
DEAP - Enabling Nimbler Evolutions

Fran•ois-Michel De Rainville, FŽlix-Antoine Fortin, Marc-AndrŽ Gardner, Marc Parizeau, and Christian GagnŽ
DŽpartement de gŽnie Žlectrique et de gŽnie informatique - UniversitŽ Laval - QuŽbec (QuŽbec), Canada

D
EAP is a Distributed Evolutionary Algorithm (EA) framework

written in Python and designed to help researchers devel-

oping custom evolutionary algorithms. Its design philoso-

phy promotes explicit algorithms and transparent data struc-

tures, in contrast with most other evolutionary computation softwares

that tend to encapsulate standardized algorithms using the black-box ap-

proach. This philosophy sets it apart as a rapid prototyping framework for

testing of new ideas in EA research. An executable notebook version of

this paper is available at https://github.com/DEAP/notebooks .

Introduction

The DEAP framework [1; 2] is designed over the three following founding

principles:

1. Data structures are key to evolutionary computation. They must fa-

cilitate the implementation of algorithms and be easy to customize.

2. Operator selection and algorithm parameters have strong inßuences

on evolutions, while often being problem dependent. Users should

be able to parametrize every aspect of the algorithms with minimal

complexity.

3. EAs are usually embarrassingly parallel. Therefore, mechanisms

that implement distribution paradigms should be trivial to use.

With the help of its sister project SCOOP [3] and the power of the Python

programming language, DEAP implements these three principles in a

simple and elegant design.

! Building blocks for testing ideas
! Rapid prototyping
! Fully transparent
! Parallel ready
! Exhaustively documented
! Available at http://deap.gel.ulaval.ca

Highlights

Data Structures

A very important part of the success for designing any algorithm Ñ if

not the most important Ñ is choosing the appropriate data structures.

Freedom in type creation is fundamental in the process of designing evo-

lutionary algorithms that solve real world problems. DEAPÕs creator mod-

ule allows users to:

create classes with a single line of code (inheritance);

add attributes (composition);

group classes in a single module (sandboxing).

In the following listing, we create a minimizing Þtness.

from deap import base , creator
creator . create (" FitnessMin " , base . Fitness , weights =(- 1.0 ,))

SIGEVOlution Volume 6, Issue 2 17

https://github.com/DEAP/notebooks

EDITORIAL

The create function expects at least two arguments; the name of the

class to be created and the base class it inherits from. The next ar-

guments are used as class attributes. Thus, the class just created is

a FitnessMin inheriting from the base class Fitness and having a

weights attribute set to the one element tuple (! 1.0,) , indicating mini-

mization of a single objective. The trailing comma is mandatory to deÞne

a single item tuple in Python. A multi-objective Þtness would be created

using a multi-element tuple.

Next, we deÞne with the same mechanism an Individual class inherit-

ing from a list and composed with a fitness attribute.

creator . create (" Individual " , list , fitness =creator . FitnessMin)

When an Individual is instantiated, its fitness is initialized as an

instance of the previously deÞned FitnessMin class. This is illustrated

in the following example,

ind = creator . Individual ([1, 0, 1, 0, 1])
ind . fitness . values = (sum(ind) ,)

where an individual is created from a list of binary values and the value

of its Þtness is set to the sum of its elements. In DEAP, the Þtness value

is always multi-objective with the single objective case being a tuple of

one element.

Operators

Operator selection is another crucial part of evolutionary algorithms. It

must be straightforward and its parametrization intuitive. DEAPÕs Toolbox

enables users to:

create aliases for operators;

register operatorsÕ parameters;

interchange operators efÞciently;

regroup all operators in a single structure.

The next example presents the construction of a toolbox and how opera-

tors and their parameters are registered.

from deap import tools
toolbox = base . Toolbox ()
toolbox . register (" mate " , tools . cxOnePoint)
toolbox . register (" mutate " , tools . mutGaussian , mu=0.0 , std =1.0)

The register function expects at least two arguments; the alias of the

function and the function itself. The next arguments are passed to the

function when called, similarly to the partial function from the stan-

dard functools module. Thus, the Þrst operator is a one point crossover

registered under the alias mate . The second operator, a gaussian muta-

tion, is registered with its parameters under the generic name mutate .

Both operators are available from the tools module along with many more

instruments supporting evolution that are presented at the end of this

paper.

During subsequent experiments, replacing the one point crossover by a

two point crossover is as easy as substituting the third line of the previous

listing by the following one.

toolbox . register (" mate " , tools . cxTwoPoint)

Wherever the generic function mate is used, the new two point crossover

will be used.

Parallelization

DEAP is parallel ready. The idea is to use a mapping operation that ap-

plies a function to every item of a sequence, for instance to evaluate the

Þtnesses. By default, every toolbox is registered with the standard map
function of Python. For algorithms to evaluate individuals in parallel, one

only needs to replace this alias by a parallel map such as the one pro-

vided by SCOOP [3] , a library capable of distributing concurrent tasks on

various environments, from grids of workstations to supercomputers.

from scoop import futures
toolbox . register (" map" , futures . map)

DEAP is also compatible with the standard multiprocessing module, if the

user only cares to run on a single computing node with multiple cores.

import multiprocessing
pool = multiprocessing . Pool ()
toolbox . register (" map" , pool . map)

With these powerful tools, DEAP allows scientists and researchers with lit-

tle programming knowledge to easily implement distributed and parallel

EAs.

SIGEVOlution Volume 6, Issue 2 18

EDITORIAL

Preaching by Example

The best introduction to evolutionary computation with DEAP is to

present simple, yet compelling examples. The following sections set forth

how algorithms are easy to implement while keeping a strong grip on how

they behave. The Þrst section introduces a classical genetic algorithm

and exposes different levels of explicitness. The second section presents

how genetic programming is implemented in DEAP and the versatility of

the GP module. The Þnal example demonstrates how easy it is to imple-

ment a generic distributed island model with SCOOP.

A Simple Genetic Algorithm

A commonly used example in evolutionary computation is the OneMax

problem which consists in maximizing the number of ones in a binary

sequence. The more ones an individual contains, the higher its Þtness

value is. Using a genetic algorithm to Þnd such an individual is relatively

straightforward. Applying crossovers and mutations on a population of

randomly generated binary individuals and selecting the Þttest ones at

each generation usually converge to a perfect (all ones) solution. A prob-

lem of this simplicity should be solved with a very simple program.

Figure 1(a) presents all that is needed to solve the OneMax problem with

DEAP. The Þrst two lines import the necessary modules. Next, on lines

3 and 4, two types are created; a maximizing Þtness (note the positive

weights), and a list individual composed with an instance of this maximiz-

ing Þtness. Then, on lines 5 and 6, the evaluation function is deÞned. It

counts the number of ones in a binary list by summing its elements (note

again the one element returned tuple corresponding to a single objective

Þtness). Subsequently, a Toolbox is instantiated in which the necessary

operators are registered. The Þrst operator, on line 8, produces binary

values, in this case integers in [0,1] , using the standard random mod-

ule. The alias individual , on line 9, is assigned to the helper function

initRepeat , which takes a container as the Þrst argument, a function

that generates content as the second argument, and the number of rep-

etitions as the last argument. Thus, calling the individual function instan-

tiates an Individual of n=100 bits by calling repeatedly the registered

attr_bool function. The same repetition initializer is used on the next

line to produce a population as a list of individuals. The missing number

of repetitions n will be given later in the program. Subsequently, on lines

11 to 14, the evaluation, crossover, mutation and selection operators are

registered with all of their parameters.

The main program starts at line 16. First, a population of n=300 individ-

uals is instantiated. Then, the algorithm, provided with the population

and the toolbox, is run for ngen=40 generations with cxpb=0.5 proba-

bility of mating and mutpb=0.2 probability of mutating an individual for

each generation. Finally, on line 35, the best individual of the resulting

population is selected and displayed on screen.

Controlling Everything

When developing, researching or using EAs, pre-implemented canned

algorithms seldom do everything that is needed. Usually, develop-

ers/researchers/users have to dig into the framework to tune, add or re-

place a part of the original algorithm. DEAP breaks with the traditional

black-box approach on that precise point; it encourages users to rapidly

build their own algorithms. With the different tools provided by DEAP, it

is possible to design a nimble algorithm that tackles most problems at

hand.

Starting from the previous OneMax solution of Figure 1(a), a Þrst decom-

position of the algorithm replaces the canned eaSimple function (line

17) by the generational loop illustrated in Figure 1(b). Again, this exam-

ple is exhaustive but still very simple. On the Þrst 3 lines, the evalua-

tion function is applied to every individual in the population by the map
function contained in every toolbox. Next, on line 18, a loop over both

the population and the evaluated Þtnesses sets each individualÕs Þtness

value. Thereafter, on line 20, the generational loop begins. It starts by

selecting k individuals from the population. Then, the selected individu-

als are varied by crossover and mutation using the varAnd function. A

second variation scheme varOr can also be used, where the individuals

are produced by crossover or mutation. Once modiÞed, the individuals

are evaluated for the next iteration. Only freshly produced individuals

have to be evaluated; they are Þltered by their Þtness validity; valid
property of the Þtness (line 31). This version of the program provides the

possibility to change the stopping criterion and add components to the

evolution.

SIGEVOlution Volume 6, Issue 2 19

EDITORIAL

1 import random
2 from deap import algorithms , base, creator , tools

3 creator . create (" FitnessMax " , base. Fitness , weights =(1.0 ,))
4 creator . create (" Individual " , list , fitness =creator . FitnessMax)

5 def evalOneMax(individual) :
6 return (sum(individual) ,)

7 toolbox = base. Toolbox ()
8 toolbox . register (" attr_bool " , random. randint , 0, 1)
9 toolbox . register (" individual " , tools . initRepeat , creator . Individual , toolbox . attr_bool , n=100)

10 toolbox . register (" population " , tools . initRepeat , list , toolbox . individual)
11 toolbox . register (" evaluate " , evalOneMax)
12 toolbox . register (" mate" , tools . cxTwoPoint)
13 toolbox . register (" mutate " , tools . mutFlipBit , indpb =0.05)
14 toolbox . register (" select " , tools . selTournament , tournsize =3)

15 if __name__== " __main__" :
16 pop = toolbox . population (n=300)
17 algorithms . eaSimple(pop, toolbox , cxpb=0.5 , mutpb=0.2 , ngen=40)

17 fitnesses = toolbox . map(toolbox . evaluate , pop)
18 for ind , fit in zip (pop, fitnesses) :
19 ind . fitness . values = fit

20 for g in range(ngen) :
21 pop = toolbox . select (pop, k=len (pop))
22 pop = algorithms . varAnd(pop, toolbox , cxpb, mutpb)

22 offspring = [toolbox . clone (ind) for ind in pop]

23 for child1 , child2 in zip (offspring [: : 2] , offspring [1: : 2]) :
24 if random. random() < cxpb:
25 toolbox . mate(child1 , child2)
26 del child1 . fitness . values , child2 . fitness . values

27 for mutant in offspring :
28 if random. random() < mutpb:
29 toolbox . mutate (mutant)
30 del mutant . fitness . values

(a)

(b) (c)

35 print (tools . selBest (pop, k=1) [0])

31 invalids = [ind for ind in pop if not ind . fitness . valid]
32 fitnesses = toolbox . map(toolbox . evaluate , invalids)
33 for ind , fit in zip (invalids , fitnesses) :
34 ind . fitness . values = fit

Fig. 1: OneMax example with DEAP. (a) Simpler version relying on the pre-implemented eaSimple algorithm. (b) Unboxing of the eaSimple algorithm to control

selection, variation and evaluation. (c) Unfolding of the variation to handle crossover and mutation.

SIGEVOlution Volume 6, Issue 2 20

EDITORIAL

An even greater level of detail can be obtained by substituting the

varAnd function by its full content, presented in Figure 1(c). This listing

starts with the duplication of the population by the clone tool available

in every toolbox. Then, the crossover is applied to a portion of consecu-

tive individuals. Each modiÞed individual sees its Þtness invalidated by

the deletion of its values on line 26. Finally, a percentage of the popula-

tion is mutated and their Þtness invalidated. This variant of the algorithm

provides control over the application order and the number of operators,

among other aspects.

The explicitness in which algorithms are written with DEAP clariÞes the

experiments. This eliminates any ambiguity on the different aspects of

the algorithm that could, when overlooked, jeopardize the reproducibility

and interpretation of results.

Genetic Programming

DEAP also includes every component necessary to design genetic pro-

gramming algorithms with the same ease as for genetic algorithms. For

example, the most commonly used tree individual can be created as fol-

lows:

import math , operator
from deap import base , creator , tools , gp

creator . create (" FitnessMin " , base . Fitness , weights =(- 1.0 ,))
creator . create (" Individual " , gp. PrimitiveTree ,

fitness =creator . FitnessMin)

The primitive tree is provided in the gp module since it is one of the few

data types the Python standard library does not provide. The primitives

and terminals that will populate the trees are regrouped in a primitive

set. The following listing presents a primitive set instantiation with basic

operators provided by the standard library operator module. The arity
of a primitive is its number of operands.

pset = gp. PrimitiveSet (name=" MAIN" , arity =1)
pset . addPrimitive (operator . add , arity =2)
pset . addPrimitive (operator . sub , arity =2)
pset . addPrimitive (operator . mul , arity =2)
pset . addPrimitive (operator . neg , arity =1)

Functions that initialize individuals and populations are registered in a

toolbox just as in the preceding genetic algorithm example. DEAP imple-

ments the three initialization methods proposed by Koza [4] to generate

trees: full, grow, and half-and-half.

toolbox = base . Toolbox ()
toolbox . register (" expr " , gp. genFull , pset =pset , min_ =1, max_=3)
toolbox . register (" individual " , tools . initIterate ,

creator . Individual , toolbox . expr)
toolbox . register (" population " , tools . initRepeat ,

list , toolbox . individual)

We may now introduce an example of a symbolic regression evaluation

function.

def evaluateRegression (individual , points , pset) :
func = gp. compile (expr =individual , pset =pset)
sqerrors = ((func (x) - (x* * 4 + x* * 3 + x* * 2 + x)) * * 2 for x in points)
return (math . sqrt (sum(sqerrors) / len (points)) ,)

First, the gp.compile function transforms the primitive tree into its ex-

ecutable form, a Python function, using a primitive set pset given as the

evaluation functionÕs third argument. Then, the rest is simple math: we

compute the root mean squared error between the individualÕs program

and the target x4 +x3 +x2 +x on a set of points , the evaluation functionÕs

second argument.

Next, the evaluation function and the variation operators are regis-

tered similarly to Figure 1, while line 14 to the end remain exactly the

same. Furthermore, using external libraries such as NetworkX [5] and

PyGraphviz [6] , the best primitive trees can be visualized 1 as presented

in Figure 2.

The primitives are not limited to standard library operators, any func-

tion or instance method can be added to a primitive set. Terminals can

be any type of objects and even functions without argument. The next

example, presented in Figure 3, takes advantage of this ßexibility and re-

duces the runtime of the previous example by vectorizing the evaluation

using Numpy [7] , a library of high-level mathematical functions operating

on multidimensional arrays.

The idea is to evolve a program whose argument is a vector instead of

a scalar. Most of the code remains identical, only minor modiÞcations

(highlighted in Figure 3) are required. First, we replace the operators

in the primitive set by Numpy operators that work on vectors (lines 6

to 9). Then, we remove the loop from the evaluation function (line 12),

since it is implicit in the operators. Finally, we replace the sum and sqrt
functions by their faster Numpy equivalent (line 13) and our regression

problem is now vectorized.

1 See the notebook version of this article for the complete code to visualize the

tree: http://github.com/DEAP/notebooks.

SIGEVOlution Volume 6, Issue 2 21

http://github.com/DEAP/notebooks.

EDITORIAL

Fig. 2: Example of a GP individual generated with DEAP.

The execution is thereby signiÞcantly improved as the scalar example

runs in around 3 seconds to optimize the regression on 20 points, while

the vectorial runtime is identical but for a regression on 1000 points.

By modifying only 6 lines of code, not only are we able to vectorize our

problem, but the runtime is reduced by a factor of 50 .

In addition to the wide support of function and object types, DEAPÕs

gp module also supports automatically deÞned functions (ADF), strongly

typed genetic programming (STGP), and object-oriented genetic pro-

gramming (OOGP), for which examples are provided in the library doc-

umentation.

Distributed Island Model

The island model paradigm consists in multiple populations evolving sep-

arately and exchanging individuals on a regular basis. The Þnal example

illustrates how this scheme can be implemented with DEAP and SCOOP.

The code presented in Figure 4 evolves 5 islands of 300 individuals. The

algorithm runs for 40 generations, and every 10 generations, the 15 best

individuals from one island are migrated to the next, following a ring

topology.

1 import numpy
2 from deap import algorithms , base, creator , tools , gp

3 creator . create (" FitnessMin " , base. Fitness , weights =(- 1.0 ,))
4 creator . create (" Tree" , gp. PrimitiveTree , fitness =creator . FitnessMin)

5 pset = gp. PrimitiveSet (name=" MAIN" , arity =1)
6 pset . addPrimitive (numpy. add, arity =2)
7 pset . addPrimitive (numpy. subtract , arity =2)
8 pset . addPrimitive (numpy. multiply , arity =2)
9 pset . addPrimitive (numpy. negative , arity =1)

10 def evaluateRegression (individual , points , pset) :
11 func = gp. compile (expr =individual , pset =pset)
12 sqerrors = (func (points) - (points * * 4 + points * * 3 +

points * * 2 + points)) * * 2
13 return (numpy. sqrt (numpy. sum(sqerrors) / len (points)) ,)

14 toolbox = base. Toolbox ()
15 toolbox . register (" expr " , gp. genFull , pset =pset , min_=1, max_=3)
16 toolbox . register (" individual " , tools . initIterate , creator . Tree,

toolbox . expr)
17 toolbox . register (" population " , tools . initRepeat , list ,

toolbox . individual)
18 toolbox . register (" evaluate " , evaluateRegression ,

points =numpy. linspace (- 1, 1, 1000) , pset =pset)
19 toolbox . register (" mate" , gp. cxOnePoint)
20 toolbox . register (" expr_mut" , gp. genFull , min_=0, max_=2)
21 toolbox . register (" mutate " , gp. mutUniform , expr =toolbox . expr_mut,

pset =pset)
22 toolbox . register (" select " , tools . selTournament , tournsize =3)

23 if __name__== " __main__" :
24 pop = toolbox . population (n=300)
25 algorithms . eaSimple(pop, toolbox , cxpb=0.5 , mutpb=0.2 , ngen=40)
26 print (tools . selBest (pop, k=1) [0])

�

�
�
�

�

Fig. 3: Vectorized Genetic Programming example.

SIGEVOlution Volume 6, Issue 2 22

EDITORIAL

The for-loop starting at line 6 maps the algorithm to each island (line 7),
making them evolve independently for FREQ=10 generations. Then, the
resulting populations are recovered on line 8 and a ring topology migra-
tion is applied on line 9, using the built-in migRing operator to exchange
individuals between islands. Since eaSimple uses the operator regis-
tered on line 1 to map the evaluation on the individuals, fitnesses are
also computed in parallel. Therefore, the computations are distributed at
2 different levels.

The distribution scheme is presented in Figure 5. Each island evolution
is executed by a distinct process and so is every evaluation. The listing
in Figure 4 is generic. It could thus replace the main section of any of
the previously presented examples: lines 16 and 17 in Figure 1(a) and
lines 24 and 25 in Figure 3. To run this code on multiple processors,
assuming the source code is in file island.py, one simply needs to enter
the command line: python -m scoop island.py

Evolution Support

DEAP comes with several supporting tools that can be easily integrated
into any algorithm. This section presents some of them in the context of
the OneMax example (Figure 1).

The first tool, Statistics, computes statistics on arbitrary attributes of des-
ignated objects, usually the fitness of the individuals. The attribute is
specified by a key function at the statistics object instantiation before
starting the algorithm, between lines 16 and 17 of Figure 1(a).

stats = tools.Statistics(key=operator.attrgetter("fitness.values"))

This is followed by the registration of the statistical functions as for a
toolbox.

stats.register("avg", numpy.mean)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

Ultimately, at every generation, a statistical record of the population is
compiled using the registered functions.

record = stats.compile(pop)
print(record)

1 toolbox.register("map", futures.map)
2 toolbox.register("migrate", tools.migRing, k=15,

selection=tools.selBest)

3 NGEN, FREQ = 40, 10
4 toolbox.register("algorithm", algorithms.eaSimple, toolbox=toolbox,

cxpb=0.5, mutpb=0.2, ngen=FREQ, verbose=False)

5 islands = [toolbox.population(n=300) for i in range(5)]
6 for i in range(0, NGEN, FREQ):
7 results = toolbox.map(toolbox.algorithm, islands)
8 islands = [island for island, logbook in results]
9 toolbox.migrate(islands)

�

�

Fig. 4: Distributed Island Model example.

Migration

Migration Migration

Island Island

Island

...
Evaluations

...
Evaluations

...Evaluations

...Migration

Fig. 5: Island model distribution scheme. Each island runs in a different pro-
cess and evaluations are also done in parallel. SCOOP takes care of all
necessary load balancing.

The statistics compilation produces a dictionary containing the statistical
keywords and their respective value. These last lines, added after the
evaluation part of Figure 1(b) (line 34), will produce a screen log of the
evolution statistics.

SIGEVOlution Volume 6, Issue 2 23

EDITORIAL

For posterity and better readability, statistics can also be logged in a
Logbook, which is simply a list of recorded dictionaries that can be printed
with an elegant layout. For example, the following lines create a new
logbook, then record the previously computed statistics and print them
to the screen.

logbook = tools.Logbook()

logbook.record(gen=g, nevals=300, fitness=record)

print(logbook)

fitness

gen nevals avg min max
0 300 49.9933 35 64

The next tool, named Hall of Fame, preserves the best individuals that
appeared during an evolution. At every generation, it scans the popula-
tion and saves the individuals in a separate archive that does not interact
with the population. If the best solution disappears during the evolution,
it will still be available in the hall of fame. The hall of fame can be pro-
vided as an argument to the algorithms (Figure 1(a) line 17) as follows:

halloffame = tools.HallOfFame(maxsize=10)

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,

halloffame=halloffame)

Moreover, the hall of fame can be updated manually right after the pop-
ulation is evaluated (Figure 1(b) line 34) with the following line of code.

halloffame.update(pop)

The hall of fame proposes a list interface where the individuals are sorted
in descending order of fitness. Thus, the fittest solution can be retrieved
by accessing the list’s first element.

best = halloffame[0]

A Pareto dominance version of the hall of fame is also available. The
Pareto Front maintains an archive of non-dominated individuals along
the evolution. Its interface is the same as the standard hall of fame.

Another tool, called the History, tracks the genealogy of the individuals
in a population. By wrapping the variation operators, the history saves
the parents of each individual. This feature is added to the variation
operators of the toolbox with the following lines.

Fig. 6: Genealogy tree of the best individual found in the OneMax problem dur-
ing the last 5 variation operations. The ancestors are at the top while
the fittest offspring is at the bottom. The numbers represent the solution
index. A node with two incoming links is the result of a crossover (see
7229), while a node with a single incoming link comes from a mutation
(see 7320).

history = tools.History()

toolbox.decorate("mate", history.decorator)

toolbox.decorate("mutate", history.decorator)

It is therefore possible to determine the genesis of individuals. Figure 6
presents the genealogy of the best individual in the OneMax example for
the last 5 variation operations. The graph is produced by the NetworkX
library and the following listing.

h = history.getGenealogy(haloffame[0], max_depth=5)

graph = networkx.DiGraph(h)

networkx.draw(graph)

The last presented tool is a checkpointing facility. Rather than a DEAP
object, checkpointing is ensured by the powerful pickle standard library
module that can serialize almost any Python object. Checkpointing only
requires selecting objects that shall be preserved and the write fre-
quency. This is exactly what is done in the following lines that can be
added at the end of the generational loop of Figure 1(b).

SIGEVOlution Volume 6, Issue 2 24

EDITORIAL

import pickle

if g % freq == 0:
cp = dict (population =pop , generation =g, rndstate =random . getstate ())
pickle . dump(cp , open (" checkpoint.pkl " , " w"))

These last lines write into a Þle the population, the generation number,

and the random number generator state so that this information can be

used later to restart an evolution from this exact point in time. Reloading

the data is as simple as reading the pickled dictionary and accessing its

attributes.

cp = pickle . load (open (" checkpoint.pkl " , " r "))
pop = cp [" population "]
g = cp [" generation "]
random . setstate (cp [" rndstate "])

This simple mechanism provides fault tolerance to any sort of evolution-

ary algorithms implemented with DEAP. This happens to be critical when

exploiting large computational resources where chances of failure grow

quickly with the number of computing nodes. Even in very stable exe-

cution environments, checkpoints can signiÞcantly reduce the amount of

time spent experimenting by allowing evolutions to restart and continue

beyond the original stopping criteria.

Conclusion

DEAP proposes an agile framework to easily prototype and execute ex-

plicit evolutionary algorithms. Its creator module is instrumental for

building custom transparent data structures for the problem at hand. Its

toolbox gathers all necessary operators and their arguments in a single

handy structure. Its design provides straightforward distributed execu-

tion with multiple distribution libraries. The presented examples covered

only a small part of DEAPÕs capabilities that include evolution strategies

(including CMA-ES), multi-objective optimization (NSGA-II and SPEA-II),

co-evolution, particle swarm optimization, as well as many benchmarks

(continuous, binary, regression, and moving peaks), and examples (more

than 40).

After more than 4 years of development, DEAP version 1.0 has been re-

leased in February 2014. DEAP is an open source software, licensed

under LGPL, developed primarily at the Computer Vision and Systems

Laboratory of UniversitŽ Laval, QuŽbec, Canada. DEAP is compatible

with Python 2 and 3. It has a single dependency on Numpy for com-

puting statistics and running CMA-ES. Try it out and become nimbler too:

http://deap.gel.ulaval.ca .

References

[1] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.

GagnŽ. DEAP: Evolutionary Algorithms Made Easy. Journal of Ma-

chine Learning Research , 13:2171Ð2175, 2012.

[2] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C.

GagnŽ. DEAP: A Python Framework for Evolutionary Algorithms. In

Companion Proceedings of the Genetic and Evolutionary Computa-

tion Conference , pages 85Ð92, 2012.

[3] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau. SCOOP: Scalable COn-

current Operations in Python.

http://www.pyscoop.org/

[4] J. R. Koza. Genetic Programming - On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network

structure, dynamics, and function using NetworkX. In Proceedings

of the Python in Science Conference , pages 11-15, 2008. http:
//networkx.github.io

[6] A. A. Hagberg, D. A. Schult, and M. Renieris. PyGraphviz a Python

interface to the Graphviz graph layout and visualization package.

http://networkx.lanl.gov/pygraphviz

[7] E. Jones and T. Oliphant and P. Peterson and others. SciPy: Open

source scientiÞc tools for Python. http://www.scipy.org

SIGEVOlution Volume 6, Issue 2 25

http://deap.gel.ulaval.ca
http://www.pyscoop.org/
http://networkx.github.io
http://networkx.github.io
http://networkx.lanl.gov/pygraphviz
http://www.scipy.org

EDITORIAL

About the authors

Fran•ois-Michel De Rainville received his MasterÕs

degree from UniversitŽ Laval, QuŽbec, Canada, in 2010,

for his work on interactive designs of experiments to en-

hance comprehension of complex systems. He is cur-

rently pursuing his PhD degree at UniversitŽ Laval on

using a swarm of robots to explore and analyze unknown environ-

ments. His major area of interest are robotics, pattern recognition,

machine learning, evolutionary algorithms, and computer vision. He

is one of the main DEAP developers.

Homepage: http://vision.gel.ulaval.ca/~fmdrainville

Email: francois-michel.de-rainville.1@ulaval.ca

FŽlix-Antoine Fortin received a M.Sc. in Electrical En-

gineering from UniversitŽ Laval in 2010 for his work on

automatic surveillance camera placement with genetic

algorithms. He is currently completing a Ph.D at Uni-

versitŽ Laval on multimodal optimization while working

as an high performance computing analyst at Calcul QuŽbec, a re-

search consortium for High Performance Computing (HPC). His main

research interests are optimization, pattern recognition, evolution-

ary algorithms, and distributed computing. He is also one of the

main developer of DEAP.

Homepage: http://vision.gel.ulaval.ca/~fafortin/

Email: felix-antoine.fortin.1@ulaval.ca

Marc-AndrŽ Gardner received a B.Sc. in Computer

Engineering from UniversitŽ Laval in 2012. He has

worked on bloat control in genetic programming, and

is currently completing a M.Sc. in Electrical Engineering

on stochastic grammar optimization applied to genetic

programming. He has also worked on a task distribution framework

in Python, and is a major contributor to DEAP, in addition to being

one of its power users.

Email: marc-andre.gardner.1@ulaval.ca

Marc Parizeau is a professor of Computer Engineer-

ing at UniversitŽ Laval, QuŽbec City. He obtained his

Ph.D. in 1992 from ƒcole Polytechnique de MontrŽal.

His research interests are mainly in the Þeld of intel-

ligent systems, in machine learning for pattern recog-

nition in particular, as well as in parallel and distributed systems.

In 2008, he created a High Performance Computing (HPC) center

at UniversitŽ Laval, and is the current scientiÞc Director of Calcul

QuŽbec, an HPC consortium for the province of QuŽbec, also one

of the four regional divisions of Compute Canada, the national HPC

platform.

Homepage: http://vision.gel.ulaval.ca/~parizeau

Email: parizeau@gel.ulaval.ca

Christian GagnŽ received a B.Ing. in Computer Engi-

neering and a PhD in Electrical Engineering from Uni-

versitŽ Laval in 2000 and 2005, respectively. He is

professor of Computer Engineering at UniversitŽ Laval

since 2008. His research interests are on the engineer-

ing of intelligent systems, in particular systems involving machine

learning and evolutionary computation. He is member of editorial

board of the Genetic Programming and Evolvable Machines journal,

and participated to the organization of several conferences. He is

also the main developer of Open BEAGLE, a generic C++ framework

for evolutionary computation, from which lessons learnt served as

inspiration to the design of DEAP.

Homepage: http://vision.gel.ulaval.ca/~cgagne

Email: christian.gagne@gel.ulaval.ca

SIGEVOlution Volume 6, Issue 2 26

http://vision.gel.ulaval.ca/~fmdrainville
mailto:francois-michel.de-rainville.1@ulaval.ca
http://vision.gel.ulaval.ca/~fafortin/
mailto:felix-antoine.fortin.1@ulaval.ca
mailto:marc-andre.gardner.1@ulaval.ca
http://vision.gel.ulaval.ca/~parizeau
mailto:parizeau@gel.ulaval.ca
http://vision.gel.ulaval.ca/~cgagne
mailto:christian.gagne@gel.ulaval.ca

