEDIA ANALYTICS PLATFORM

Thales Canada intends to exploit the stream clustering algo-
rithm described in this paper through its social media analytic
platform called CrowdStackTM. This platform uses a big data
processing framework to ingest and analyze large volumes of
documents that are streamed in real-time. End users access the
system through a Web interface (see Fig. 1) that provides var-
ious search and visualization features. Through this interface,
they can monitor and compare situations evolving in real-time

and investigate datasets of documents accumulated during a
period of months or years of streaming. By ultimately adding
the stream clustering algorithm to CrowdStack’s document
processing framework, users will have the ability to search and
visualize documents by clusters, thus reducing the information
they need to process, facilitating their comprehension and
improving their search time. More importantly, they will
be notified when large clusters of documents appear, thus
providing a valuable alerting capability.

The work presented here is the beginning of a larger project
in which we aspire to develop an algorithm for public event
detection from social media posts that could be integrated to
CrowdStack. Research in the field of event detection in social
streams is quite recent (see [1], [2], and [3]).

A. Available Tweet Features

In this paper, we focused on analyzing tweets, which
represent one of the best sources of information to cover broad
subjects from all over the world in real-time. The CrowdStack
API gives access to various features describing tweets, listed in
Fig. 2. This figure includes metadata derived from the tweet’s
text using a Natural Language Processing (NLP) framework
from the National Research Council of Canada (NRC).

Only the “text” feature is used in this paper, although we
plan to generalize the approach to all available features in
future work.

III. STREAM CLUSTERING ALGORITHM

We propose here a stream clustering algorithm to group
similar tweets. In a stream of tweets, many tweets are in fact
retweets of another tweet. Retweets of the same tweet should
always belong to the same cluster. Therefore units to cluster
are not individual tweets; instead they are groups of retweets.

Most tweets clustering algorithms we have seen in the liter-
ature process tweets, or groups of retweets, one after the other
(see [2], [3], [4]). In our approach, we chose to process tweets
in small batches formed over time, as illustrated in Fig. 3. By
doing so, we wanted to facilitate the use of this algorithm
inside the existing big data processing framework used by
CrowdStack. Indeed, in this framework, data (tweet) streamed
in real-time is immediately indexed into a database so it can
be consumed by users in real-time. Afterward, this new data
is processed by algorithms organized inside a batch layer to

Fig. 1. Web widgets from the CrowdStack’s user interface are used to search and filter particular subjects (top bar), locations (center map), time periods
(bottom-left timeline), emotions (bottom-right widget) and much more. Customizable “cards”, shown at the center of the figure as the result of multiple filters,
illustrate the state of a subject of interest the user is following.

profile description

Where
was the tweet
posted from?

longitude,
latitude

(rarely given)
document location

(often inferred from
author’s profile)

What
is the tweet

about?

text

hashtags

named entities

urlmedia
(image, video)

key phrases

sentiments

emotions

features
included in
the tweet

NRC
metadata

How
was the tweet

posted?

language
used

device
used

Who
posted the

tweet and who
is related to it?

sender’s
user name
on Twitter

number of friends

number of followers

Twitter users referred
to in the tweet

in case of a retweet:
original sender’s id

in case of a reply:
recipient’s id

sender’s
features

When
was the tweet

posted?

publication
date time

Fig. 2. Document features used to characterize tweets are categorized by the
type of information they bring.

generate additional information and enhance this existing data
after it has been streamed into the system. When the clustering
algorithm will be integrated inside CrowdStack’s batch layer,
it will need to respect two non-functional requirements: 1)
minimize the number of modifications to existing data used
in CrowdStack’s indexes; and 2) maximize its ability to be
parallelized so it can run on multiple data nodes. Thus, by
orchestrating the execution of the clustering algorithm using
mini-batches, we: 1) minimize the number of modifications to
data entries that define cluster groups in our databases; and 2)
make it possible to parallelize the clustering algorithm, which
could be considered as part of future works. In addition, the
maximum batch size represents a configurable system param-
eter that allows us to achieve a trade-off between frequently

updated cluster data (small batches) and good performance
(large batches) of both the whole system and of specific system
features relying on cluster data, e.g. alerts.

A classical clustering method is used on the first batch
to form the initial set of clusters. We call this phase “new
clustering” because it creates new clusters. The following
batches are treated differently since clusters already exist and
groups of retweets in the batch could just as well belong to
pre-existing clusters as to new ones. The clustering algorithm
for every batch except the first one therefore comprises two
phases: a first in which groups of retweets are added to pre-
existing clusters, and a second one in which new clusters are
formed with groups of retweets that did not join a cluster in
the first phase. We call the first phase “join clustering”. A new
clustering is performed in the second phase, as was done with
the first batch. Here follows a description of the two clustering
phases.

A. New clustering

Even if we process a data stream, the new clustering
phase involves a classical batch clustering method. Since
features to process are of various types, the method has to
allow non-numeric features. Consequently, we restricted our
choice of clustering algorithm to methods able to work only
from a dissimilarity or distance matrix between units. We
could not use, for example, the K-means method. We chose
agglomerative hierarchical clustering for its simplicity (see [5,
Section 14.3.12]).

Agglomerative hierarchical clustering starts by considering
that each unit is in a distinct cluster. At each step of the
calculations, the two nearest clusters are merged. The process
continues until all units are in a single big cluster. In this
way, a hierarchy of clusters is built, which can be graphically
represented by a dendrogram. Fig. 4 shows a simple example

Batches of
incoming

tweets B0 B2 B3

Clusters

new
clustering

C0 C1 C2 C3

join + new
clustering

join + new
clustering

join + new
clustering

A batch is completed when it
contains N documents or
after T minutes.

initial
batch

Group of retweets
clustering is conducted
each time a batch is
completed.

T

N

B1 ...

...

Fig. 3. Online mini-batch algorithm proposed to cluster groups of retweets: Bt is the batch containing tweets monitored during the tth time period and Ct

is the cluster set after clustering groups of retweets in Bt.

of a dendrogram, obtained from a distance matrix between 6
units.

To compute the distance between two clusters, we used the
mean distances between units in those clusters, which is called
“average link”.

To obtain a partition of the units, one simply has to cut the
dendrogram at a certain threshold height. This threshold is a
tuning parameter of the method. We propose using annotated
tweets in order to find the best value for this parameter.

K-medoids [5, Section 14.3.10] clustering would have been
a possible alternative to hierarchical clustering here, because
it can work from a distance matrix. However, choosing the
number of clusters would have been a problem with that
method. In the approach we propose, the choice of number
of clusters is replaced by the choice of threshold parameter
value.

B. Join clustering

The join clustering phase aims at deciding which groups
of retweets will join a pre-existing cluster and which are not
similar enough to pre-existing clusters to be added to one of
them. Making this decision is simply a matter of calculating
distances between groups of clusters in the processed batch
and pre-existing clusters.

However, a newly formed batch almost always contains
tweets belonging to groups of retweets already clustered, i.e.
seen in previous batches. Therefore, we propose the following
steps for the join clustering phase:

1) Identify the groups of tweets to cluster:
B∗

t = subset of groups in Bt not already clustered.
2) For each group g∗ti in B∗

t :
a) identify the potential clusters:

Ci
t−1 = subset of clusters in Ct−1 containing tweets

posted close enough in time from the tweets in g∗ti ;
b) calculate distances between g∗ti and clusters in

Ci
t−1: group-cluster (or unit-cluster) distance =

mean distance between group and the groups in
the cluster (as in the hierarchical clustering);

c) decide: add g∗ti to its nearest cluster (if similar
enough), or send g∗ti to the new clustering phase.

Step 2 a) will be dealt with in future work. For now, let us
focus on step 2 c). It involves a threshold parameter at which
a group of retweets is declared too dissimilar to pre-existing
clusters to join one of them. We chose the same definition
of unit-cluster distance in the two phases so the threshold
parameter has the exact same scale and meaning in the join and
in the new clustering. We end up tuning only one parameter.

The join clustering phase is illustrated in Fig. 5 for groups
of retweets in a fictive batch Bt. For every group gti from Bt

never seen before, distances are calculated between the group
and clusters ct−1

j in the set of clusters pre-existing Ct−1 close
enough in time from gti. In this example, gt4 has already been
seen in a previous batch, so no distances are calculated for this
group. Groups gt1, gt2 and gt

3 have never been seen. However
cluster ct−1

2 is discarded as a potential cluster for gt
1, and so

is ct−1
3 for gt

2, because of tweet posting times too far apart.
In the end, gt1 is added to its nearest cluster ct−1

1 , so is gt3,
also nearest to ct−1

1 . However, the smallest distance between
gt2 and a cluster in Ct−1 is larger than the threshold distance
(here 0.7) to join a pre-existing cluster. Therefore, gt2 will have
to be processed again, in the new clustering phase.

C. Clustering based on tweets’ text

We began the implementation and test of our algorithm with
the text feature. Following an exploratory analysis of annotated
data and interviews with our annotators, we identified text
as being the most useful feature for humans to group tweets
together. To calculate distances between tweet texts, we chose
to process as follows:

1) Text cleaning: we remove punctuation marks, common
words in the language used (called stop words) and
URLs; we also transform all letters to lower case.

2) Text to words: we split the texts into words.
3) Unit-unit distance: we calculate the Jaccard distance

between pairs of texts, which are now sets of words.

IV. PRELIMINARY RESULTS

We implemented the proposed stream clustering algorithm.
This algorithm includes a configurable threshold parameter. To
find the best value for such a tuning parameter, some choose
to exploit manually annotated data [3], others base their choice

 g1 g2 g3 g4 g5 g6

g1 0.0 0.1 0.7 0.9 1.0 0.8
g2 0.1 0.0 0.4 0.6 0.9 1.0
g3 0.7 0.4 0.0 0.8 1.0 0.7
g4 0.9 0.6 0.8 0.0 1.0 0.9
g5 1.0 0.9 1.0 1.0 0.0 0.6
g6 0.8 1.0 0.7 0.9 0.6 0.0

Group-group distance
matrix

g1

g2

g3

g4

Partition after
cutting the

dendrogram

g5

g6c1

c2

c3

Dendrogram from
hierarchical clustering

Fig. 4. Example of new clustering with 6 groups of retweets gi, i = 1, . . . , 6; where the dendrogram is cut at the threshold height of 0.7, resulting in a
partition containing 3 clusters cj , j = 1, 2, 3.

 c1t-1 c2t-1 c3t-1

g1t 0.1 - 0.3
g2t 0.8 0.9 -
g3t 0.5 0.8 0.6
g4t - - -

..
.

g1t

g2t

g3t

g4t

Bt

..
.

c1t-1

c2t-1

c3t-1

Ct-1

..
.

new
cluster

...

..
.

...

already
seen

Group-cluster distance matrix Join clustering result

Fig. 5. Example of join clustering processing groups of tweets gti , i =

1, 2, . . ., in Bt. Ct−1 is the set of pre-existing clusters ct−1
j , j = 1, 2,

on descriptive statistics [2]. We chose to use annotated data,
even though properly annotating data requires time, because
we believe it will lead to better performances.

A. Annotated dataset

Tweets monitored on August 30, 2015, Eastern Daylight
Time (UTC-4), have been annotated. Annotating consisted in
tagging tweets according to their subject. Tweets about the
same subject were given the same tag. Since tags can be
seen has cluster membership, tweets were clustered manually
through these annotations.

The complete dataset includes 3102 tweets, divided into
1411 groups of retweets. 1169 of these groups include only 1
tweet, but other groups contain up to 152 tweets.

The dataset has been split into a validation (811 groups
of retweets) and a test (600 groups of retweets) set. Note
that we intend to annotate another dataset (on another time
period), which could become an even more suitable test set.
The validation set has been used to optimize the threshold
parameters, whereas the test set has been used to evaluate the
performance of the algorithm.

In addition to these utilities, the annotated dataset is of
great value to better understand tweet features (see Fig. 2).
By studying the variations within and between clusters in this
dataset, we can get some insight into which features are the
most relevant for the clustering of tweets.

B. Threshold parameter optimization

The tuning parameter common to the new and the join
clustering phases of our algorithm is a threshold on the
distance above which two clusters are too dissimilar to be
merged. Here we search for the best threshold parameter value
(i.e., the one giving the most meaningful partition).

The term “automatic partition” is used to refer to the result
obtained from processing the tweets in the annotated dataset
with our algorithm. The partition obtained from the annotation
is called “manual partition”. We aim at an automatic partition
as similar as possible to the manual partition. The indexes used
here to measure the similarity (or dissimilarity) between the
two partitions are the Rand index, adjusted or not [6], and the
variation of information distance [7].

Fig. 6 shows the results of the threshold parameter opti-
mization. Parameter values between 0.7 and 0.92 (by leaps
of 0.005) were considered. Indexes to compare automatic and
manual partitions, as well as the number of clusters formed,
are reported in this figure. The Rand index is maximized at a
threshold value of 0.85, the adjusted Rand index is maximized
at 0.87 and the variation of information (vi) distance is min-
imized at 0.84. We selected the value 0.87 since it optimizes
the widely used adjusted Rand index and also because it leads
to the number of relevant clusters closest to 69, which is the
number of relevant clusters in the annotated dataset.

Clusters are considered irrelevant if the tweets they contain
relate, for instance, to non-public issues or to entertainment.
Such tweets are abundant in any stream of tweets. But since
our ultimate objective is to detect public events, we are not
interested in clustering tweets irrelevant for that goal. We
rather wish to filter them out.

C. Algorithm performance

With the chosen threshold value of 0.87, we processed the
test set with our algorithm to obtain an automatic partition.
Table I shows a comparison of this partition with the manual
partition of the test set, considered to be the truth.

Rand index and specificity are excellent whereas sensitivity
is acceptable. However, we obtain a poor false discovery rate.

0.70 0.75 0.80 0.85 0.90

0.
80

0.
85

0.
90

0.
95

R
an

d
in

de
x

0.70 0.75 0.80 0.85 0.90

0.
30

0.
40

0.
50

0.
60

ad
ju

st
ed

 R
an

d
in

de
x

0.70 0.75 0.80 0.85 0.90

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

vi
 d

is
ta

nc
e

0.70 0.75 0.80 0.85 0.90

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 c

lu
st

er
s

Total
Relevant only

69 relevant clusters in annotated data

threshold parameter

Fig. 6. Results of the threshold parameter optimization on the validation set:
dashed lines highlight the performances of the best value for each index.

TABLE I
COMPARISON BY PAIRS OF GROUPS OF RETWEETS BETWEEN AUTOMATIC

AND MANUAL PARTITIONS FOR THE TEST SET (THRESHOLD = 0.87)

Automatic partition → Pair not in Pair in
Manual partition ↓ same cluster same cluster

Pair not in same cluster 85616 3657
Pair in same cluster 1607 3950

Index Value
Rand index or proportion of agreement (larger is better) 0.94
Sensitivity or true positive rate (larger is better) 0.71
Specificity or 1 - false negative rate (larger is better) 0.96
False discovery rate (smaller is better) 0.48

About half of the pairs automatically placed in the same cluster
are not in the same cluster in the manual partition. We think
that exploiting features other than the text will help to improve
this statistic.

V. FUTURE WORK

This research project is at an early stage. We have devel-
oped, implemented, and tested a stream clustering algorithm
to group similar tweets. There is still much work to do in order
to reach the larger objective of developing an event detection
approach and to integrate it into CrowdStack. We plan to:

• simultaneously exploit as many features as possible
through ensemble clustering;

• filter clusters using an ensemble classification method to
tag them as related or not to an event of interest;

• scale the algorithm to large streams of tweets by intro-
ducing cluster management.

So far, the novelty of our approach resides mostly in the
mini-batch processing. We adapted a classical clustering al-
gorithm, agglomerative hierarchical clustering, to that setting.
Future work will bring more novelty, for instance by using a
certain number of heterogeneous features in the clustering.
We intend to perform a clustering per feature/dissimilarity
measure combination, than to aggregate the clusterings using
a chosen consensus function in order to get a single final
clustering. This ensemble clustering approach (see [8] and [9])
is expected to produce a meaningful grouping of the tweets
while bringing valuable information about features importance
in the clustering.

To achieve the goal of performing event detection, a layer
has to be added to our approach. Fig. 7 shows the proposed
algorithm with that layer added. We plan on using an en-
semble classification method to identify events of interest. We
could use a technique as simple as majority vote from k-
nearest neighbors classifier per feature/dissimilarity measure
combination. We will conduct experiments to find an ensemble
classification method performing well on our data. Annotated
data will again be used, this time to train the classifiers. The
annotated dataset needed here should contain clusters along
with tags differentiating them between events and non-events.

Finally, with time, the number of clusters will keep growing.
At some point, it will not be possible to calculate distances
between incoming tweets and every clusters while continuing

Batches of
incoming

tweets B0 B2 B3

Clusters

new
clustering

C0 C1 C2 C3

join + new
clustering

join + new
clustering

join + new
clustering

A batch is completed when it
contains N documents or
after T minutes.

initial
batch

Group of retweets
clustering is conducted
each time a batch is
completed.

T

N

B1 ...

...

classification

E0 E1 E2 E3

classification classification classification

Events ...

Filtering
to identify
events.

+ periodical cluster
management

Fig. 7. Complete online mini-batch algorithm we plan to develop. Bt is the batch containing tweets monitored during the tth time period and Ct is the cluster
set after clustering groups of retweets in Bt. In the new part of the diagram, compared to figure 3, Et is the set of clusters from Ct tagged as referring to
an event of interest after filtering through classification.

to process data in real-time. We intend to develop a model to
estimate the probability for a new group of retweets to join a
cluster. When that probability becomes too small, a cluster will
be considered inactive and no more distances will be calculated
between that cluster and new groups of retweets. Periodically,
we could also consider merging or splitting clusters, in order to
manage situations where many clusters would become similar
to one another, or a cluster would become too diverse to be
considered homogeneous.

VI. CONCLUSION

Data found on social medias is abundant, it is continuously
generated by its users and it comes with features of various
types. By creating a clustering algorithm that targets this data
source, we wanted to address the requirements involved in
dealing with data in large volume, high velocity and variety,
which are common characteristics of big data sources. In this
initial phase of our work, we proved that our algorithm has
the potential to handle such big data sources. In subsequent
phases, we wish to prove it is successful in achieving mean-
ingful results in an operational context with large quantities
of data over a long period of time.

ACKNOWLEDGEMENTS

The authors would like to thank Thales Canada and Mitacs
for funding a Mitacs Accelerate Internship and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) for a PhD graduate scholarships granted to Sophie
Baillargeon. They are also grateful to Annette Schwerdtfeger
for proofreading this manuscript.

REFERENCES

[1] C. Aggarwal and K. Subbian, “Event Detection in Social Streams,” in
Proceedings of SIAM International Conference on Data Mining (SDM),
2012, pp. 624–635.

[2] S. Kumar, H. Liu, S. Mehta, and L. V. Subramaniam, “From tweets to
events: Exploring a scalable solution for Twitter streams,” arXiv preprint
arXiv:1405.1392, 2014.

[3] H. Becker, M. Naaman, and L. Gravano, “Beyond Trending Topics:
Real-World Event Identification on Twitter,” in Proceedings of the Fifth
International AAAI Conference on Weblogs and Social Media (ICWSM),
2011, pp. 1–17.

[4] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming First Story
Detection with application to Twitter,” in Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, 2010, pp. 181–189.

[5] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference and prediction, 2nd ed. Springer, 2009.

[6] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification,
vol. 2, no. 1, pp. 193–218, 1985.

[7] M. Meila, “Comparing clusterings - an information based distance,”
Journal of Multivariate Analysis, vol. 98, pp. 873–895, 2007.

[8] L. Zheng, T. Li, and C. Ding, “Hierarchical ensemble clustering,” in
Proceedings of IEEE International Conference on Data Mining (ICDM),
2010, pp. 1199–1204.

[9] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1,
2007.

