
DEAP - Enabling Nimbler Evolutions

François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, and Christian Gagné
Département de génie électrique et de génie informatique - Université Laval - Québec (Québec), Canada

D EAP is a Distributed Evolutionary Algorithm (EA) framework
written in Python and designed to help researchers devel-
oping custom evolutionary algorithms. Its design philoso-
phy promotes explicit algorithms and transparent data struc-

tures, in contrast with most other evolutionary computation softwares
that tend to encapsulate standardized algorithms using the black-box ap-
proach. This philosophy sets it apart as a rapid prototyping framework for
testing of new ideas in EA research. An executable notebook version of
this paper is available at https://github.com/DEAP/notebooks.

Introduction

The DEAP framework [1; 2] is designed over the three following founding
principles:

1. Data structures are key to evolutionary computation. They must fa-
cilitate the implementation of algorithms and be easy to customize.

2. Operator selection and algorithm parameters have strong influences
on evolutions, while often being problem dependent. Users should
be able to parametrize every aspect of the algorithms with minimal
complexity.

3. EAs are usually embarrassingly parallel. Therefore, mechanisms
that implement distribution paradigms should be trivial to use.

With the help of its sister project SCOOP [3] and the power of the Python
programming language, DEAP implements these three principles in a
simple and elegant design.

⁃ Building blocks for testing ideas
⁃ Rapid prototyping
⁃ Fully transparent
⁃ Parallel ready
⁃ Exhaustively documented
⁃ Available at http://deap.gel.ulaval.ca

Highlights

Data Structures

A very important part of the success for designing any algorithm — if
not the most important — is choosing the appropriate data structures.
Freedom in type creation is fundamental in the process of designing evo-
lutionary algorithms that solve real world problems. DEAP’s creator mod-
ule allows users to:

create classes with a single line of code (inheritance);

add attributes (composition);

group classes in a single module (sandboxing).

In the following listing, we create a minimizing fitness.

from deap import base, creator
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))

SIGEVOlution Volume 6, Issue 2 17

https://github.com/DEAP/notebooks

EDITORIAL

The create function expects at least two arguments; the name of the
class to be created and the base class it inherits from. The next ar-
guments are used as class attributes. Thus, the class just created is
a FitnessMin inheriting from the base class Fitness and having a
weights attribute set to the one element tuple (−1.0,), indicating mini-
mization of a single objective. The trailing comma is mandatory to define
a single item tuple in Python. A multi-objective fitness would be created
using a multi-element tuple.

Next, we define with the same mechanism an Individual class inherit-
ing from a list and composed with a fitness attribute.

creator.create("Individual", list, fitness=creator.FitnessMin)

When an Individual is instantiated, its fitness is initialized as an
instance of the previously defined FitnessMin class. This is illustrated
in the following example,

ind = creator.Individual([1,0,1,0,1])
ind.fitness.values = (sum(ind),)

where an individual is created from a list of binary values and the value
of its fitness is set to the sum of its elements. In DEAP, the fitness value
is always multi-objective with the single objective case being a tuple of
one element.

Operators

Operator selection is another crucial part of evolutionary algorithms. It
must be straightforward and its parametrization intuitive. DEAP’s Toolbox
enables users to:

create aliases for operators;

register operators’ parameters;

interchange operators efficiently;

regroup all operators in a single structure.

The next example presents the construction of a toolbox and how opera-
tors and their parameters are registered.

from deap import tools
toolbox = base.Toolbox()
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutGaussian, mu=0.0, std=1.0)

The register function expects at least two arguments; the alias of the
function and the function itself. The next arguments are passed to the
function when called, similarly to the partial function from the stan-
dard functools module. Thus, the first operator is a one point crossover
registered under the alias mate. The second operator, a gaussian muta-
tion, is registered with its parameters under the generic name mutate.
Both operators are available from the toolsmodule along with manymore
instruments supporting evolution that are presented at the end of this
paper.

During subsequent experiments, replacing the one point crossover by a
two point crossover is as easy as substituting the third line of the previous
listing by the following one.

toolbox.register("mate", tools.cxTwoPoint)

Wherever the generic function mate is used, the new two point crossover
will be used.

Parallelization

DEAP is parallel ready. The idea is to use a mapping operation that ap-
plies a function to every item of a sequence, for instance to evaluate the
fitnesses. By default, every toolbox is registered with the standard map
function of Python. For algorithms to evaluate individuals in parallel, one
only needs to replace this alias by a parallel map such as the one pro-
vided by SCOOP [3], a library capable of distributing concurrent tasks on
various environments, from grids of workstations to supercomputers.

from scoop import futures
toolbox.register("map", futures.map)

DEAP is also compatible with the standardmultiprocessingmodule, if the
user only cares to run on a single computing node with multiple cores.

import multiprocessing
pool = multiprocessing.Pool()
toolbox.register("map", pool.map)

With these powerful tools, DEAP allows scientists and researchers with lit-
tle programming knowledge to easily implement distributed and parallel
EAs.

SIGEVOlution Volume 6, Issue 2 18

EDITORIAL

Preaching by Example

The best introduction to evolutionary computation with DEAP is to
present simple, yet compelling examples. The following sections set forth
how algorithms are easy to implement while keeping a strong grip on how
they behave. The first section introduces a classical genetic algorithm
and exposes different levels of explicitness. The second section presents
how genetic programming is implemented in DEAP and the versatility of
the GP module. The final example demonstrates how easy it is to imple-
ment a generic distributed island model with SCOOP.

A Simple Genetic Algorithm

A commonly used example in evolutionary computation is the OneMax
problem which consists in maximizing the number of ones in a binary
sequence. The more ones an individual contains, the higher its fitness
value is. Using a genetic algorithm to find such an individual is relatively
straightforward. Applying crossovers and mutations on a population of
randomly generated binary individuals and selecting the fittest ones at
each generation usually converge to a perfect (all ones) solution. A prob-
lem of this simplicity should be solved with a very simple program.

Figure 1(a) presents all that is needed to solve the OneMax problem with
DEAP. The first two lines import the necessary modules. Next, on lines
3 and 4, two types are created; a maximizing fitness (note the positive
weights), and a list individual composed with an instance of this maximiz-
ing fitness. Then, on lines 5 and 6, the evaluation function is defined. It
counts the number of ones in a binary list by summing its elements (note
again the one element returned tuple corresponding to a single objective
fitness). Subsequently, a Toolbox is instantiated in which the necessary
operators are registered. The first operator, on line 8, produces binary
values, in this case integers in [0,1], using the standard random mod-
ule. The alias individual, on line 9, is assigned to the helper function
initRepeat, which takes a container as the first argument, a function
that generates content as the second argument, and the number of rep-
etitions as the last argument. Thus, calling the individual function instan-
tiates an Individual of n=100 bits by calling repeatedly the registered
attr_bool function. The same repetition initializer is used on the next
line to produce a population as a list of individuals. The missing number
of repetitions n will be given later in the program. Subsequently, on lines
11 to 14, the evaluation, crossover, mutation and selection operators are
registered with all of their parameters.

The main program starts at line 16. First, a population of n=300 individ-
uals is instantiated. Then, the algorithm, provided with the population
and the toolbox, is run for ngen=40 generations with cxpb=0.5 proba-
bility of mating and mutpb=0.2 probability of mutating an individual for
each generation. Finally, on line 35, the best individual of the resulting
population is selected and displayed on screen.

Controlling Everything

When developing, researching or using EAs, pre-implemented canned
algorithms seldom do everything that is needed. Usually, develop-
ers/researchers/users have to dig into the framework to tune, add or re-
place a part of the original algorithm. DEAP breaks with the traditional
black-box approach on that precise point; it encourages users to rapidly
build their own algorithms. With the different tools provided by DEAP, it
is possible to design a nimble algorithm that tackles most problems at
hand.

Starting from the previous OneMax solution of Figure 1(a), a first decom-
position of the algorithm replaces the canned eaSimple function (line
17) by the generational loop illustrated in Figure 1(b). Again, this exam-
ple is exhaustive but still very simple. On the first 3 lines, the evalua-
tion function is applied to every individual in the population by the map
function contained in every toolbox. Next, on line 18, a loop over both
the population and the evaluated fitnesses sets each individual’s fitness
value. Thereafter, on line 20, the generational loop begins. It starts by
selecting k individuals from the population. Then, the selected individu-
als are varied by crossover and mutation using the varAnd function. A
second variation scheme varOr can also be used, where the individuals
are produced by crossover or mutation. Once modified, the individuals
are evaluated for the next iteration. Only freshly produced individuals
have to be evaluated; they are filtered by their fitness validity; valid
property of the fitness (line 31). This version of the program provides the
possibility to change the stopping criterion and add components to the
evolution.

SIGEVOlution Volume 6, Issue 2 19

EDITORIAL

1 import random
2 from deap import algorithms, base, creator, tools

3 creator.create("FitnessMax", base.Fitness, weights=(1.0,))
4 creator.create("Individual", list, fitness=creator.FitnessMax)

5 def evalOneMax(individual):
6 return (sum(individual),)

7 toolbox = base.Toolbox()
8 toolbox.register("attr_bool", random.randint, 0, 1)
9 toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)

10 toolbox.register("population", tools.initRepeat, list, toolbox.individual)
11 toolbox.register("evaluate", evalOneMax)
12 toolbox.register("mate", tools.cxTwoPoint)
13 toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
14 toolbox.register("select", tools.selTournament, tournsize=3)

15 if __name__ == "__main__":
16 pop = toolbox.population(n=300)
17 algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)

17 fitnesses = toolbox.map(toolbox.evaluate, pop)
18 for ind, fit in zip(pop, fitnesses):
19 ind.fitness.values = fit

20 for g in range(ngen):
21 pop = toolbox.select(pop, k=len(pop))
22 pop = algorithms.varAnd(pop, toolbox, cxpb, mutpb)

22 offspring = [toolbox.clone(ind) for ind in pop]

23 for child1, child2 in zip(offspring[::2], offspring[1::2]):
24 if random.random() < cxpb:
25 toolbox.mate(child1, child2)
26 del child1.fitness.values, child2.fitness.values

27 for mutant in offspring:
28 if random.random() < mutpb:
29 toolbox.mutate(mutant)
30 del mutant.fitness.values

(a)

(b) (c)

35 print(tools.selBest(pop, k=1)[0])

31 invalids = [ind for ind in pop if not ind.fitness.valid]
32 fitnesses = toolbox.map(toolbox.evaluate, invalids)
33 for ind, fit in zip(invalids, fitnesses):
34 ind.fitness.values = fit

Fig. 1: OneMax example with DEAP. (a) Simpler version relying on the pre-implemented eaSimple algorithm. (b) Unboxing of the eaSimple algorithm to control
selection, variation and evaluation. (c) Unfolding of the variation to handle crossover and mutation.

SIGEVOlution Volume 6, Issue 2 20

EDITORIAL

An even greater level of detail can be obtained by substituting the
varAnd function by its full content, presented in Figure 1(c). This listing
starts with the duplication of the population by the clone tool available
in every toolbox. Then, the crossover is applied to a portion of consecu-
tive individuals. Each modified individual sees its fitness invalidated by
the deletion of its values on line 26. Finally, a percentage of the popula-
tion is mutated and their fitness invalidated. This variant of the algorithm
provides control over the application order and the number of operators,
among other aspects.

The explicitness in which algorithms are written with DEAP clarifies the
experiments. This eliminates any ambiguity on the different aspects of
the algorithm that could, when overlooked, jeopardize the reproducibility
and interpretation of results.

Genetic Programming

DEAP also includes every component necessary to design genetic pro-
gramming algorithms with the same ease as for genetic algorithms. For
example, the most commonly used tree individual can be created as fol-
lows:

import math, operator
from deap import base, creator, tools, gp

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree,

fitness=creator.FitnessMin)

The primitive tree is provided in the gp module since it is one of the few
data types the Python standard library does not provide. The primitives
and terminals that will populate the trees are regrouped in a primitive
set. The following listing presents a primitive set instantiation with basic
operators provided by the standard library operator module. The arity
of a primitive is its number of operands.

pset = gp.PrimitiveSet(name="MAIN", arity=1)
pset.addPrimitive(operator.add, arity=2)
pset.addPrimitive(operator.sub, arity=2)
pset.addPrimitive(operator.mul, arity=2)
pset.addPrimitive(operator.neg, arity=1)

Functions that initialize individuals and populations are registered in a
toolbox just as in the preceding genetic algorithm example. DEAP imple-
ments the three initialization methods proposed by Koza [4] to generate
trees: full, grow, and half-and-half.

toolbox = base.Toolbox()
toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=3)
toolbox.register("individual", tools.initIterate,

creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat,

list, toolbox.individual)

We may now introduce an example of a symbolic regression evaluation
function.

def evaluateRegression(individual, points, pset):
func = gp.compile(expr=individual, pset=pset)
sqerrors = ((func(x) - (x

**

4 + x
**

3 + x
**

2 + x))
**

2 for x in points)
return (math.sqrt(sum(sqerrors) / len(points)),)

First, the gp.compile function transforms the primitive tree into its ex-
ecutable form, a Python function, using a primitive set pset given as the
evaluation function’s third argument. Then, the rest is simple math: we
compute the root mean squared error between the individual’s program
and the target x

4+x

3+x

2+x on a set of points, the evaluation function’s
second argument.

Next, the evaluation function and the variation operators are regis-
tered similarly to Figure 1, while line 14 to the end remain exactly the
same. Furthermore, using external libraries such as NetworkX [5] and
PyGraphviz [6], the best primitive trees can be visualized1 as presented
in Figure 2.

The primitives are not limited to standard library operators, any func-
tion or instance method can be added to a primitive set. Terminals can
be any type of objects and even functions without argument. The next
example, presented in Figure 3, takes advantage of this flexibility and re-
duces the runtime of the previous example by vectorizing the evaluation
using Numpy [7], a library of high-level mathematical functions operating
on multidimensional arrays.

The idea is to evolve a program whose argument is a vector instead of
a scalar. Most of the code remains identical, only minor modifications
(highlighted in Figure 3) are required. First, we replace the operators
in the primitive set by Numpy operators that work on vectors (lines 6
to 9). Then, we remove the loop from the evaluation function (line 12),
since it is implicit in the operators. Finally, we replace the sum and sqrt
functions by their faster Numpy equivalent (line 13) and our regression
problem is now vectorized.

1 See the notebook version of this article for the complete code to visualize the
tree: http://github.com/DEAP/notebooks.

SIGEVOlution Volume 6, Issue 2 21

http://github.com/DEAP/notebooks.

EDITORIAL

Fig. 2: Example of a GP individual generated with DEAP.

The execution is thereby significantly improved as the scalar example
runs in around 3 seconds to optimize the regression on 20 points, while
the vectorial runtime is identical but for a regression on 1000 points.
By modifying only 6 lines of code, not only are we able to vectorize our
problem, but the runtime is reduced by a factor of 50.

In addition to the wide support of function and object types, DEAP’s
gp module also supports automatically defined functions (ADF), strongly
typed genetic programming (STGP), and object-oriented genetic pro-
gramming (OOGP), for which examples are provided in the library doc-
umentation.

Distributed Island Model

The island model paradigm consists in multiple populations evolving sep-
arately and exchanging individuals on a regular basis. The final example
illustrates how this scheme can be implemented with DEAP and SCOOP.
The code presented in Figure 4 evolves 5 islands of 300 individuals. The
algorithm runs for 40 generations, and every 10 generations, the 15 best
individuals from one island are migrated to the next, following a ring
topology.

1 import numpy
2 from deap import algorithms, base, creator, tools, gp

3 creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
4 creator.create("Tree", gp.PrimitiveTree, fitness=creator.FitnessMin)

5 pset = gp.PrimitiveSet(name="MAIN", arity=1)
6 pset.addPrimitive(numpy.add, arity=2)
7 pset.addPrimitive(numpy.subtract, arity=2)
8 pset.addPrimitive(numpy.multiply, arity=2)
9 pset.addPrimitive(numpy.negative, arity=1)

10 def evaluateRegression(individual, points, pset):
11 func = gp.compile(expr=individual, pset=pset)
12 sqerrors = (func(points)-(points**4 + points**3 +

points**2 + points))**2
13 return (numpy.sqrt(numpy.sum(sqerrors) / len(points)),)

14 toolbox = base.Toolbox()
15 toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=3)
16 toolbox.register("individual", tools.initIterate, creator.Tree,

toolbox.expr)
17 toolbox.register("population", tools.initRepeat, list,

toolbox.individual)
18 toolbox.register("evaluate", evaluateRegression,

points=numpy.linspace(-1, 1, 1000), pset=pset)
19 toolbox.register("mate", gp.cxOnePoint)
20 toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
21 toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut,

pset=pset)
22 toolbox.register("select", tools.selTournament, tournsize=3)

23 if __name__ == "__main__":
24 pop = toolbox.population(n=300)
25 algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
26 print(tools.selBest(pop, k=1)[0])

�

�
�
�

�

Fig. 3: Vectorized Genetic Programming example.

SIGEVOlution Volume 6, Issue 2 22

EDITORIAL

The for-loop starting at line 6 maps the algorithm to each island (line 7),
making them evolve independently for FREQ=10 generations. Then, the
resulting populations are recovered on line 8 and a ring topology migra-
tion is applied on line 9, using the built-in migRing operator to exchange
individuals between islands. Since eaSimple uses the operator regis-
tered on line 1 to map the evaluation on the individuals, fitnesses are
also computed in parallel. Therefore, the computations are distributed at
2 different levels.

The distribution scheme is presented in Figure 5. Each island evolution
is executed by a distinct process and so is every evaluation. The listing
in Figure 4 is generic. It could thus replace the main section of any of
the previously presented examples: lines 16 and 17 in Figure 1(a) and
lines 24 and 25 in Figure 3. To run this code on multiple processors,
assuming the source code is in file island.py, one simply needs to enter
the command line: python -m scoop island.py

Evolution Support

DEAP comes with several supporting tools that can be easily integrated
into any algorithm. This section presents some of them in the context of
the OneMax example (Figure 1).

The first tool, Statistics, computes statistics on arbitrary attributes of des-
ignated objects, usually the fitness of the individuals. The attribute is
specified by a key function at the statistics object instantiation before
starting the algorithm, between lines 16 and 17 of Figure 1(a).

stats = tools.Statistics(key=operator.attrgetter("fitness.values"))

This is followed by the registration of the statistical functions as for a
toolbox.

stats.register("avg", numpy.mean)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

Ultimately, at every generation, a statistical record of the population is
compiled using the registered functions.

record = stats.compile(pop)
print(record)

1 toolbox.register("map", futures.map)
2 toolbox.register("migrate", tools.migRing, k=15,

selection=tools.selBest)

3 NGEN, FREQ = 40, 10
4 toolbox.register("algorithm", algorithms.eaSimple, toolbox=toolbox,

cxpb=0.5, mutpb=0.2, ngen=FREQ, verbose=False)

5 islands = [toolbox.population(n=300) for i in range(5)]
6 for i in range(0, NGEN, FREQ):
7 results = toolbox.map(toolbox.algorithm, islands)
8 islands = [island for island, logbook in results]
9 toolbox.migrate(islands)

�

�

Fig. 4: Distributed Island Model example.

Migration

Migration Migration

Island Island

Island

...
Evaluations

...
Evaluations

...Evaluations

...Migration

Fig. 5: Island model distribution scheme. Each island runs in a different pro-
cess and evaluations are also done in parallel. SCOOP takes care of all
necessary load balancing.

The statistics compilation produces a dictionary containing the statistical
keywords and their respective value. These last lines, added after the
evaluation part of Figure 1(b) (line 34), will produce a screen log of the
evolution statistics.

SIGEVOlution Volume 6, Issue 2 23

EDITORIAL

For posterity and better readability, statistics can also be logged in a
Logbook, which is simply a list of recorded dictionaries that can be printed
with an elegant layout. For example, the following lines create a new
logbook, then record the previously computed statistics and print them
to the screen.

logbook = tools.Logbook()
logbook.record(gen=g, nevals=300, fitness=record)
print(logbook)

fitness

gen nevals avg min max
0 300 49.9933 35 64

The next tool, named Hall of Fame, preserves the best individuals that
appeared during an evolution. At every generation, it scans the popula-
tion and saves the individuals in a separate archive that does not interact
with the population. If the best solution disappears during the evolution,
it will still be available in the hall of fame. The hall of fame can be pro-
vided as an argument to the algorithms (Figure 1(a) line 17) as follows:

halloffame = tools.HallOfFame(maxsize=10)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,

halloffame=halloffame)

Moreover, the hall of fame can be updated manually right after the pop-
ulation is evaluated (Figure 1(b) line 34) with the following line of code.

halloffame.update(pop)

The hall of fame proposes a list interface where the individuals are sorted
in descending order of fitness. Thus, the fittest solution can be retrieved
by accessing the list’s first element.

best = halloffame[0]

A Pareto dominance version of the hall of fame is also available. The
Pareto Front maintains an archive of non-dominated individuals along
the evolution. Its interface is the same as the standard hall of fame.

Another tool, called the History, tracks the genealogy of the individuals
in a population. By wrapping the variation operators, the history saves
the parents of each individual. This feature is added to the variation
operators of the toolbox with the following lines.

Fig. 6: Genealogy tree of the best individual found in the OneMax problem dur-
ing the last 5 variation operations. The ancestors are at the top while
the fittest offspring is at the bottom. The numbers represent the solution
index. A node with two incoming links is the result of a crossover (see
7229), while a node with a single incoming link comes from a mutation
(see 7320).

history = tools.History()
toolbox.decorate("mate", history.decorator)
toolbox.decorate("mutate", history.decorator)

It is therefore possible to determine the genesis of individuals. Figure 6
presents the genealogy of the best individual in the OneMax example for
the last 5 variation operations. The graph is produced by the NetworkX
library and the following listing.

h = history.getGenealogy(haloffame[0], max_depth=5)
graph = networkx.DiGraph(h)
networkx.draw(graph)

The last presented tool is a checkpointing facility. Rather than a DEAP
object, checkpointing is ensured by the powerful pickle standard library
module that can serialize almost any Python object. Checkpointing only
requires selecting objects that shall be preserved and the write fre-
quency. This is exactly what is done in the following lines that can be
added at the end of the generational loop of Figure 1(b).

SIGEVOlution Volume 6, Issue 2 24

EDITORIAL

import pickle

if g % freq == 0:

cp = dict(population=pop, generation=g, rndstate=random.getstate())
pickle.dump(cp, open("checkpoint.pkl", "w"))

These last lines write into a file the population, the generation number,
and the random number generator state so that this information can be
used later to restart an evolution from this exact point in time. Reloading
the data is as simple as reading the pickled dictionary and accessing its
attributes.

cp = pickle.load(open("checkpoint.pkl", "r"))
pop = cp["population"]
g = cp["generation"]
random.setstate(cp["rndstate"])

This simple mechanism provides fault tolerance to any sort of evolution-
ary algorithms implemented with DEAP. This happens to be critical when
exploiting large computational resources where chances of failure grow
quickly with the number of computing nodes. Even in very stable exe-
cution environments, checkpoints can significantly reduce the amount of
time spent experimenting by allowing evolutions to restart and continue
beyond the original stopping criteria.

Conclusion

DEAP proposes an agile framework to easily prototype and execute ex-
plicit evolutionary algorithms. Its creator module is instrumental for
building custom transparent data structures for the problem at hand. Its
toolbox gathers all necessary operators and their arguments in a single
handy structure. Its design provides straightforward distributed execu-
tion with multiple distribution libraries. The presented examples covered
only a small part of DEAP’s capabilities that include evolution strategies
(including CMA-ES), multi-objective optimization (NSGA-II and SPEA-II),
co-evolution, particle swarm optimization, as well as many benchmarks
(continuous, binary, regression, and moving peaks), and examples (more
than 40).

After more than 4 years of development, DEAP version 1.0 has been re-
leased in February 2014. DEAP is an open source software, licensed
under LGPL, developed primarily at the Computer Vision and Systems
Laboratory of Université Laval, Québec, Canada. DEAP is compatible
with Python 2 and 3. It has a single dependency on Numpy for com-
puting statistics and running CMA-ES. Try it out and become nimbler too:
http://deap.gel.ulaval.ca.

References

[1] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.
Gagné. DEAP: Evolutionary Algorithms Made Easy. Journal of Ma-
chine Learning Research, 13:2171–2175, 2012.

[2] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C.
Gagné. DEAP: A Python Framework for Evolutionary Algorithms. In
Companion Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 85–92, 2012.

[3] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau. SCOOP: Scalable COn-
current Operations in Python.
http://www.pyscoop.org/

[4] J. R. Koza. Genetic Programming - On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings
of the Python in Science Conference, pages 11-15, 2008. http:
//networkx.github.io

[6] A. A. Hagberg, D. A. Schult, and M. Renieris. PyGraphviz a Python
interface to the Graphviz graph layout and visualization package.
http://networkx.lanl.gov/pygraphviz

[7] E. Jones and T. Oliphant and P. Peterson and others. SciPy: Open
source scientific tools for Python. http://www.scipy.org

SIGEVOlution Volume 6, Issue 2 25

http://deap.gel.ulaval.ca
http://www.pyscoop.org/
http://networkx.github.io
http://networkx.github.io
http://networkx.lanl.gov/pygraphviz
http://www.scipy.org

EDITORIAL

About the authors

François-Michel De Rainville received his Master’s
degree from Université Laval, Québec, Canada, in 2010,
for his work on interactive designs of experiments to en-
hance comprehension of complex systems. He is cur-
rently pursuing his PhD degree at Université Laval on

using a swarm of robots to explore and analyze unknown environ-
ments. His major area of interest are robotics, pattern recognition,
machine learning, evolutionary algorithms, and computer vision. He
is one of the main DEAP developers.

Homepage: http://vision.gel.ulaval.ca/~fmdrainville
Email: francois-michel.de-rainville.1@ulaval.ca

Félix-Antoine Fortin received a M.Sc. in Electrical En-
gineering from Université Laval in 2010 for his work on
automatic surveillance camera placement with genetic
algorithms. He is currently completing a Ph.D at Uni-
versité Laval on multimodal optimization while working

as an high performance computing analyst at Calcul Québec, a re-
search consortium for High Performance Computing (HPC). His main
research interests are optimization, pattern recognition, evolution-
ary algorithms, and distributed computing. He is also one of the
main developer of DEAP.

Homepage: http://vision.gel.ulaval.ca/~fafortin/
Email: felix-antoine.fortin.1@ulaval.ca

Marc-André Gardner received a B.Sc. in Computer
Engineering from Université Laval in 2012. He has
worked on bloat control in genetic programming, and
is currently completing a M.Sc. in Electrical Engineering
on stochastic grammar optimization applied to genetic

programming. He has also worked on a task distribution framework
in Python, and is a major contributor to DEAP, in addition to being
one of its power users.

Email: marc-andre.gardner.1@ulaval.ca

Marc Parizeau is a professor of Computer Engineer-
ing at Université Laval, Québec City. He obtained his
Ph.D. in 1992 from École Polytechnique de Montréal.
His research interests are mainly in the field of intel-
ligent systems, in machine learning for pattern recog-

nition in particular, as well as in parallel and distributed systems.
In 2008, he created a High Performance Computing (HPC) center
at Université Laval, and is the current scientific Director of Calcul
Québec, an HPC consortium for the province of Québec, also one
of the four regional divisions of Compute Canada, the national HPC
platform.

Homepage: http://vision.gel.ulaval.ca/~parizeau
Email: parizeau@gel.ulaval.ca

Christian Gagné received a B.Ing. in Computer Engi-
neering and a PhD in Electrical Engineering from Uni-
versité Laval in 2000 and 2005, respectively. He is
professor of Computer Engineering at Université Laval
since 2008. His research interests are on the engineer-

ing of intelligent systems, in particular systems involving machine
learning and evolutionary computation. He is member of editorial
board of the Genetic Programming and Evolvable Machines journal,
and participated to the organization of several conferences. He is
also the main developer of Open BEAGLE, a generic C++ framework
for evolutionary computation, from which lessons learnt served as
inspiration to the design of DEAP.

Homepage: http://vision.gel.ulaval.ca/~cgagne
Email: christian.gagne@gel.ulaval.ca

SIGEVOlution Volume 6, Issue 2 26

http://vision.gel.ulaval.ca/~fmdrainville
mailto:francois-michel.de-rainville.1@ulaval.ca
http://vision.gel.ulaval.ca/~fafortin/
mailto:felix-antoine.fortin.1@ulaval.ca
mailto:marc-andre.gardner.1@ulaval.ca
http://vision.gel.ulaval.ca/~parizeau
mailto:parizeau@gel.ulaval.ca
http://vision.gel.ulaval.ca/~cgagne
mailto:christian.gagne@gel.ulaval.ca

