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Abstract

Electric vehicles and plug-in hybrids are gaining popularity on the personal
transportation market. These vehicles store energy that is unused when
parked. This distributed energy source can therefore be used to provide
ancillary services such as grid regulation or spinning reserves, but also for
demand-side management. In this paper, we are proposing the concept of
collaborative charging in the context of Vehicle-to-Building, where the vehi-
cle and building operators engage themselves into a synergistic relation, with
vehicles freely charged in exchange for shaving power peaks of buildings. For
that purpose, simulations of vehicle fleets are conducted, with the charging
schedule optimized by a linear programming model that is applied to man-
age the electric demand of a suburban university campus. These simulations,
made in the context of a regulated electric market, demonstrate that collab-
orative charging can be financially viable for both the institution hosting the
system and the participants.
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1. Introduction

The deployment of electric vehicles (EVs) is a major trend in today’s
personal transportation market. Hybrid vehicles have become a sizable por-
tion of the number of cars driven and their evolution involves the possibility
to recharge them with enhanced battery capacity. Likewise, pure EVs are
gaining market shares and this trend is rising.

But is the power grid able to sustain a massive adoption of EVs? In 2007,
it has been estimated that the conversion into EVs of up to 84 % of the vehi-
cles in the U.S. can be supported by the existing power grid, assuming that
these vehicles will be charged through some valley-filling charging methods
(i.e., charging off-peak in order to maintain a flat power demand over the
whole day) [1]. But valley-filling charging is not obviously achieved in prac-
tice, such that a significant shift toward EVs combined with a disorganized
charging would constitute a stress for the grid, creating overload issues at
peak times [2].

Organizing charging of EVs is thus required, in order to spread the load
over the day while ensuring that cars are properly charged for the needs of
their owners. Moreover, the electronic and charging systems of EVs can be
designed to interact with the grid in a bidirectional manner (a.k.a. Vehicle-
to-Grid or V2G) to alleviate the expected negative effects of their presence
and even provide an enhancement to the grid [3]. It is therefore not surprising
that industry leaders are investigating the potential, the challenges, and the
possible outcomes of the deployment of a smarter grid where EVs would not
just be an additional load [4].

In this study, a bidirectional relationship is simulated at a smaller scale,
at a building or campus level with a power-constrained grid, where a substan-
tial fraction of the electricity bill will be determined by the cost of the peak
power consumption of the building or campus grid ($/kW), in addition to en-
ergy cost ($/kWh). The Vehicle-to-Building (V2B) concept was introduced
in 2008 [4] as a subclass of the V2G idea, where EVs would exchange elec-
trical energy with a building and provide demand-side management features
to optimize the building energy consumption [5, 6]. V2B has the same im-
plications as V2G in terms of hardware needed and synchronization between
the agents involved, but at the community level. Moreover, V2B should be
easier to deploy due to its smaller scale and thus be achievable before V2G.

Vehicles in working place parking lots are traditionally in a standby mode
from arrival in the morning to departure in the afternoon or evening. For
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rechargeable plug-in hybrids or EVs, that could mean a formidable amount
of energy sleeping right next to an avid energy consumer such as a build-
ing, a university campus, a hospital, etc. With a smartless infrastructure
for recharging these vehicles, the worst case scenario is a mass demand in
the morning when vehicles arrive within a short period of time, creating or
accentuating a peak in the power demand. Smart charging stations that
avoid charging when the grid is overloaded already exist and can distribute
the load over a long period, so that the grid does not suffer from excessive
punctual demand. However, it would be even better to charge the vehicles
when the power demand is low and use their energy capacity to prevent peak
energy demands. A building or a campus using such a strategy will allow
the power component of its electricity bill to be reduced by capping the peak
power demanded on its connection to the utility company. Eventually, V2B
may even enable the building or campus to reduce their power requirements.

In the scope of this study, we intend to create a win-win situation that
we refer to as collaborative charging, where the vehicle owner will have his
vehicle recharged for free in exchange for providing the parking lot owner
(e.g., building, university, hospital) with the control of the energy contained
in his vehicle battery. Doing so, the institution will benefit from an energy
reserve it can use to lower its power peaks and thus its electricity bill.

In this paper, linear programming optimization is applied to a system
model to produce an optimal decision sequence, a schedule of whether vehicles
should charge, discharge, or standby for each of the time steps during which
they are plugged into a smart, bidirectional charging station in the parking
lot. Using the power consumption profile of a university campus for the
year 2011 as the input for our model, the output of linear programming
will generate a power profile optimized with a reduced electricity costs. In
essence, the V2B feature of the plugged-in vehicles will enable the reduction
of the excess power peaks. The results of this optimization will be compared
to the actual cost of energy for a given campus and demonstrate the financial
viability of V2B.

In addition to the proposal of the collaborative charging concept, two
main contributions stem from this paper. First, we are proposing a realistic
model for simulating collaborative charging, a model which can be optimized
through a convex optimization method. This model is a baseline for evaluat-
ing collaborative charging approaches, allowing the evaluation of the extend
to which the results of scheduling methods are working online in comparison
to those obtained with our model, which is providing the optimal results but
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is assuming prior knowledge of the energy demand and when the vehicles
are arriving and departing. The second contribution is to demonstrate that
collaborative charging can be economically viable in the context of a strictly
regulated market (such as Québec), achieving a win-win situation when shav-
ing demand peaks of large electricity consumers while charging the cars for
free.

The paper is organized as follows. The state of the art of V2B is detailed
in Section 2. The system model along with explanations of the context
where we are simulating collaborative charging are presented in Section 3.
Section 4 presents the linear programming formulation for the optimization of
the model. The methodology used in conducting the simulations is presented
in Section 5, followed by simulation results and analysis in Section 6. Finally,
we conclude our paper in Section 7.

2. State of the Art

The concept of V2G has been exposed in preliminary works [3] where
it has been demonstrated as being technically feasible [7]. Detailing the
different possible usages of V2G [8] and financially assessing its capacity [9]
was an important step in this research area. V2G concepts assume that
electric powered vehicles will penetrate the personal transportation market
en-masse and that this arrival could be a burden to the power grid [10]. For
instance, Shahidinejad et al. [11] used real-world vehicle usage data to predict
the increased load on the grid associated with these vehicles using either a
stochastic model or fuzzy-logic to decide whether or not the car should be
plugged into a charging station between trips. The majority of studies agree
on the necessity of aggregators to organize the future smart grid into multiple
large entities, each one controlling a fleet of vehicles which independently do
not represent a consequent power source [12].

An important aspect of the aggregator is the actual decision making pro-
cess in scheduling vehicle activity depending on the goal pursued. Sandels et
al. [13] proposed an aggregator model using Monte Carlo simulations applied
to the German control market. Sekyung et al. [14] detailed the aggregator
duties and used dynamic programming to maximize vehicle state of charge
and participant revenues from frequency regulation. Binary particle swarm
optimization has been used to maximize the vehicles owners’ profits by selling
excessive energy to the grid in a parking lot [15], with expansion of this work
to real time considerations [16]. Shi and Wong [17] used the Q-Learning al-
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gorithm to control the real-time decision process on whether a vehicle should
charge, discharge or provide frequency regulation under electricity price un-
certainty. Managing a large number of vehicles (3,000) was evaluated in
[18], using an estimation of distribution algorithm to optimize the charging
schedule and maximize the average state of charge of the vehicles involved.

A linear programming model, also adapted to large vehicle fleets (10,000),
was investigated in [19], to take into account both bidding of energy and an-
cillary services. A stochastic dynamic programming model has also been
proposed for the optimization of charging and frequency regulation capacity
bids of EVs [20]. Operation planning of a small electric energy system includ-
ing renewable energy sources is described in [21], using a linear programming
model with few data at a time and taking into account uncertainties associ-
ated with charging/discharging patterns of EVs. Focusing on deployability,
the comparison between a mixed integer linear programming model and its
simulated annealing counterpart presented in [22] is positive for the latter
both in terms of results and execution time.

Garćıa-Villalobos et al. [23] presents a survey of smart charging of EVs,
identifying four main approaches: uncontrolled charging, off-peak charging,
smart charging (valley filling), and smart charging (peak shaving). The last
case corresponds to what we are looking for in the current work, by using
the vehicles to manage the demand by charging the vehicles when the power
demand is below the subscribed level (up regulation) and using energy avail-
able in the vehicles to shave peak demand (down regulation). This type of
management of the power demand of a building is a form of demand-side
management [24] from the grid perspective.

In line with that, several studies have been conducted at the scale of
buildings or microgrids. For instance, Pang et al. [25] used EVs and plug-
in hybrids in a V2B context for two distinct cases: demand-side manage-
ment where only charging is considered, shifting charging from peak to mid-
peak time, and outage management where the vehicles power the building.
Momber et al. [26] explored how EVs can integrate with a building’s energy
management system, proposing a model implemented in DER-CAM [27], al-
lowing an economic analysis of the approach. Another model was proposed
by Cardoso et al. [28], again optimized with DER-CAM, this time optimizing
over a simulated model of a medium office building staged in San Francisco in
2020. Finally, Shaaban et al. [29] proposed a two-stage optimization process,
the first stage through charging only and then the second stage by allowing
vehicle-to-vehicle exchanges when customers’ needs are not satisfied. Their
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approach has been evaluated through simulations on a 38-bus system model
involving a mix of residential, commercial, and industrial customers and EVs
parking lots.

The originality of the current paper relatively to the previous work is to
develop the idea of collaborative charging. We do so by applying V2B in the
context of regulated markets, which are common for electric utility companies
acting as a natural monopoly in a given region. In such a context, the
pricing model, generally determined by a public utility commission, is often
not directly related to the supply and demand. However, the pricing model
generally includes, at least for commercial and industrial consumers, both
an energy and a power component, providing an incentive to keep demand
within the subscribed power. The penalty for exceeding the subscribed power
might be significant, such that peak shaving can be highly desirable in order
to reduce the electricity bill of the consumers. Through this perspective, we
demonstrate that we can achieve a win-win situation for both the vehicles
and the building, by optimizing the V2B-enabled charging schedule of a fleet
of EVs on the campus of Université Laval through historical power demand
data and a realistic model that includes the pricing scheme used for large
electricity consumers in Québec. To the best of our knowledge, such a model
has not been conceptualized and analyzed before.

3. System Model

This study will highlight the benefits of V2B when vehicles are to be
connected to a parking or building infrastructure constrained with a fixed
subscribed power rating. The specific example of the authors’ campus of
Université Laval is used for the remainder of the paper. Hydro-Québec, the
provincial electricity provider, has a specific billing scheme for large power
business customers involving the following in two components:

• the maximum value of either 1) the subscribed power or 2) the maxi-
mum power peak in kW in the month;

• the total energy consumption in kWh during the month.

The power component is an important part of the bill, accounting for ap-
proximately 40% of the total cost. The specificity of this billing scheme
being the energy sold at a cheap and fixed price, depending on the season:
2.97¢ per kWh in summer and 2.99¢ per kWh in winter for the year 2011,
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while households pay 5.39¢ per kWh at all times. The cost of power is cal-
culated in several steps. First the power value to be billed is determined
by retaining the highest value in kW between the maximum real power de-
mand, 95% of the apparent power demand, and the subscribed power. The
raw price of power is then calculated by multiplying this power value by
12.18 $/kW and multiplying it again by the number of hours in the month di-
vided by the number of hours in 30 days. However, the final cost of the power
component takes into account two additional factors: a credit for supply at
medium or high voltage (0.915 $/kW) and an adjustment for transformation
loss (0.1670 $/kW in summer, 0.16230 $/kW in winter). In winter, the client
must have an accurate rough estimate of his maximum power peak because
if the value is over 110% of the subscribed power, a 7.11 $ daily penalty is
applied per excessive kW (limited to 21.33 $ per excess kW monthly), in ad-
dition to the regular power price. Therefore power peaks, even for a very
short time, can be extremely costly.

Université Laval has an independent electricity network, and acquires its
electrical energy via two 25 kV three phase power lines supplied by Hydro-
Québec. Université Laval subscribes to a power of 15.75 MW and maintains
its power factor between 0.95 and 1.0. This study uses real data provided
by the Building Services of Université Laval campus. This data includes
instantaneous power consumption for the whole campus every 15 minutes.
Consequently each day is divided into 15-minute intervals for the simulation
process, we make the assumption that the power drained by the campus
remains stable during these intervals. This billing scheme was used in the
model to determine the financial efficiency of V2B. Moreover, the campus
uses an electric boiler to regulate its power consumption. For our study, we
removed the power consumed by the boiler as this element is in direct com-
petition with the use of V2B as it was specifically installed to take advantage
of the tariff system through one-way regularization of demand. Fig. 1 shows
the raw data available for the month of May 2011 before the electric boiler
consumption component is removed.

The collaborative charging scenario investigated here aims at being ben-
eficial for both parking lot users and the Université Laval in the following
manner: with V2B the power component of the campus bill is reduced and
the vehicles are allowed to charge for free in exchange for the right to control
the vehicle energy.
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Figure 1: Original real power consumption of Université Laval in May 2011.

4. Optimization

Linear Programming is a mathematical method for convex optimization
of a model expressed as a set of linear equations representing an objective
function and constraints. Therefore, the objective function can be either
minimized or maximized subject to linear equality and inequality constraints.
The present work uses the revised simplex method and the primal-dual inte-
rior point method as implemented in the GNU Linear Programming Kit1. We
choose linear programming as it is a gold standard in mathematical optimiza-
tion and operation research, being a well-understood and robust approach to
optimization.

The designed model aims at charging as many vehicles as possible while
attempting to maintain the overall power consumption at or below a thresh-
old which is the subscribed power. The model also considers the battery
degradation induced by the V2B activity. The objective function to be max-
imized takes these concerns into account and should be read as the overall

1Available at http://www.gnu.org/software/glpk/glpk.html.
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community benefits of V2B (all in $), as given in (1):

max
T∑
t=1

N∑
i=1

[
Kchgz

t
ieiwiα

t
i − (Kchg +Kwear)z

t
i
1
ei
wiβ

t
i

]
−Kpeakγ

d −Kpenaltyγ
w, (1)

with the sum computed over time steps t = 1, . . . , T and cars i = 1, . . . , N .
Greek letters denote the decision variables (explained next). The optimiza-
tion is subject to several constraints:

0 ≤ αt
i ≤ 1, ∀i, ∀t, (2)

0 ≤ βt
i ≤ 1, ∀i, ∀t, (3)

0.2Cmax
i ≤ C0

i +
t∑

j=1

cji ≤ 0.8Cmax
i , ∀i, ∀t, (4)

γd ≥ 0, (5)

R− P t + γd ≥ 0, ∀t, (6)

γw ≥ 0, (7)

Rw − P t + γw ≥ 0, ∀t, (8)

C0
i +

T∑
j=1

cji ≥ Ei, ∀i. (9)

The following parameters (constants) are given to the model:

• Kchg: charging cost per energy unit [$/kWh];

• Kwear: cost of the battery wear-off induced by discharging a vehicle
[$/kWh];

• Kpeak: cost of the power consumption exceeding the subscribed power
value [$/kW];

• Kpenalty: cost of the power consumption exceeding 110% of the original
subscribed power value during the winter [$/kW];

• zti : Boolean indicating whether the vehicle i is plugged-in (1) or un-
plugged (0) at time step t;
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• ei: charger efficiency for car i when charging or discharging (0 ≤ ei ≤
1);

• wi: maximum theoretical energy flow (obtainable at the grid side of
the charger) from or to the vehicle in kWh per 15-minute period (wi =
15UiIi/60, with Ui and Ii being RMS grid voltage and nominal RMS
line current, respectively);

• Ei: minimum battery capacity requested when vehicle i is unplugged.

And the variables being optimized (decision variables) are:

• αt
i: percentage of the charger power allocated to charging the vehicle;

• βt
i : percentage of the charger power allocated to discharging the vehicle;

• γd: maximum power consumption exceeding the subscribed power value
taking V2B into account;

• γw: maximum power consumption exceeding 110% of the original sub-
scribed power in winter.

The objective function (1) can be decomposed into four elements: 1) the
value of energy charged in the vehicles (

∑
t

∑
iKchgz

t
ieiwiα

t
i), minus 2) the

value of energy removed for the batteries for supporting the grid, including
the corresponding wear-out cost (

∑
t

∑
i(Kchg+Kwear)z

t
i
1
ei
wiβ

t
i), minus 3) the

increase of peak power value in the day (Kpeakγ
d), and minus 4) the penalty

for exceeding 110% of the subscribed power during winter (Kpenaltyγ
w).

The constraints (2) and (3) ensure that each charger is restricted to op-
erating within 0 and 100% of its maximum nominal power respectively while
charging and discharging the vehicle, hence enforcing charger operational
power capabilities. Note that although it is not explicit in the constraints,
the optimization objective given in (1) ensures that for an optimal solution,
at most one value between αt

i and βt
i is non-zero for a given car i and time

t. The maximum power capability wi is expressed in terms of the number of
kWh absorbed or supplied at the output of the charger per 15-minute period.
The 15-minute period is used here as it is also equal to the time step t used in
the computation. It is assumed here that such a maximum value is specified
at the grid side and is the same when charging or discharging. The effect
of factor ei (charger efficiency) will act to reduce the available energy flow
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at the battery when charging (ei factor before αt
i in (1)) and increase the

energy flow value at the battery when discharging (1/ei factor before βt
i in

(1)). For example, a charger that accepts 3.6 kW (wi = 0.9 kWh/15 minutes)
from the grid will push 3.35 kW into the battery when charging. During the
discharging period, the battery will deliver a maximum of 3.87 kW to the
charger, which will then push a corresponding maximum value of 3.6 kW
into the grid.

We must enforce the battery capacity limits, and in order to do this we
define in (10) the energy exchange for vehicle i at time step t derived from
the objective function:

cti = ztieiwiα
t
i − zti

1

ei
wiβ

t
i . (10)

We also define C0
i as the initial level of charge of vehicle i in kWh and Cmax

i

the total battery capacity of vehicle i in kWh. Therefore, the constraint en-
forcing energy bounds in [0.2Cmax

i , 0.8Cmax
i ] of the batteries is expressed as

(4). This relies on the assumption that the charging and discharging func-
tions are linear and that we can use 60% of the amplitude of charge of the
batteries (20% to 80%). Operating below 20% would diminish battery life
substantially, and so significantly increase wear-off. If one wanted to test our
model with vehicles having a state-of-charge (SoC) less than 20%, this would
require some preprocessing to immediately charge the vehicle to a secure SoC
level of 20% before enabling optimization for smart bidirectional charging.
Over 80%, charging is switched to a constant voltage mode, with current
varying over time, resulting in an asymptotically low charging rate. This
type of non-linear charging cannot be properly modeled by linear equations,
as required by linear programming. Moreover, charging over 80% would then
be very slow, resulting in negligible gains for the whole system. Managing ve-
hicles charged over 80% using our approach can be handled with our method
by overriding the real charge level, using 80% instead. This will result in
a greater reserve below which discharging for powering the grid will not be
done. For example, a vehicle charged at 90% when connecting to a station
can pretend to have an 80% charge such that it would never be discharged
below 30% to power the grid. However, this results in relying on an inac-
curate charging model when operating over the 80% (true) charging level,
when recharging the car after an episode of grid support.

If a V2B strategy is implemented on the campus in order to limit the
peaks and save money on the power component of the bill, exceeding the

11



subscribed power has a negative effect on the objective function. Therefore
γd has to be positive or null as shown in (5) and proper determination of the
variable is enforced by (6). In winter, an additional penalty is applied for
exceeding 110% of the subscribed power, γw is positive or null as shown in
(7) and its value determined using (8).
Variables used to model the power consumption are:

• R: the initial subscribed power;

• Rw: 110% of the initial subscribed power;

• At: instantaneous power consumption (grid side) at time step t without
V2B;

• P t =
∑

i(z
t
iUiIiα

t
i − ztiUiIiβ

t
i) + At: instantaneous power consumption

(grid side) at time step t with V2B;

• Ui: RMS grid voltage of vehicle i;

• Ii: maximum RMS charger intensity of vehicle i on the AC side. An
assumption is made that Ui and Ii are in phase.

Additionally, R and Rw values can be subjected to adjustments in the
simulation process in order to cope with unachievable objectives. If the power
demand exceeds the subscribed power in previous days, then the value of the
maximum power peak replaces the value of R. Similarly for Rw, if the power
demand exceeds 110% of the subscribed power, then the value of the third
maximum peak encountered so far replaces it – remember that the winter
penalty in the billing model considers the three largest peaks exceeding 110%
of the subscribed power encountered during the month.

Finally, we wish to avoid the situation where participating vehicles exit
the campus with their battery depleted, hence we force each vehicle to leave
the campus with at least a capacity of Ei, which can be seen as the minimum
capacity needed for a vehicle to travel back home. The constraint (9) ensures
that this minimum capacity when unplugging is respected, with T being the
time step at which the vehicle is unplugged.

5. Simulation Methodology

The system is built around a scalable number of vehicles which all have
their own properties as described in Table 1. These properties reflect the
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Table 1: Properties of the EVs used in the experiments.

Parameter Prius Volt Leaf
Battery Capacity (kWh) 4.4 16.5 24.0

Maximum Charger Intensity (Amps) 15 AC 16 AC 125 DC
Maximum Charger Voltage (V) 240 AC 240 AC 480 DC

Charger Efficiency (%) 93 93 93

specifications of three vehicles available commercially: the Toyota plug-in
Prius hybrid 2012 (referred to as “Prius” thereafter), the Chevrolet Volt
2012 (another plug-in hybrid), and the Nissan Leaf 2012, which is purely
electric. This gives us both level 2 and level 3 chargers. For this study,
the assumption is made that only one type of vehicle is allowed to plug-in:
either all Prius or all Volts or all Leafs. Eventually, a more realistic study
would include various fractions of each vehicle type, but this is left for further
research. Using one vehicle type will be sufficient in the argumentation, from
which the conclusions will be drawn.

The optimization process and subsequent simulation of the impact of the
decision sequence on our data is run on every day of a given month so that we
can produce a monthly bill similar to the one Hydro-Québec would produce
with the power consumption profile modified. We determined that most of
the days follow a similar pattern both in terms of hourly usage and maximum
power peak, whereas a few days in a given month exhibit an unusually high
power demand. This effectively means that while we could reduce the power
consumption for each day individually, this is not a satisfactory option as we
would then increase the battery wear-out for no real gain as the maximum
peak for the month is retained for the bill calculation and not the maximum
peak of each individual day. Simulations are repeated with multiple prede-
termined parameters in order to compare the outcomes of different possible
scenarios:

• Different vehicle fleet sizes: from 100 vehicles to 400 by a step of 100
(4 sizes).

• Different vehicle types: for each scenario, it is assumed that the com-
plete fleet is present on the campus every working day with a progres-
sive arrival and a gradual departure, as described in Table 2.
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Table 2: Parameters for simulating arrivals and departures of the cars.

Parameter Minimum Maximum % fleet present
Night Time 0:00 am 7:30 am 0%

Arrival Time 7:30 am 9:30 am stochastic
Day Time 9:30 am 3:30 am 100%

Departure Time 3:30 pm 5:30 pm stochastic
Evening Time 5:30 pm 12:00 am 0%

Arrival SoC (%) 20 80

• Different subscribed powers: 16 MW and 16.4 MW.

In addition to 30,000 full-time students, the campus employs around 9,000
persons and has 40 parking lots with over 10,000 spaces. The vehicle fleets
considered therefore account for 1% to 4% of the total maximum number of
vehicles parked.

The simulations take place on a daily basis, for each working day. Arrival
SoC value, arrival and departure time of each vehicle are randomly initialized
in the ranges given in Table 2. The arrival and departure times are deter-
mined using a uniformly distributed random number in the ranges while the
arrival state of charge is determined using a triangular distribution centered
on 50%. This parameterization aims to reflect the employees’ habits, not
the students’ habits which are expected to be more random. The minimum
battery capacity when unplugging a vehicle, Ei, is determined as:

Ei = max
(
C0

i ,min(0.8Cmax
i , 1.1Cmax

i − C0
i )
)
. (11)

The values generated for Ei therefore represent 30% to 80% SoC for each
vehicle in order to prevent them from leaving with less energy than required
to make their trip back home.

Additionally the model parameters explained in Section 3 are given in
Table 3. Kchg is the typical price for a household in Québec for 1 kWh minus
the price for the campus for 1 kWh. This represents the gain of charging on
the campus compared to doing so at home for the users. Kpeak is directly
issued from the Hydro-Québec billing model, and is the raw price of power
minus a credit for supply at medium or high voltage minus an adjustment
for transformation loss. This value of Kpeak is then weighted by the number
of days in the month divided by 30. A realistic Kwear was determined using
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Table 3: Parameters of the optimization model.

Parameter Summer 2011 Winter 2011
Kpeak 11.1033 $/kW 11.1027 $/kW
Kpenalty - 7.11 $/kW
Kchg 0.0242 $/kWh 0.024 $/kWh
Kwear 0.2 $/kWh 0.2 $/kWh

a battery cost of 240 $/kWh for standard Li-ion batteries and an expected
useful life of 1500 cycles from 100% to 20% SoC. Other more optimistic values
for Kwear have also been tested in the event that the battery price decreases
or if their useful life increases significantly.

Once the daily simulation run for one setup is completed, a monthly bill
is generated combining the new maximum peak component (kW) and the
revised energy consumption value (kWh) for the campus. The value of the
bill is then compared to the original one.

6. Results and Discussion

Results have been generated with the model presented for the months
of January, February, and May 2011. These correspond to typical months
selected from the most recent year we had in the power consumption dataset
provided by the Buildings Services. We selected these months after inspecting
the data and before conducting the experiments. They represent typical
months with interesting features, such as power peaks observed on February
16th and in the last week of May, and more constant power demand in
January 2011. The other months of 2011 were less interesting, as the power
demand patterns were redundant with the three months we selected.

Four values are of interest for each simulation setup:

• Maximum power: The largest power peak in the month obtained with
the V2B fleet considered. This value is used to calculate the power
component of the electricity bill;

• ∆ cumulative energy: The increase in energy consumption on the cam-
pus throughout the month due to V2B compared to the case with no
vehicle plugged-in;
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• ∆ bill campus ($): The variation of the campus bill (reduced if negative,
increased if positive) compared to the case with no vehicle plugged-
in. This result includes the campus savings associated with the peak
reduction and the additional costs associated with the recharging of
the vehicle fleet batteries;

• User benefits: The gain shared by all V2B vehicle owners; this value
is calculated combining the value of exchanged energy and the battery
wear-off. This value is underestimated because it uses the price of
residential electricity as billed by Hydro-Québec for the first 30 kWh
consumed (the so-called heritage pool), which increases after that level.
This is especially the case in most households of Québec in winter.

For the three months selected, the results extracted from the optimization
show a cost benefit for the use of V2B in peak shaving mode. The cost benefit
will vary depending on the number of vehicles, the subscribed power, and the
type of vehicle considered. Table 4 shows the results obtained with V2B given
the different parameters fed to the system. The results will be discussed for
each of the three months, with an analysis of the distinct behaviors observed
in each of the three cases.

For January 2011, the original cost of electricity for the campus was
545,486.10 $, the original maximum power peak was 16.55 MW, and the total
consumed energy accounted for 9,661,833.68 kWh. Interestingly, the system
optimization leads to advantageous benefits when providing peak compensa-
tion in association with an increase in the campus subscribed power. Leaving
the subscribed power at 15.75 MW would produce a financial burden in terms
of battery wear-off that is not sustainable for the users. The results indicate
that a slight increase in the university subscribed power in combination with
peaks shaving is a better choice, as presented in Table 4 for a subscribed
power increase to either 16 MW or 16.4 MW.

Prius in January 2011. In January 2011, aiming for a 16 MW subscribed
power does not produce satisfactory results for Prius vehicle owners, due to
the size of their battery pack. The battery wear-off associated with the mas-
sive discharge of the vehicles is not financially compensated for by charging
them. Indeed, the energy storage capability available to the system is not
large enough to make it financially appealing for the community. An example
of this behavior is shown with a fleet of 400 Prius in Fig. 2, which indicates
that energy flows in both directions 15 days out of 31 days of January 2011.
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Table 4: Detailed results for January, February, and May 2011 (SP: subscribed power).
Bold results correspond to the best option globally (user benefits - ∆ bill campus) for
a month, while boxed results correspond to the most interesting option for the campus
(option with the highest savings on the bill campus).

Maximum power (MW) ∆ cumulative energy (kWh) ∆ bill campus ($) User benefits ($)
Car type # SP=16 MW SP=16.4 MW SP=16 MW SP=16.4 MW SP=16 MW SP=16.4 MW SP=16 MW SP=16.4 MW

January 2011 (Original values: consumption=9,661,833 kWh; monthly bill=545,486 $; power peak=16.55 MW; SP=15.75 MW)

Prius

100 16.22 16.40 3,395.35 3,187.1 -4,256.52 -1,906.78 -132.49 166.4
200 16.16 16.40 6,742.06 6,513.52 -4,877.46 -1,793.47 -138.84 356.35
300 16.14 16.40 9,865.27 9,654.69 -5,105.35 -1,686.47 -67.39 535.72
400 16.12 16.40 12,703.7 12,601.82 -5,265.54 -1,586.08 -7.14 704.0

Volt

100 16.17 16.40 11,861.08 11,921.72 -4,614.99 -1,609.25 167.2 665.17
200 16.13 16.40 23,929.55 24,395.81 -4,768.76 -1,184.33 716.34 1,377.46
300 16.13 16.40 35,045.1 36,175.2 -4,345.01 -783.09 1,335.99 2,050.09
400 16.14 16.40 45,201.5 47,226.93 -3,898.88 -406.62 1,934.84 2,681.17

Leaf

100 16.08 16.40 17,542.25 17,335.75 -5,634.9 -1,424.82 47.7 974.32

200 16.03 16.40 34,764.64 35,479.87 -5,647.22 -806.76 834.18 2,010.38

300 16.04 16.40 50,648.35 52,613.53 -4,987.15 -223.11 1,790.42 2,988.75
400 16.05 16.40 65,531.5 68,688.78 -4,364.87 324.48 2,691.37 3,906.68

February 2011 (Original values: consumption=9,064,530 kWh; monthly bill=509,228 $; power peak=16,98 MW; SP=15.75 MW)

Prius

100 16.66 16.66 3,144.58 3,088.26 -3,615.11 -3,617.03 -82.75 47.5
200 16.60 16.60 6,301.61 6,249.02 -4,278.63 -4,280.42 -123.99 178.74
300 16.56 16.56 9,224.3 9,208.82 -4,638.08 -4,638.61 -93.55 314.91
400 16.53 16.53 11,991.84 11,965.81 -4,877.81 -4,878.7 -49.95 446.64

Volt

100 16.60 16.60 11,083.56 11,271.37 -4,155.77 -4,149.37 151.3 462.14
200 16.57 16.57 22,395.45 22,907.48 -4,019.38 -4,001.94 680.11 1,110.03
300 16.58 16.58 32,810.74 33,883.81 -3,612.97 -3,576.42 1,253.54 1,740.58
400 16.59 16.59 42,429.44 44,142.77 -3,175.99 -3,117.63 1,824.39 2,334.04

Leaf

100 16.48 16.48 16,677.41 16,440.37 -5,278.62 -5,286.7 -44.01 650.3

200 16.48 16.48 33,320.51 33,380.98 -4,746.15 -4,744.09 785.96 1,614.21
300 16.48 16.48 47,703.16 49,290.7 -4,236.43 -4,182.35 1,625.48 2,524.66
400 16.50 16.50 60,721.18 64,209.15 -3,628.31 -3,509.5 2,470.0 3,392.93

May 2011 (Original values: consumption=9,239,864 kWh; monthly bill=534,464 $; power peak=16.97 MW; SP=15.75 MW)

Prius

100 16.61 16.61 3,358.97 3,358.97 -4,591.94 -4,591.94 146.65 146.65
200 16.39 16.40 6,888.42 6,929.42 -7,350.86 -7,226.4 212.68 225.63
300 16.35 16.40 10,167.34 10,221.65 -7,808.13 -7,115.01 343.38 413.62
400 16.32 16.40 13,206.48 13,309.12 -8,011.46 -7,010.54 487.9 589.92

Volt

100 16.59 16.59 12,515.15 12,515.15 -4,595.84 -4,595.84 661.42 661.42
200 16.37 16.40 25,237.43 25,444.93 -7,032.77 -6,599.92 1,232.22 1,282.9
300 16.37 16.40 37,333.54 37,533.33 -6,551.93 -6,190.9 1,929.67 1,973.17
400 16.38 16.40 48,643.0 48,784.21 -6,056.99 -5,810.22 2,586.05 2,615.62

Leaf

100 16.28 16.40 18,193.94 18,268.47 -8,409.34 -6,842.74 704.05 873.11

200 16.24 16.40 36,805.59 37,276.6 -8,260.95 -6,199.58 1,700.04 1,958.51
300 16.25 16.40 54,403.73 55,226.15 -7,563.69 -5,592.24 2,719.93 2,983.47
400 16.26 16.40 70,874.48 72,066.88 -6,952.3 -5,022.4 3,667.86 3,945.11
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Figure 2: Power consumption and energy exchanges for the month of January 2011 with
400 Prius and a 16 MW subscribed power. The top figure shows the energy exchanges
between the car and the building; the middle figure presents the power calls over the
month with and without V2B; and the bottom figure is an excerpt of the power calls
figure with the highest peak over the month. Note that in the top figure, the bars are
overlapping, both bars starting at zero, the differences between them corresponding to the
net energy given to the vehicles.
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Although less beneficial for the drivers, the Prius has a strong effect in reduc-
ing the campus bill due to the small battery size and, therefore, low energy
consumption for a 20% to 80% recharge, while still providing a peak demand
shaving capability comparable to the Volt.

Leaf in January 2011. However, as the fleet size is increased for both Volt and
Leaf fleets, users gain more from participating, the energy storage constraint
being lifted. With 16 MW subscribed power, a 200 Volt or Leaf fleet yields
the best financial advantages for the campus. Larger fleets of these vehicles
will slightly increase the campus bill, while significantly increasing the user
benefits, a 400 Leaf fleet providing the best global option for both users and
the campus. As a matter of fact, when the fleet size increases, the number of
kWh supplied by the campus to the vehicles also increases, thus increasing
the campus bill.

Increasing the subscribed power with V2B. Interestingly, increasing the uni-
versity subscribed power from 15.75 MW to 16.4 MW with V2B is still ben-
eficial for the campus, with a more moderate use of the vehicle batteries
and less wear-off. Nevertheless, the financial advantage is still greater with
16.0 MW compared to 16.4 MW due to the extra cost associated with the
higher subscribed power. The combination of a powerful charger and a large
energy capacity in the fleet leads to an increased campus bill for 400 Leafs,
given that the amount of energy required by the cars is the largest compared
to the other tested configurations. It is interesting to note that the maximum
power peak achieved with Volts and Leafs for a 16 MW goal first decreases
with an increasing fleet size, given better capacity to manage the demand,
and then increases again, as the larger battery storage requires more energy
overall.

One day of excessive power demand in February 2011. The results for Febru-
ary exhibit more peaks, which are spread out throughout the month. The
original cost of electricity for the campus is 509,228 $, with 9,064,529 kWh
consumed and a maximum power peak of 16.98 MW. In the original campus
bill, the maximum power call of 16.98 MW was prominent on the sole day
of February 16, leading to a significant penalty due to over-consumption of
1230 kW of electrical power over the original 15.75 MW subscribed power.
With such a high power peak, even a fleet of 400 Leafs cannot keep the
system demand peak below the 16.4 MW subscribed power threshold. These
results are a prime example of how determining the subscribed power value as
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accurately as possible is important for the implementation of such a system.
In this particular example with a 16.4 MW subscribed power, the system is
always beneficial for both the users and the campus. This contrasts with
results obtained for January and 16 MW, where the power peaks are reduced
and spread out over the month. Indeed, for February, V2B is easily able to
shave a single high peak with a significant impact on the campus bill, while
January requires that the campus be fed with 100s of kWh from the vehicles
on several days, which has a cost in terms of battery wear-out. The most
interesting option for the campus is 100 Leafs, 16.4 MW. The best over-
all configuration for February is with a 16.4 MW subscribed power and 400
Leafs, the community gain rises to 6,902.43 $ (i.e., user benefits - ∆ bill cam-
pus, in this case 3,509.50 $ + 3,392.93 $). The representation of the power
consumption and energy exchanges associated with this result is shown in
Fig. 3. It is apparent from these results that the fleet contributes marginally
throughout the month except on the 16th, when the strongest power peak
occurs.

Adjustment of power demand threshold following peak days in May 2011.
For May 2011, the original cost of electricity for the campus is 534,464 $, the
original maximum power peak is 16.97 MW and the total consumed energy
accounts for 9,239,864 kWh. The results for this month are the best yet
encountered. Every configuration analyzed is beneficial for both the campus
and the users even though the subscribed power is exceeded at 16 MW. The
graphical results for a balanced case with 400 Leafs and a 16 MW subscribed
power is shown in Fig. 4, since this represented the best option globally for
both the users and the campus. Note that the most interesting option for
the campus involves 100 Leafs, 16.4 MW. The results in Fig. 4 show that,
once again, the fleet’s major contribution in May 2011 is concentrated on a
few days, here the 24th, 30th, and 31st which were in fact the hottest days
of the month. The rest of the time, vehicles are simply recharged. The effect
of the adaptive maximum power goal of the model is best seen in Fig. 4, the
peaks never exceeded 16 MW before the 24th. On the 24th, the Leaf fleet
could not provide the power needed on this day to remain below the 16 MW
threshold. Yet, the power drawn from the utility could be reduced from a
previous maximum of 16.97 MW down to 16.26 MW. After the 24th, a new
increased threshold of 16.26 MW is used for the remainder of the month,
as the 260 kW power penalty will be billed in any case. This month also
exhibits the greatest power peak reduction with 710 kW fed to the campus
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Figure 3: Power consumption and energy exchanges for the month of February 2011 with
400 Leafs and a 16.4 MW subscribed power. The top figure shows the energy exchanges
between the car and the building; the middle figure presents the power calls over the month
with and without V2B; and the bottom figure is an excerpt of the power calls figure with
the highest peak over the month.

21



Table 5: Results for different values of Kwear for February 2011.

User benefits ($)
Kwear = 0.075 Kwear = 0.0375

# SP=16 MW SP=16.4 MW SP=16 MW SP=16.4 MW

P
ri

u
s

100 74.67 124.82 121.89 148.02
200 166.36 285.61 253.46 317.68
300 278.68 441.49 390.35 479.47
400 -390.96 588.65 523.23 631.25

V
ol

t

100 440.31 571.05 527.01 603.72
200 1,039.4 1,228.87 1,147.19 1,264.52
300 1,625.62 1,857.15 1,737.24 1,892.13
400 2,183.51 2,446.02 2,291.24 2,479.62

L
ea

f

100 553.89 823.42 733.26 875.35
200 1,456.11 1,789.39 1,657.15 1,841.94
300 2,284.68 2,698.65 2,482.44 2,750.85
400 3,068.49 3,557.09 3,248.04 3,606.33

by the vehicles.
The possible viability of collaborative charging has been demonstrated,

with values that are realistic and a technology that is currently available.
However, the future might provide even brighter results, which represents a
strong incentive to invest in this research area and, deploy systems on a large
scale. Table 5 presents what would happen to the user benefits should a leap
forward be made in the battery area. By lowering the Kwear value, we can
turn an unwanted configuration into a profitable one, as is the case with a
fleet of 100 Leafs and all Prius fleet sizes for 16 MW subscribed power.

7. Conclusion

Using real-world data and realistic randomly generated behavioral pat-
terns, this article demonstrates the financial viability of collaborative charg-
ing for both the “Building” and the vehicle owners in a regulated electric
market such as the one in Québec, if the subscribed power and the fleet size
are properly matched. The model presented here, with between 1% and 4%
of all vehicles parked at the campus being plug-in hybrids or EVs, allow these
vehicle batteries to be replenished to 80% of their capacity for free, while re-
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Figure 4: Power consumption for the month of May 2011 with 400 Leafs and a 16 MW
subscribed power. The top figure shows the energy exchanges between the car and the
building; the middle figure presents the power calls over the month with and without V2B;
and the bottom figure is an excerpt of the power calls figure with the highest peak over
the month.
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ducing the campus electricity bill by 0.9% and 1.6% compared to the no-V2B
original scenario. In the study, the cost of battery wear-out has been consid-
ered, which may lead to high costs of battery degradation if the subscribed
power is set too low. The determination of the subscribed power has proven
to be a key parameter for a cost-efficient V2B peak shaving mechanism.

The advantage of such a system for the electricity supplier is not taken
into account in this study. It would not be surprising that being able to
more accurately predict power demand and reduce power peaks significantly,
if such a system was generalized, would be of great interest to the utility
company.

An important limitation of the current studies is that the real campus
power demand and car parking schedule for each day are directly used by
the optimization method. In practice, it is obviously not possible to obtain
this information in advance, so the results reported in the paper should be
considered as the upper bound of what can be achieved through collaborative
charging in the tested setting. We plan to conduct further experiments by
feeding the optimization process with forecasts of the power demand and car
parking schedule, and then evaluate the extend performances with the real
power demand and car availability data. An alternative would be to make
use of online methods from reinforcement learning [30], to replace linear
programming, to produce the charging schedule. These methods would not
require a prior knowledge of the power demand and car parking schedules.
By comparing results obtained with these approaches to the results reported
in the current paper, it would be possible to evaluate the extend to which
these methods – which can be implemented in practice – would differ from
the optimal results reported in the current paper.
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