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Abstract: We are proposing an adaptation of the gradient descent method to optimize the
position and orientation of sensors for the sensor placement problem. The novelty of the
proposed method lies in the combination of gradient descent optimization with a realistic
model, which considers both the topography of the environment and a set of sensors with
directional probabilistic sensing. The performance of this approach is compared with two
other black box optimization methods over area coverage and processing time. Results show
that our proposed method produces competitive results on smaller maps and superior results
on larger maps, while requiring much less computation than the other optimization methods
to which it has been compared.
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1. Introduction

Recent years have seen a proliferation of interest in the use of sensor networks (SN) for different
application areas, such as battlefield surveillance, factory automation and environmental monitoring,
among others [1]. SNs consist of a network of sensor devices, where each device can autonomously sense
the target environment and communicate with other sensors to achieve the goal of delivering valuable
information to the end user.
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Different issues need to be addressed when deploying a SN, such as localization, data fusion and
placement. In the placement problem, the goal is to find the optimal position and orientation of the
sensors in the target environment. Optimal placement of sensors is an important design issue, because it
directly affects the operational performance of the SN, through the overall coverage of the network [2].

Coverage represents the performance of the network, because sensors are placed inside the
environment to sense a phenomena, and coverage measures the quality of the service provided by
the SN. There have been several definitions for coverage depending on the application [3,4], such as
the area coverage, point coverage, barrier coverage, k-coverage and least exposure coverage. In area
coverage, which is the most widely used criterion, the ratio between the area covered by the sensors
to the total target area is used as the objective to be maximized. Point coverage and barrier coverage
could be considered as special cases of the area coverage, in which special locations in the environment
have higher importance in the coverage problem. Therefore, if one finds a general solution for the
area coverage problem, it can be easily extended to point coverage and barrier coverage problems.
In k-coverage, each location in the environment should be covered by at least k sensors. This is the
requirement for some applications with high security (e.g., military surveillance applications), so that in
the case of the failure of one sensor, the security of the area is not compromised. Finally, the goal in least
exposure coverage is to find a path within the environment with low observability from sensor nodes.
This problem is usually formulated as the worst-case coverage for a target that is moving between two
points in the environment. In this paper, we use the area coverage as the performance criterion, because
it is the most widely used performance measure, and other measures could be considered as special
cases of area coverage (except k-coverage and least exposure coverage, which are designed for special
applications). Hereinafter, the terms area coverage and performance are used interchangeably.

Determining the coverage of a SN also depends on the coverage model used for each sensor. The
common assumption [5] is that each sensor can sense a circular area around itself having a radius known
as the coverage range. This assumption of omnidirectional sensing ability does not hold true for many
types of sensors, such as cameras, ultrasonic sensors, etc., which have a directional sensing region. The
other assumption is related to the detection ability of a sensor inside its sensing area. The conventional
approach assumes a binary 0/1 coverage for each sensor [6], while a probabilistic coverage [7,8] better
complies with the performance of real sensors in the environment.

The last assumption concerns the dimensionality of the target environment. The target area for the SN
is a three-dimensional environment, and the simplification that sensors are placed in a two-dimensional
environment [9] usually results in an overestimated performance of the network in real settings. In a
realistic setting [10], the covered area of each sensor should also take into consideration the topography
of the environment and obstacles occluding the sensing area of each sensor.

Optimal sensor placement has also been an active research area in civil infrastructure
monitoring [11,12]. The sensors are placed in the structure to measure a wide range of properties, such
as stress, displacement, acceleration, etc. The information gathered from the sensors is used within a
continuous structural health monitoring system, which detects any structural damage before it becomes
critical. In these applications, the coverage region of a sensor is not “local”. In other words, sensor
readings from parts of the infrastructure far from each other might be highly correlated. Therefore,
information theoretic criteria are usually used to evaluate the performance of a given placement. Some
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of the proposed criteria include the modal assurance criterion [13], information entropy [14] and the
Fisher information matrix [15].

The sensor placement problem has also been addressed in the computational geometry field.
Specifically, Voronoi diagrams and Delaunay triangulation have been used to estimate the coverage
region of a sensor [16]. Considering the structure of Voronoi diagrams, each sensor is responsible to
cover its Voronoi cell, because all of the points inside each cell are closer to the sensor generating that
cell compared to other sensors. It can be easily concluded that if all Voronoi vertices of a Voronoi cell are
within the coverage range of sensor, then there are no coverage holes inside that SN. Extending this idea,
Wang et al. [17] proposed an effective heuristic to estimate the relative size of coverage holes using
the distance between each sensor and its furthest Voronoi vertex. Using the same heuristic, a simple
approach to heal the Voronoi holes is to move each sensor toward its farthest Voronoi vertex.

The placement problem in SNs is closely related to the observer sitting problem, which has been
addressed in the geomatics science literature [18,19]. In this problem, one tries to find the optimal
position for a number of observers, required to cover a certain ratio of an area. Methods proposed
for this problem have been applied to determine the location of telecommunication base stations [20], to
protect endangered species [21] and to determine the location of wind turbines [22]. Therefore, solutions
proposed for the placement problem in SNs have great influence in related problems from other domains.

Methods proposed for placement optimization can be classified into two categories: exact methods
and heuristic-based approaches. A group of approaches have considered the placement problem as a
special case of the maximum coverage problem [23,24]. In these approaches, the problem is formulated
so that a greedy algorithm can produce near-optimal results with approximation boundaries. Other
algorithms, such as integer linear programming [25] and binary integer programming [26] methods,
have also been employed for the placement problem. The shortcoming of these algorithms is that the
assumptions about the environment and the sensors are very simplistic (e.g., two-dimensional target
environments, binary coverage of sensors, etc.).

Another approach is based on the virtual potential fields [27]. In this strategy, sensors are moved
by the repulsive forces that they sense from other sensors and the obstacles in the environment. These
repulsive forces tend to spread sensors across the environment. At the same time, sensors sense a viscous
friction force, which helps the sensors reach a static equilibrium.

A wide variety of meta-heuristic methods have also been applied to the placement problem,
ranging from genetic algorithm [28], evolution strategies [10], evolution algorithm with specialized
operators [29–31], swarm optimization [32,33] and simulated annealing [34]. An issue with
meta-heuristic algorithms is their high computational cost, because these optimization algorithms usually
need many evaluations of candidate solutions through simulations, which requires high processing
resources. This issue makes these algorithms unsuitable for on-line applications where the position
and orientation of sensors should be adapted after deployment and during utilization. The computational
requirement also limits the size of the networks for which a solution can be found in a reasonable time.

In another set of approaches, spatial phenomena are modelled using Gaussian processes (GP). As
a solution for the placement problem under this assumption, sensors could be placed in locations
with highest entropy [35], or maximum mutual information [36]. Krause et al. [36] have shown a
polynomial-time algorithm for the placement problem, which is within a constant factor of the optimal
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result. Even though the complexity of this algorithm is reduced to O(kn) for k sensors in n possible
sensor locations (n � k), it can still remain inapplicable for large environment where n is proportional
to the map area.

In this paper, we are proposing to use gradient descent (GD) as an optimization method for the sensor
placement problem. At each step of the algorithm, we calculate the analytical derivatives of the coverage
function with respect to the position and orientation of each sensor and try to move them in a way that
maximizes the overall coverage of the network.

There has been some work conducted on the usage of the classical gradient descent method for
the sensor placement problem. Cortes et al. [37] proposed a distributed mechanism for maximal
coverage in multi-robot sensor systems. They showed that if the coverage performance between sensor
and target is based on Euclidean distance, the optimal coverage could be achieved by moving each
omni-directional sensor in the direction of its Voronoi cell centroid. In this approach, authors have
assumed an omnidirectional coverage area for each sensor, therefore the “dominance region” of each
sensor is simulated by its Voronoi cell. This assumption is not valid for directional sensors, which will
be considered in our work.

Recently, Schwager et al. [38] have proposed another gradient descent method for the unmanned
aerial vehicle (UAV) placement problem, but their approach relies on a two dimensional view of the
environment, and the covered area of each sensor is strictly binary. As the mentioned approach is
designed for placement of the UAVs, each pixel of the camera can cover different area sizes depending
on the elevation of the UAV. Therefore, the main notion of coverage in the cost function is the pixel per
unit area that the optimization method is trying to minimize. In contrast, the elevation of each camera is
fixed in our proposed approach, so the pixel per area value is fixed for all cameras. On the other hand,
we consider line-of-sight visibility, such that the optimization method is trying to find the position for
which the visibility is maximum.

Unlike previous approaches on sensor placement optimization using the gradient descent
method [37,38], we use a realistic model for the terrain and a directional probabilistic sensing model
for the coverage of each sensor [8]. We show that in addition to its simplicity, our method can produce
results comparable to more sophisticated black box optimization methods, without the need for large
computational resources.

The rest of this paper is organized as follows. Section 2 presents our sensor model. In Section 3, the
gradient descent method is described in the context of our optimization problem. The presentation of the
experimental protocol follows in Section 4. Results are presented in Section 5, where our algorithm is
compared with two black box optimization methods, before concluding the paper in Section 6.

2. Sensor Model

The proposed sensing model depends on distance, orientation and visibility. Sensors are positioned at
a constant height τ above ground level. The sensor position is thus described by a 3D point p = (x, y, z),
where (x, y) are free parameters and z = g(x, y) + τ is constrained by the terrain elevation g(x, y) at
position (x, y), as defined by a digital elevation model (DEM). We further assume that the anisotropic
properties of sensors are fully defined by a pan angle θ around the vertical axis and a tilt angle ξ around
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the horizontal axis. A sensor network N = {s1, s2, . . . , sn} of n sensors is thus fully specified by 4n

free parameters si = (pi, θi, ξi), i = 1, 2, . . . , n, with pi = (xi, yi).
Now, the coverage C(si,q) of sensor si at point q in the environment can be defined as a function of

distance d(si,q) = ‖q−pi‖, pan angle p(si,q) = ∠p(q−pi)− θi, tilt angle t(si,q) = ∠t(q−pi)− ξi
and visibility v(si,q) from the sensor:

C(si,q) = f [µd(‖pi − q‖), µp(∠p(q− pi)− θi), µt(∠t(q− pi)− ξi), v(pi,q)] (1)

where ∠p(q−pi) = arctan
(
yq−ypi

xq−xpi

)
is the angle between sensor si and point q along the XY plane and

∠t(q− pi) = arctan
(
zq−zpi

‖pi−q‖

)
is the angle between sensor si and point q along the XZ plane. In other

words, for q to be covered by sensor si, we need to take into account its sensing range, sensing angles
and visibility. Let µd, µp, µt ∈ [0, 1] represent some membership functions of the mentioned coverage
conditions; then, Equation (1) can be rewritten as a multiplication of these memberships:

C(si,q) = µd(‖q− pi‖) · µp(∠p(q− pi)− θi) · µt(∠t(q− pi)− ξi) · v(pi,q)

The function v(pi,q) is binary. Given a sensor position pi, if the line-of-sight between sensor si

and q is obstructed, then we assume that the coverage cannot be met, that is v(pi,q) = 0, otherwise the
visibility condition is fully respected, that is v(pi,q) = 1. In our experiments, we assume that all sensors
are one meter above the ground (τ = 1). Memberships µd, µp and µt need to be defined according to
their parameters.

At each position q of environment Ξ, the coverage for a single sensor is thus the multiplication of
the above four conditions. Value C = 1 means full coverage, and C = 0 indicates no coverage. Each
position q is also attributed to another parameter wq ∈ [0,∞]. This parameter defines the importance
of location q for the coverage task. Therefore, higher values of wq represent higher importance of the
location q in the goal coverage problem. If more than one sensor covers q, then a way to compute the
local network coverage Cl is:

Cl(N,q) = 1−
∏

i=1,...,n

(1− C(si,q)) (2)

and the global coverage Cg becomes:

Cg(N,Ξ) =
1∑

q∈Ξ wq

∑
q∈Ξ

wqCl(N,q) (3)

Given an environment Ξ, the problem statement is thus to determine the sensor network deployment
N that maximizes global coverage, that is:

max
N

Cg(N,Ξ) (4)

Note that the NP-hardness of the mentioned placement problem could be verified by comparison with
the maximum coverage problem, which is known to be NP-hard [39]. In this comparison, each sensor at a
specific position and orientation is a sample for a subset that covers a set of locations in the environment,
and we want to find the k sensor positions that allow a maximum coverage when used together. In this
problem, the assumption we are making is more general, as the position and orientation of sensors are
continuous and coverage of a sensor for each location is probabilistic.
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2.1. Probabilistic Membership Functions

The membership functions µd, µp and µt can be defined as crisp functions, with a value of 1 when the
position is within a fixed sensing range or angle of view and otherwise zero.

µd(‖pi − q‖) =

{
1 ‖pi − q‖ ≤ dmax

0 otherwise
(5)

µp(∠p(q− pi)− θi) =

{
1 (∠p(q− pi)− θi) ∈ [−a, a]

0 otherwise
(6)

µt(∠t(q− pi)− ξi) =

{
1 (∠t(q− pi)− ξi) ∈ [−b, b]
0 otherwise

(7)

However, such functions used in a coverage function provide essentially a binary 0/1 signal, which
is not a good feedback to use for optimizing functions given its lack of information. Moreover, for
a method such as gradient descent, derivable coverage functions are needed. For these reasons, we
propose real-valued membership functions that provide a monotonically decreasing membership value
over distance and relative angle of position to the sensor (see Figure 1). The value of probabilistic
coverage at a given position can be interpreted as the probability of detecting objects of interest from the
sensed signal with some given pattern recognition system.

Figure 1. Probabilistic coverage model of a sensor. (a) The underlying elevation map used
for the experiment; (b) Assuming there are three sensors on the map (each shown with a
white circle above the ground), the colour shows the different degree of coverage for the
whole network. The effect of the visibility function can be seen by the non-visible areas
within the coverage region of each sensor.

(a) Elevation map (b) Coverage map
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Our proposal is thus to use the following function, based on the well-known sigmoid function, to
evaluate the distance membership:

µdi = µd(‖pi − q‖︸ ︷︷ ︸
φdi

) = 1− 1

1 + exp (−βd(φdi − αd))
(8)

with αd and βd being the parameters configuring the membership function. These parameters can
be estimated using experimental observations on sensor behaviours (e.g., object recognition rate as a
function of distance). Here, parameter βd controls the slope of the function and αd determines the
distance where the sensor has 50% of its maximum coverage.

As for the pan angle membership functions, we propose another function based on sigmoids:

µpi = µp(∠p(q− pi)− θi︸ ︷︷ ︸
φpi

) =
1

1 + exp (−βp(φpi + αp))
− 1

1 + exp (−βp(φpi − αp))
(9)

where αp controls the “width” of the function and βp controls the slope of the function at the boundaries.
Note that the proposed function has the range φpi ∈ [−180, 180] degrees. Therefore, any calculated
angle should be brought into this range accordingly. In the same way, the membership function µt is
defined as:

µti = µt(∠t(q− pi)− ξi︸ ︷︷ ︸
φti

) =
1

1 + exp (−βt(φti + αt))
− 1

1 + exp (−βt(φti − αt))
(10)

which has the range φti ∈ [−90, 90].

3. Gradient Descent Method

Gradient descent (GD) is a classical numerical optimization method used to find the local optimum
of an error function. At each step of the algorithm, the gradient of the error function (loss function in
our formulation) is calculated and the free parameter of the system is updated to make a small step in the
opposite direction to the gradient [40]. Next, the gradient is recalculated for the new solution, and this
step is repeated until a maximum number of iterations is reached or the size of the gradient falls beneath
a threshold.

3.1. Loss Function

Equation (3) defines the objective function for a maximization problem, while the GD method is
defined as a minimization method. Therefore, we define the loss function L(N,Ξ) as the negative of the
coverage function to form a minimization problem. More precisely, the loss function for network N and
environment Ξ is given by:

L(N,Ξ) =
1∑

q∈Ξ

wq

[ ∑
q∈Ξ

wqLv(N,q)︸ ︷︷ ︸
visible loss

+ν
∑
q∈Ξ

wqLu(N,q)︸ ︷︷ ︸
non-visible loss

]
(11)
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whereLv(N,q) is the loss incurred by the sensors of networkN for which point q is visible andLu(N,q)

is the loss incurred by the sensors of networkN for which point q is non-visible. In other words, we take
the visibility function away from the formula using two disjoint sets Uq and Vq. Here, Vq contains all
of the sensors from which location q is visible, and sensors in Uq contain all of the sensors from which
location q is not visible. More precisely:

Uq = {s ∈ N | v(s,q) = 0} (12)

Vq = {s ∈ N | v(s,q) = 1}

The visible loss is thus defined as:

Lv(N,q) = 1−

[
1−

∏
si∈Vq

(1− C(si,q))︸ ︷︷ ︸
Lv(si,q))

]
︸ ︷︷ ︸

Cl(N,q)

=
∏
si∈Vq

[1− µd(‖pi − q‖) · µp(θi − ∠p(q− pi)) · µt(ξi − ∠t(q− pi))]

=
∏
si∈Vq

[1− µdi · µpi · µti]

=
∏
si∈Vq

Lv(si,q) (13)

where, for simplicity, we denote µd(‖pi−q‖) as µdi, µp(θi−∠p(q−pi)) as µpi, and µt(ξi−∠t(q−pi))

as µti.
The visible loss for the whole network comes to one minus the global coverage defined in

Equation (3), which is the coverage function used here as the parameter criterion. However, this measure
provides no useful feedback for non-visible positions. Still, these positions are as important as the visible
positions in the optimization problem, and their effect should be taken into consideration. In order
to provide a better signal to the optimization algorithm, we add a non-visible component to the loss
function, which adds the effect of the positions in the environment that are not visible by any sensor or
poorly covered by some sensors.

Non-visible loss between sensor si and location q is defined as the difference between the current
coverage (given by visible loss Lv(N,q)) of point q and the coverage that it would have if it was visible
from sensor si:

Lu(si,q) = Lv(N,q)− [Lv(N,q) · (1− µdi · µpi · µti)]
= µdi · µpi · µti · Lv(N,q) (14)

Accordingly, the non-visible loss for a network N and location q is:

Lu(N,q) =
∑
si∈Uq

Lu(si,q) =
∑
si∈Uq

µdi · µpi · µti · Lv(N,q) (15)
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3.2. Analytical Gradient Descent on Distance, Pan Angle and Tilt Angle

In this section, we calculate the analytical gradient on distance, pan angle and tilt angle for the sensor
placement optimization problem.

Given independent variables xi, yi, θi and ξi, we need to obtain partial derivatives of the loss function
for all of these variables (see the Appendix for more details). Let:

fi(N,q) =
∏

sj∈Vq\{si}

[1− µdj · µpj · µtj] (16)

As there are four free parameters for each sensor, we show the derivative of the overall loss with
respect to a generic parameter ψ of sensor si. ψ can be any of the four parameters (i.e., x, y, θ, or ξ).
The derivations are as follows:

∂L(N,Ξ)

∂ψi
=

1∑
q∈Ξ

wq

∑
q∈Ξ

wq

[
∂Lv(N,q)

∂ψi
+ ν

∂Lu(N,q)

∂ψi

]

=
1∑

q∈Ξ

wq

∑
q∈Ξ

wq

[
∂ [fi · (1− µdi · µpi · µti)]

∂ψi
+ ν

∂

[ ∑
sj∈Uq

µdj · µpj · µtj · Lv(N,q)

]
∂ψi

]

=
1∑

q∈Ξ

wq

∑
q∈Ξ

wq gψ(si,q) (17)

where,

gψ(si,q) =

{
−fi

∂[µdi·µpi·µti]
∂ψi

if v(si,q) = 1

ν Lv(N,q)
∂[µdi·µpi·µti]

∂ψi
if v(si,q) = 0

(18)

The derivative of the loss function with respect to parameter ψ can be divided into two parts. The
visible loss is constant when the position q is not visible from the sensor si, and therefore, the derivative
equals zero. Similarly, the non-visible loss has a derivative of zero when sensor si can see position
q. Therefore, the derivative was divided into two equations using the gψ(si,q) function. The ν

parameter used in the loss function records the weighting of the non-visible component against the
visible loss component.

Therefore, in each step of the GD method, all of the gradients are calculated with respect to the free
parameters of each sensor (i.e., xi, yi, θi and ξi), and the position and orientation of all sensors are
updated using the pseudocode shown in Algorithm 1.

In this algorithm, ψ(t)
i is a free parameter of sensor i at iteration t and ηψ is the learning rate for the

generic parameter ψ. Furthermore, ω is the momentum parameter used to help the algorithm escape from
local minima. The momentum is a classical method used for neural network optimization to encourage
faster convergence of the gradient descent algorithm [41]. It increases the step sizes taken for a free
parameter if the gradient points in the same direction for several iterations. Therefore, the algorithm can
ignore small features in the loss function surface and skip shallow local minima.
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Algorithm 1 The proposed gradient descent method for sensor placement optimization.
procedure GD(N,Ξ)

for t = 1, . . . ,max_iter do
for all si ∈ N do

∆ψ
(t)
i = ηψ

∂L(N,Ξ)
∂ψi

+ ω∆ψ
(t−1)
i , ∀ψ ∈ {x, y, θ, ξ}

ψ
(t+1)
i = ψ

(t)
i − ∆ψ

(t)
i , ∀ψ ∈ {x, y, θ, ξ}

end for
end for

end procedure

The gψ(si,q) function needs the value for the derivative of [µdi · µpi · µti] with respect to the free
parameters. We have calculated this derivative for all free parameters and reported the result in
Equations (21)–(24) (see the Appendix for more details). In these Equations, dsg(δ, β, α) is an auxiliary
function used to simplify the Equations:

dsg(δ, β, α) =
β exp(β(δ + α))

(1 + exp(β(δ + α)))2
= β sig(δ, β, α)[1− sig(δ, β, α)] (19)

which corresponds to the derivative of the so-called sigmoid function:

sig(δ, β, α) =
1

1 + exp(β(δ + α))
(20)

To explain the loss function rather informally, the visible loss is the loss incurred by the visible points;
similarly the non-visible loss is the loss incurred by the non-visible points. The optimization algorithm
tries to maximize the coverage of the visible points through the visible loss and tries to minimize the
number of non-visible points through the non-visible loss. Although these two goals seem similar (and
they do have similar effects in most of the cases), they are complementary. We will later see in Section 3.3
how they complement each other.

Although we presented the algorithm in a centralized fashion, it is distributed in nature. Each sensor
only needs to know its own position, orientation and visible area, in addition to the overlap between its
covered area and other sensors in its neighbourhood to calculate its derivatives. Therefore, if we are
using mobile sensors capable of communicating with their neighbours (which is essential in most SNs),
they can transfer the required information, and each sensor can compute its movement independently.

∂ [µdi · µpi · µti]
∂xi

=

[
dsg(φdi,−βd,−αd) ·

(xi − xq)
φdi

· µpi · µti

+ [dsg(φpi,−βp,−αp)− dsg(φpi,−βp, αp)] ·
yq − yi
φ2
di

· µdi · µti (21)

+ [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(xi − xq)

φdi[φ2
di + (zi − zq)2]

· µdi · µpi

]
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∂ [µdi · µpi · µti]
∂yi

=

[
dsg(φdi,−βd,−αd) ·

(yi − yq)
φdi

· µpi · µti

+ [dsg(φpi,−βp,−αp)− dsg(φpi,−βp, αp)] ·
xi − xq
φ2
di

· µdi · µti (22)

+ [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(yi − yq)

φdi[φ2
di + (zi − zq)2]

· µdi · µpi

]
∂ [µdi · µpi · µti]

∂θi
= [dsg(φpi,−βp, αp)− dsg(φpi,−βp,−αp)] · µdi · µti, (23)

∂ [µdi · µpi · µti]
∂ξi

= [dsg(φti,−βt, αt)− dsg(φti,−βt,−αt)] · µdi · µpi (24)

3.3. Sanity Checks

In order to check the behaviour of the GD optimization algorithm in real settings, we performed some
simple experiments to check if the method performs reasonably in these simple settings, so that we can
later extend the experiments to more complex experiments.

Figure 2. Simple experiment to show the effect of different parts of the loss function, with a
3D view (a), and 2D view (b) of the covered region of the sensor in a flat environment having
a cubic obstacle in the centre. In (b), the cyan arrow shows the non-visible loss gradient, the
magenta arrow shows the visible loss gradient and the green arrow is the combined loss
gradient aggregating the effect of the two mentioned losses.

(a) 3D view (b) 2D view

In the first experiment, we examine the effectiveness of the non-visible loss on the overall coverage
achieved by the GD algorithm. The setting contains one sensor in a map that has a cube-shaped obstacle
in the middle (see Figure 2). Two sets of experiments were performed on the map to optimize the
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location of the sensors. In the first experiment, we use only the visible loss part of the loss function
(Equation (11)). In the second experiment, the combination of both visible and non-visible losses were
used for optimization (see Figure 3). In these experiments, the final coverage percentage achieved by
the visible and combined loss were 23.29% and 27.47%, respectively. Therefore, we observe that even
in the simple example shown, the inclusion of the non-visible loss (in the overall loss function) helps in
producing better final results.

Figure 3. Optimizing with different loss functions: (a) the initial position of the sensor over
a map (facing one of the sides of the obstacle); (b) the final result of the optimization using
only the visible loss with a final coverage of 23.29%; (c) the final result of the optimization
performed using both the visible and non-visible loss parts with a final coverage of 27.47%.

(a) Initial position (b) Visible loss result (c) Combined loss result

Figure 4. An experiment to show the effect of overlap on coverage over the gradient;
(a) the initial position of the sensors and the green arrow shows the gradient of the
loss function with respect to each sensor; (b) the final position of the sensors after the
optimization.

(a) Initial positions (b) Final positions
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In the second experiment, we evaluated the effect of overlap between the coverages of two sensors
over the gradient calculated for each one (see Figure 4). In this experiment, two sensors are initially
placed in a flat environment (no obstacle), where there is an overlap between the coverage of the two
sensors. The gradient calculated for each sensor makes the sensors move away from each other to reach
a final position where the total coverage is maximum.

In the final experiment, we show how a coverage gap can be filled with the GD method (see Figure 5).
In this experiment, there are four sensors in a flat environment, each heading outward, so creating a
coverage gap in the centre. The goal is to determine whether the GD method can detect this gap and
displace the sensors in order to cover it. As shown in Figure 5b, the sensors have moved to cover most
of the gap.

Figure 5. An experiment to show the effect of a coverage gap over the gradient; (a) initial
positions of the sensors, with the green arrow showing the gradient with respect to each
sensor; (b) final position of the sensors after the optimization has been completed. As can be
seen the initial coverage gap in the centre has been filled by the sensors.

(a) Initial position (b) Final position

4. Experiments

In order to evaluate the performance of the proposed method, we compared it with two other
optimization methods that we already applied to the sensor placement problem, namely simulated
annealing (SA) and covariance matrix adaptation evolution strategy (CMA-ES), which we briefly
summarize next. CMA-ES was chosen among different population based stochastic optimization
methods, as it was shown several times that it has overall superior performance compared to other
optimization methods on a variety of standard continuous black-box optimization benchmarks (as an
example in [42]). SA was also chosen as it is a classical stochastic optimization method, widely used for
global optimization problems. Interested readers are referred to Akbarzadeh et al. [7] for more detailed
explanations on how each method was used for sensor placement optimization.
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4.1. Simulated Annealing (SA)

SA [43] is a classical meta-heuristic global optimization method inspired from the annealing process
of material in metallurgy. In reality, temperature is the controlling mechanism used to convert material
from a high energy state into a low energy, solid condition. This process is imitated in SA, where the
temperature controls the number and spread of accessible solutions from a given solution in the search
space. SA begins with a high initial temperature to allow a random walk in the search space. As the
temperature gradually decreases the system becomes more focused, only allowing moves in the search
space which improve the performance of the solution. The process terminates when a temperature close
to zero is reached.

SA uses three parameters:

• M : the maximum number of iterations for the algorithm.
• σsa: the size of the neighbourhood where the subsequent solutions are searched at each iteration

of the algorithm.
• T (t): the temperature function. This function defines the probability of accepting a random move

at each iteration of the algorithm.

4.2. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

CMA-ES [44] is an optimization method that belongs to the class of evolutionary computation
methods. Like classical quasi-Newton optimization methods, CMA-ES attempts to estimate a second
order model of the objective function in an iterative procedure. In contrast to quasi-Newton methods,
CMA-ES does not need the gradient of the objective function [45].

The algorithm’s parameters include the number of parents (µ), the number of offspring (λ), the
mutation factor (σ) and the number of generations through which the algorithm runs. At each generation
of the algorithm, a collection of the best µ candidate solutions are selected from the set of λ offspring of
the previous generation. These solutions are then used to update the distribution parameters, which will
eventually generate the offspring for the next generation.

4.3. Maps

To conduct our experiments, we first selected a mountainous area in North Carolina, USA.
The data was provided by a raster layer map in the “OSGeo Edu” dataset (Available at
http://grass.osgeo.org/download/sample-data/). More specifically, we focused on a portion of the map
that covers a small watershed in a rural area near Raleigh, the capital city of North Carolina. The
coordinate system of the map is the NC State Plane (Lambert Conformal Conic projection), metric
units and North American Datum (NAD83) geodetic datum. We used four portions of the map for our
experiments. The information concerning different selected portions of the map is presented in Table 1.
Testing the optimization methods with different map sizes, allows the scalability of each method to
be verified.

We also tested the optimization algorithms over a map of Université Laval campus, in Quebec City,
Canada. The map of the area is shown in Figure 6. In this experiment, which is an example of a
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surveillance system for the campus, the goal is two-fold. First, we want to test the performance of
different methods in the presence of man-made obstacles (i.e., buildings). Second, the target area is
weighted, meaning that each pixel is attributed with a different weight (wq) as described in Section 2.
For this experiment, we assume that the top of the buildings have low importance in the total coverage
(wq = 0.1), the streets have an average importance (wq = 0.4) and the ground level where the pedestrians
walk have the highest importance (wq = 0.8). The specifications for the coordinates of the campus maps
are also provided in Table 1.

Table 1. Information concerning the test maps used for the experiments.

Method Map NC-A Map NC-B Map NC-C Map NC-D Map UL-A Map UL-B

West boundary 638,800 638,800 638,300 638,300 245,815 245,615
East boundary 638,900 639,000 638,800 638,800 245,915 245,865

South boundary 220,000 220,500 220,500 220,000 5182,750 5,182,550
North boundary 220,100 220,750 220,750 220,500 5,182,850 5182,750

Highest elevation 130.65 127.81 131.6 131.55 100.0 107.3
Lowest elevation 125.95 109.3 103.7 103.76 85.25 82.85
No. of Columns 100 200 500 500 100 250

No. of Rows 100 250 250 500 100 200
No. of pixels 10,000 50,000 125,000 250,000 10,000 50,000

Figure 6. Part of the Université Laval (UL) map, chosen for the weighted experiments.
Here, different parts of the map have different weights. Buildings are shown in red and have
a weight of wq = 0.1, the ground is represented in green and has a weight of wq = 0.8 and
the streets are shown in black and have a weight of wq = 0.4.

4.4. Settings

Sensors are modelled following a description given in Section 2. For a reasonable model of a sensor,
we propose to use the parameters shown in Table 2. With these values, the sensors have 50% of the
maximum coverage at 30 m or at a sensing angle of 120◦.
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Table 2. The parameter values for a realistic model of a sensor that has 50% of the maximum
coverage at 30 m, a pan angle of 120◦ or a tilt angle of 60◦.

Parameter αd βd αp βp αt βt

Value 30 1 60 1 30 1

For SA, the perturbations for positions and orientations follow a Gaussian distribution with
standard deviation σsa. The optimal value for σsa has been established by trial and error (over the
range σsa ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}), and set to σsa = 0.01 for each map. CMA-ES is
run following recommendations of its author [45], with a population of λ = b4 + 3 log(N)c offspring
and µ = bλ

2
c parents. Here, N is the dimensionality of the given problem, determined by the number

of sensors in each map. A mutation factor σcma = 0.167 is also used. For the GD method, the list
of parameters include the learning rates ηx and ηy for positions, the learning rate ηθ for pan angles,
the learning rate ηξ for tilt angles and the weighting parameter ν. The values of these parameters used
in the experiments have been found by trial and error, with the same values used over all maps. For
that, we performed a grid search for all of the parameters over the NC-A map. More precisely, we
had a grid search over parameters η ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, ν ∈ {0, 0.5, 1, 1.5, 2} and
ω ∈ {0, 0.5, 1}. Then, we chose the best five selections of the parameters and among them chose the one
that performed best (on average) on all of the other maps. All parameters used for the experiments are
summarized in Table 3.

Table 3. The parameter values used for simulated annealing, gradient descent and covariance
matrix adaptation evolution strategy (CMA-ES) methods.

SA GD CMA-ES

Parameter σsa ηx ηy ηθ ηξ ν ω σcma

Value 0.01 0.05 0.05 0.5 0.005 1 0.5 0.167

The most computationally demanding part of each algorithm lies in calculating the overall coverage
for a candidate solution. Therefore, to allow fair comparison between different optimization methods
regarding computation requirements, we put a limit on the number of candidate network coverage
calculations each method can do. SA and GD methods perform one coverage calculation per iteration;
therefore, the maximum number of iterations for these methods equal the maximum number of coverage
calculations for each map. The CMA-ES method calculates coverage for each of its offspring at each
generation, so this algorithm proceeds for tmax

λ
iterations on each map, where tmax is the maximum

number of iterations and λ is the number of offspring. We have reported the maximum iteration for each
map and algorithm in Table 4. The maximum number of iterations define the stop criterion for each
algorithm on each map.
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Table 4. Maximum number of iterations for each method on each map.

Method Map NC-A Map NC-B Map NC-C Map NC-D Map UL-A Map UL-B

Simulated Annealing (SA) 6000 30,000 103,500 144,000 6000 30,000
Gradient Descent (GD) 6000 30,000 103,500 144,000 6000 30,000

CMA-ES 400 1500 4500 6000 400 1500

In the GD method, we added another criteria for the termination of the algorithm. In this algorithm,
if the fitness of the candidate solution is not improved after a specific number of iterations, the algorithm
will stop and report the best solution found so far. In our implementation, this number of iterations is set
to be 50.

For the CMA-ES and SA methods, each sensor placement optimization scheme has been run 30 times,
from which are estimated the average and the standard deviation of each method. CPU times are also
averaged over the 30 runs, in order to compare the resources required by each method to produce a
solution. These time values, reported in Table 5, have been evaluated by running the methods on a single
Intel i7 core running at 2.8 GHz.

Table 5. Coverage percentage on the target areas with various numbers of sensors.
Results in bold denote the best results that are statistically significant according to the
Wilcoxon–Mann–Whitney test (pairwise compared with the other results with p-value of
0.05). As the range of the time requirements for different algorithms is large, time is reported
either in seconds (s), minutes (m), hours (h) or days (d).

Method NC-A NC-B NC-C NC-D UL-A UL-B

Number of sensors 12 60 150 300 12 60
Search dimension 48 240 600 1200 48 240

SA average 88.42% 89.38% 88.98% 84.9% 89.09% 83.56%

SA SD 1.56% 0.58% 0.43% 0.53% 1.69% 2.47%

SA CPU time 17.7 m 10.2 h 4.1 d 11.1 d 15.1 m 10.1 h
CMA-ES average 90.22% 92.4% 91.75% 60.32 % 90.44% 87.63%

CMA-ES SD 1.89% 0.73% 0.65 % 2.3 % 1.47% 1.03%

CMA-ES CPU time 18.0 m 11.0 h 4.4 d 11.4 d 15.9 m 11.1 h
GD with restart 88.60% 92.1% 95.1% 91.7% 91.38 % 83.17%

GD single run average 84.99% 90.7% 94.29% 90.3% 86.66% 76.25%
GD single run SD 0.90% 0.23% 0.12% 0.26% 1.05% 1.64%

GD average # of restart 13 19 112 165 15 27
GD CPU time single run 85 s 33.9 m 52.0 m 1.5 h 72 s 22.2 m

Comparatively, the running time of GD on a specific map is much less than the other two methods.
Therefore, we implemented a restart mechanism for our experiments. More precisely, we accomplished
this by calculating, on average, how many runs GD is able to perform with restart to be comparable in
terms of the number of evaluations calculated. In stochastic optimization, restarting consists in making
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several runs of the algorithm and using the best solution of these runs as the final result. Joined to a
stop criterion that halts the optimization process as soon as it converges, this leads to better results than
one single long run. SA and CMA-ES are executed 30 times, so GD is executed for 30× the average
number of runs with restart executed on each map. In Table 5, for the GD method, we have reported the
average coverage percentage between the 30 repetitions with restart as “GD with restart” and the average
between all runs as “GD single run average”.

Each optimization method begins the optimization process from an initial network setting. We take
the random distribution as our initial setting for the optimization methods. Random distribution is the
simplest scenario, meaning that all sensors are randomly distributed in the environment.

All optimization programs are implemented in the Python language. The CMA-ES
implementation was taken from Distributed Evolutionary Algorithms in Python (DEAP), available at
http://deap.gel.ulaval.ca [46]; a Python library for evolutionary algorithms developed at Université Laval.

5. Results

Here, we compare the performance of optimization methods on the mentioned test maps. Each
optimization method was run 30 times, except GD, which was run for 30× the average number of
runs with restart, from which the average coverage percentage and standard deviation were recorded.
A good optimization method should have high coverage and low standard deviation. The results are
reported in Table 5. In the experiments, each scheme has been run 30 times, with coverage averages and
the corresponding standard deviations reported. Note that 100% coverage is not possible with a finite
number of sensors, given its probabilistic nature. Figures 7 and 8 also present the best results obtained
by the GD method for each map. There are several aspects that should be pointed out in Figure 7b. First,
the coverage of each sensor is scaled by the weight of the area that the sensor is placed on (the same
way that the coverage of sensors are weighted in Equation (3)). This gives us the ability to differentiate
between areas with different weights. For example, on the top of the buildings (where the weight is
smallest), the sensors have blue coverage, or on the roads, the coverage of sensors is green. Next, notice
that the area which has lower weights (e.g., the top of the buildings) is not covered as well as the areas
with higher weights (e.g., the ground level). This makes sense as the algorithm has balanced the coverage
capacity and put more emphasis on the more important areas.

Results indicate that CMA-ES outperformed other methods on three maps and GD performed better
on the other three maps. In general, the performance of the three methods is very similar on smaller
maps, but on larger maps, the difference is significant. CMA-ES performed better on smaller maps,
while GD with restart performed better on larger maps. Still, the difference between the performance of
CMA-ES and GD on smaller maps (∼ 1%) is much less than the difference on larger maps (∼ 30%),
except for one small map (UL-B) where the difference is larger (∼ 4%). The larger difference of the
performance on UL-B map could be related to the abrupt changes of the elevation and visibility on
this map, which itself is caused by the abundance of buildings on this map. These changes make the
derivative of the objective function discontinuous in the search space; therefore, it will be harder for
the GD method to escape local minima. The main difference occurs on the largest map (NC-D) where
CMA-ES is unable to obtain a better estimation than the initial random positions. It is well-known that
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CMA-ES does not scale well in high dimensionality [47]. The reason is that large maps generate high
dimensional search spaces (i.e., hundreds of dimensions), and estimating the covariance matrix from a
relatively small sample set is brittle. Therefore, the CMA-ES with full covariance matrix is only usable
for problems with a small number of sensors (less than 250).

Figure 7. Result of placement on the Université Laval campus map: (a) two sub-parts of the
maps used for the experiments, the specifications concerning each map are given in Table 1;
(b) position of the sensors in the best placement obtained by the GD method. Here, white
circles represent the position of sensors on the map and the black line connected to each circle
shows the direction of each sensor. Different colours present different degrees of coverage
using the same colour map as Figure 1.

(a) Campus maps

(b) Placement results with gradient descent
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Figure 8. Result of placement on the North Carolina rural area map: (a) four sub-parts of the
maps used for the experiments (the specification concerning each map is given in Table 1);
(b) position of the sensors in the best placement obtained by the GD method.

(a) North Carolina maps (b) Placement results with gradient descent

The other major difference is attributed to the computational demand of different algorithms. SA
and CMA-ES consume roughly the same amount of computational power, while GD requires between
13- to 165-times less computation time. For example, Figure 9 compares the speed of convergence
between different methods on map NC-B.

Figure 9. Comparison between speed of convergence for different methods on a sample run
for map NC-B.
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6. Conclusions

This paper presented an analytical gradient descent (GD) algorithm for optimizing sensor placement.
The algorithm was implemented with a realistic model for the environment and a probabilistic model for
the sensors. Other optimization methods (CMA-ES and SA) were also implemented and compared
with the GD method. In comparison, CMA-ES performed slightly better on smaller maps, while
GD performed significantly better on larger maps. Another advantage of the GD method lies in its
processing time, as on the tested maps, its performance was between 13- to 165-times superior to that
of the other two methods. The final advantage of the algorithm is related to its distributed nature.
Although, in this paper, we have tested the algorithm in a centralized fashion, GD has the capability
to be executed in a distributed fashion, where each sensor only needs to know the position and coverage
of neighbour sensors.

Future work could involve analytically calculating the second order derivative of the objective
function to use other gradient-based optimization methods (e.g., Newton’s or the quasi-Newton method).
Another possible future study could focus on the application of the coverage model to obtain k-coverage
over an environment. Therefore, if one sensor fails for any reason, there would be other sensors which
could cover the uncovered area.
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A. Appendix: Calculation of Derivatives

This section presents the calculation of the analytical derivative of the membership functions (µdi, µpi
and µti) with respect to the four free parameters xi, yi, θi and ξi. The following function is introduced to
simplify the math formulations:

dsg(δ, β, α) =
β exp(β(δ + α))

(1 + exp(β(δ + α)))2
= β sig(δ, β, α)[1− sig(δ, β, α)] (25)

which corresponds to the derivative of the so-called sigmoid function:

sig(δ, β, α) =
1

1 + exp(β(δ + α))
(26)
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First, let us develop the derivatives of membership functions with respect to xi and yi, that is:

∂ [µdi · µpi · µti]
∂xi

=

[
∂µdi
∂xi
· µpi · µti +

∂µpi
∂xi
· µdi · µti +

∂µti
∂xi
· µdi · µpi

]
(27)

∂ [µdi · µpi · µti]
∂yi

=

[
∂µdi
∂yi
· µpi · µti +

∂µpi
∂yi
· µdi · µti +

∂µti
∂yi
· µdi · µpi

]
(28)

For the term ∂µdi
∂xi

:

φdi = ‖pi − q‖ =
√

(xi − xq)2 + (yi − yq)2, (29)

∂µdi
∂φdi

=
−βd exp(−βd(φdi − αd))

(1 + exp(−βd(φdi − αd)))2
= dsg(φdi,−βd,−αd) (30)

To obtain the terms ∂µdi
∂xi

and ∂µdi
∂yi

, we can simply use the chain rule by multiplying the term ∂µdi
∂φdi

with
additional terms ∂φdi

∂xi
and ∂φdi

∂yi
, respectively:

∂φdi
∂xi

=
∂
√

(xi − xq)2 + (yi − yq)2

∂xi
=

(xi − xq)√
(xi − xq)2 + (yi − yq)2

=
(xi − xq)
φdi

(31)

∂φdi
∂yi

=
∂
√

(xi − xq)2 + (yi − yq)2

∂yi
=

(yi − yq)√
(xi − xq)2 + (yi − yq)2

=
(yi − yq)
φdi

(32)

Consequently, the derivatives of the membership function µdi can be calculated as:

∂µdi
∂xi

=
∂µdi
∂φdi

· ∂φdi
∂xi

= dsg(φdi,−βd,−αd) ·
(xi − xq)
φdi

(33)

∂µdi
∂yi

=
∂µdi
∂φdi

· ∂φdi
∂yi

= dsg(φdi,−βd,−αd) ·
(yi − yq)
φdi

(34)

For the term ∂µpi
∂xi

, we first notice that µpi = µp(φpi) where φpi = ∠p(q−pi)−θi. Therefore, we have:

∂µpi
∂xi

=
∂µpi
∂φpi

· ∂φpi
∂xi

(35)

In the term ∂φpi
∂xi

only the pan angle ∠p(q− pi) is a function of xi and yi:

∠p(q− pi) = arctan

(
yq − yi
xq − xi

)
(36)

and, therefore, we have ∂φpi
∂xi

= ∂∠p(q−pi)

∂xi
. The derivative of ∠p(q− pi) with respect to xi is thus:

∂∠p(q− pi)

∂xi
=
∂∠p(q− pi)

∂
(
yq−yi
xq−xi

) · ∂
(
yq−yi
xq−xi

)
∂xi

=
1(

yq−yi
xq−xi

)2

+ 1
· (yq − yi)

(xq − xi)2
=
yq − yi
φ2
di

(37)

Similarly, the derivative of ∠p(q− pi) with respect to yi can be obtained:

∂∠p(q− pi)

∂yi
=
∂∠p(q− pi)

∂
(
yq−yi
xq−xi

) · ∂
(
yq−yi
xq−xi

)
∂yi

= − 1(
yq−yi
xq−xi

)2

+ 1
· 1

(xq − xi)
= −xq − xi

φ2
di

(38)
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Consequently, we can also develop the terms ∂µpi
∂xi

and ∂µpi
∂yi

as in the following:

∂µpi
∂xi

=
∂µpi
∂φpi

· ∂φpi
∂xi

=
∂
[

1
1+exp(−βp(φpi+αp))

− 1
1+exp(−βp(φpi−αp))

]
∂φpi

· ∂∠p(q− pi)

∂xi

=

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
· yq − yi

φ2
di

= [−dsg(φpi,−βp, αp) + dsg(φpi,−βp,−αp)] ·
yq − yi
φ2
di

(39)

∂µpi
∂yi

=
∂µpi
∂φpi

· ∂φpi
∂yi

=
∂
[

1
1+exp(−βp(φpi+αp))

− 1
1+exp(−βp(φpi−αp))

]
∂φpi

· ∂∠p(q− pi)

∂yi

=

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
· xi − xq

φ2
di

= [−dsg(φpi,−βp, αp) + dsg(φpi,−βp,−αp)] ·
xi − xq
φ2
di

(40)

For the term ∂µti
∂xi

, we have µti = µt(φti) where φti = ∠t(q− pi)− ξi:

∂µti
∂xi

=
∂µti
∂φti

· ∂φti
∂xi

(41)

In the term ∂φti
∂xi

, only the tilt angle ∠t(q− pi) is a function of xi and yi (indirectly through pi):

∠t(q− pi) = arctan

(
zq − zi
‖pi − q‖

)
= arctan

(
zq − zi
φdi

)
(42)

and, therefore, we have ∂φti
∂xi

= ∂∠t(q−pi)
∂xi

. If we do the calculation for ∂∠t(q−pi)
∂xi

, we have:

∂∠t(q− pi)

∂xi
=
∂∠t(q− pi)

∂
(
zq−zi
φdi

) ·
∂
(
zq−zi
φdi

)
∂φdi

· ∂φdi
∂xi

=
1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· xi − xq
φdi

(43)

similarly:

∂∠t(q− pi)

∂yi
=
∂∠t(q− pi)

∂
(
zq−zi
φdi

) ·
∂
(
zq−zi
φdi

)
∂φdi

· ∂φdi
∂yi

=
1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· yi − yq
φdi

(44)

and therefore:

∂µti
∂xi

=
∂µti
∂φti

· ∂φti
∂xi

=
∂
[

1
1+exp(−βt(φti+αt))

− 1
1+exp(−βt(φti−αt))

]
∂φti

· ∂∠t(q− pi)

∂xi

=

[
βt exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
· 1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· xi − xq
φdi

= [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(xi − xq)

φdi[φ2
di + (zi − zq)2]

(45)



Sensors 2014, 14 15548

also, we have:

∂µti
∂yi

=
∂µti
∂φti

· ∂φti
∂yi

=
∂
[

1
1+exp(−βt(φti+αt))

− 1
1+exp(−βt(φti−αt))

]
∂φti

· ∂∠t(q− pi)

∂yi

=

[
βp exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
· 1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· yi − yq
φdi

= [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(yi − yq)

φdi[φ2
di + (zi − zq)2]

(46)

By substituting Equations (33), (39) and (45) in Equation (27), we obtain the analytical derivative for
the x position of sensor si to the position q in the environment. The derivative to the y position can be
calculated in the same way, substituting Equations (34), (40) and (46) in Equation (28).

Let us now develop the derivatives of membership functions with respect to θi:

∂ [µdi · µpi · µti]
∂θi

=

[
∂µdi
∂θi
· µpi · µti +

∂µpi
∂θi
· µdi · µti +

∂µti
∂θi
· µdi · µpi

]
(47)

For the term ∂µdi
∂θi

, the change of θi will not affect the membership functions µdi and µti, hence:

∂µdi
∂θi

=
∂µti
∂θi

= 0 (48)

For the term ∂µpi
∂θi

:

∂µpi
∂θi

=
∂µpi
∂φpi

· ∂φpi
∂θi

∂µpi
∂xi

=
∂
[

1
1+exp(−βp(φpi+αp))

− 1
1+exp(−βp(φpi−αp))

]
∂φpi

· (−1)

= −

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
= dsg(φpi,−βp, αp)− dsg(φpi,−βp,−αp) (49)

By substituting Equations (48) and (49) in Equation (47), we obtain the analytical derivative for pan
orientation of sensor si to the position q in the environment.

Now, the developments of the derivatives of membership functions with respect to ξi:

∂ [µdi · µpi · µti]
∂ξi

=

[
∂µdi
∂ξi
· µpi · µti +

∂µpi
∂ξi
· µdi · µti +

∂µti
∂ξi
· µdi · µpi

]
(50)

For the term ∂µdi
∂ξi

, the change of ξi will not affect the membership functions µdi, and µpi. Hence:

∂µdi
∂ξi

=
∂µpi
∂ξi

= 0 (51)
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As for the term ∂µti
∂ξi

:

∂µti
∂ξi

=
∂µti
∂φti

· ∂φti
∂ξi

=
∂
[

1
1+exp(−βt(φti+αt))

− 1
1+exp(−βt(φti−αt))

]
∂φti

· (−1)

= −

[
βp exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
= dsg(φti,−βt, αt)− dsg(φti,−βt,−αt) (52)

By substituting Equations (51) and (52) in Equation (50), we obtain the analytical derivative for the
tilt orientation of sensor si to the position q in the environment.
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