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Abstract—This paper proposes a framework for the optimiza-
tion of sensor placement. Traditional schemes rely on simple
sensor behaviours and environmental factors. The consequences
of these oversimplifications are unrealistic simulation of sensor
performance and, thus, suboptimal sensor placement. In this
paper, we develop a novel framework to tackle the sensor place-
ment problem using a probabilistic coverage and corresponding
membership functions for sensing range and sensing angle, which
takes into consideration sensing capacity probability as well
as critical environmental factors such as terrain topography.
We then implement several optimization schemes for sensor
placement optimization, including simulated annealing, L-BFGS,
and CMA-ES.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are built from a collec-
tion of small, inexpensive sensor devices, where each sensor
has limited sensing, storage, processing, and communication
capabilities. With the recent proliferation of Micro-Electro-
Mechanical Systems (MEMS), we have seen a rapid increase
of interest in WSNs [1], where sensors can make measure-
ments in the environment and gather information for end-users.

There are a number of fundamental issues that should
be addressed for effective exploitation of WSNs, such as
localization, tracking, security, data aggregation, and place-
ment. Placement is an example of a more general problem of
configuring sensor parameters. Depending on the application
of WSN and the sensor type being used, each sensor has a
number of variable parameters that must be determined, e.g.,
latitude and longitude, orientation, and operating range of each
sensor in the placement problem. There are four main issues
which should be taken into consideration for an optimal place-
ment of WSNs, namely, performance maximization, reliability
maximization, energy saving, and cost minimization.

Considering a region of interest monitored by sensors,
overall performance of the network is measured by coverage
[2]–[7]. In general, one of the basic requirements for a WSN
is that each location in a region of interest should be within
the sensing range of at least one of the sensors. An alternative
approach is to have a region of interest covered simultaneously
by at least K sensors [2], [4].

Although many deterministic methods have been explored
to address the problem of coverage, traditional sensor place-

ment strategies often rely on oversimplified sensor models and
environmental factors [2], [4], [5], [8], [9]. These deterministic
approaches cannot deal with environmental factors such as
terrain topography, and usually assume an omnidirectional disk
sensing model for each sensor. In fact, under the assumptions
of uniform disk sensing model, it has been shown that optimal
coverage can be deterministically achieved with a regular
placement of sensors [3], [7], [10]. Similar results have also
been reported when multiple coverage of the target area is
required [2], [4], [5], [10].

The direct consequence of such oversimplifications is that
the theoretical perfect coverage shown in deterministic meth-
ods may not hold true in practice. This may be the result of a
number of causes. First, most sensor placement optimization
methods assume that sensors are placed on a 2D plane,
without taking into account the topography of the terrain [3],
[7], [10]. Second, many methods assume that sensors have
omnidirectional sensing capabilities [11]. But antennas and
microphones have non-uniform 3D reception fields that depend
on factors like orientation, distance, and other environmental
factors [11], cameras have narrow field of views, etc. Third,
sensors usually do not have a binary coverage range as it is
often assumed in traditional sensor placement methods [3],
[10]. Although some probabilistic sensing range models [3],
[7], [10], [12], [13] and sensing models with irregular sensing
ranges [14] have been proposed, they all operate on a 2D
flat space and are omnidirectional. Recently, Topcuoglu et
al. [15] proposed a new formulation for deployment of the
sensors in a synthetically generated 3D environment. Although
the proposed approach makes several realistic assumptions
regarding the modelling of the environment and sensors, it
assumes a binary sensing area for each sensor inside the
environment. The combinational effects of terrain variations,
blind points sensing angle or irregular sensing range, and
probabilistic sensing property of sensors have never been
studied before.

The limitations of the deterministic placement methods
are thus obvious, and the 100% coverage that they claim is
often over-estimated. This issue is critical because it further
complicates the problem of sensor placement: while a WSN
may seem to satisfy the requirements to achieve full coverage



on a target area using a deterministic method, the deployers of
such a network have no means of ensuring that this coverage
is truly effective in a real environment.

Facing this challenge, we follow a more flexible non-
deterministic avenue. Our aim is to optimize sensor placement
using topographic information of the terrain and probabilistic
sensor modelling. Our approach differs from previous methods
in the following three ways: 1) deterministic schemes only
consider 2D environments and ignore the effects of elevation,
whereas our method takes into account the 3D terrain informa-
tion; 2) deterministic schemes usually assume omnidirectional
sensors, whereas our method allows for constraints to be
applied on sensors, such as limited sensing angles and range;
3) deterministic schemes implement mainly binary coverage,
i.e., a point can only be classified as covered or uncovered,
whereas our method applies probabilistic coverage in both
sensing distance and sensing angle.

In order to tackle these problems, we develop a novel
framework for sensor placement that takes into account the
above mentioned issues, and then compare this approach with
some classical optimization algorithms. This paper extends our
previous work [16] by proposing directional and probabilistic
sensor models, and testing the optimization with other meth-
ods, that is simulated annealing and L-BFGS.

The remainder of the paper is organized as follows. The
proposed framework is presented in the next section (Sec.
II), followed by a presentation of the optimization methods in
Sec. III, including experimental protocol and results on sensor
placement. We conclude the paper with a summary of results
and perspectives (Sec. IV).

II. PROPOSED FRAMEWORK FOR SENSOR PLACEMENT

A. Coverage Definition in a Sensor Network

The sensing model depends on distance, orientation, and
visibility. We first assume that all sensors are positioned at
a certain constant height above the ground level. The sensor
position is thus described by a 3D point p = (x, y, z), where
(x, y) are free parameters, and z = g(x, y) is constrained
by the terrain elevation at position (x, y), as defined by a
Geographic Information System (GIS). We further assume
that the anisotropic properties of sensors are fully defined
by a pan angle θ around the vertical axis (tilt angle is
currently assumed to be zero). Given the GIS, a sensor network
N = {s1, s2, . . . , sn} of n sensors is thus fully specified
by 3n free parameters si = (pi, θi), i = 1, 2, . . . , n, with
pi = (xi, yi).

Now the coverage C(si,q) of sensor si at point q in
the environment can be defined as a function of distance
d(si,q) = ‖pi−q‖, angle of view a(si,q) = θi−∠(q−pi),
and visibility v(si,q) from the sensor:

C(si,q) = f [µd(‖pi − q‖), µa(θi − ∠(q− pi)), v(p,q, gelev(pi))],

(1)
where ∠(q − pi) = arctan

(
yq−ypi

xq−xpi

)
is the pan angle of

point q relative to pi. For q to be covered by sensor si, we
need to take into account its sensing range, that it is within

its field of view, and its visibility, that is not blocked by any
terrain obstacle such as hills. Let µd, µa ∈ [0, 1] represent
some membership functions of the first two conditions, then
Equation 1 can be rewritten as a multiplication of these
memberships:

C(si,q) = µd(‖pi − q‖) · µa(θi − ∠(q− pi)) · v(pi,q, gelev(pi)).
(2)

Function v(pi,q, gelev(pi)) is usually binary. Given a sensor
position pi and sensor elevation gelev(pi), if the line of sight
between sensor si and q is obscured, then we assume that
the coverage cannot be met (v = 0), otherwise the visibility
condition is fully respected (v = 1). Memberships µd and
µa need to be defined according to their parameters. In our
experiment, the elevation is set to gelev(pi) = g(xi, yi) + 1,
that is 1 meter above the ground at the position of the sensor.

At each position q ∈ Ξ of environment Ξ, the coverage for
a single sensor is thus the multiplication of the three above
conditions. Value C = 1 means full coverage, and C = 0
indicates no coverage. If more than one sensor covers q, then
the local network coverage Cl can be computed as follows:

Cl(N,q) = 1−
∏

i=1,...,n

(1− C(si,q)) , (3)

and the global coverage Cg can be:

Cg(N,Ξ) =
1

|Ξ|
∑
q∈Ξ

Cl(N,q). (4)

Given an environment Ξ, the problem statement is thus to
determine the sensor network placement N that maximizes
Cg(N,Ξ).

B. Probabilistic Membership Functions

The membership functions µd and µa can be defined as
crisp functions, with value of 1 when the position is within a
fixed sensing range or angle of view, and otherwise 0.

µd(‖pi − q‖) =

{
1 ‖pi − q‖ ≤ dmax

0 otherwise (5)

µa(θi − ∠(q− pi)) =

{
1 (θi − ∠(q− pi)) ∈ [−a, a]
0 otherwise (6)

However, such functions used in a coverage function provide
essentially a binary 0/1 signal, which is not a good feedback
to use for optimizing functions given its lack of information.
Therefore we propose to use real-valued membership functions
that provide a monotonically decreasing membership value
over distance and relative angle between the position and
sensor.

We propose the following membership function for distance:

µd(‖pi − q‖) =
1

1 + exp
[
−
(

α
‖pi−q‖ − β

)] , (7)

with α ≥ 0 and β as parameters configuring the membership
function. These parameters can be approximated using exper-
imental observations on sensor behaviours. Figure 1 presents
the µd function for different values of α and β.



Fig. 1. The effects of variations of α and β on µd(‖pi − q‖).

Fig. 2. The effects of variations of ω on µa(θi − ∠(q− pi)).

As for the membership function for an angle, we propose
the following function:

µa(θi − ∠(q− pi)) =

(
cos(θi − ∠(q− pi)) + 1

2

)ω
, (8)

where ω ≥ 1. Figure 2 shows the change in membership
function µa with three values of ω. Here, we assume that
the pan angle for each sensor is adjustable and the visibility
along the tilt angle is complete from −90o to 90o.

For a reasonable model of a sensor, we propose to use as
parameters α = 350, β = 10, and ω = 3. With these values,
the sensors have an effective sensing range of 30m and sensing
angle of 120o (see Figure 3 for an illustration of the coverage
obtained).

III. IMPLEMENTED OPTIMIZATION METHODS

From this framework for sensor placement optimization,
we compare four sensor placement schemes: a determin-

Fig. 3. Probabilistic coverage model of a sensor. Assuming that a sensor is
positioned at (48,66) heading upward, the colour shows different degrees of
coverage for points inside the map.

istic approach found in the WSN literature, an adaptation
of Simulated Annealing (SA) for sensor placement, the
limited-memory Broyden-Fletcher-Goldfarb-Shanno method
(L-BFGS), and the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), an evolutionary algorithm for real-valued
optimization. The deterministic approach is purely geometrical
and does not take into account the framework proposed in the
previous section. As for the three other optimization methods,
they have been applied on a real-valued vector composed of
three values per sensor (xi, yi, θi), so as to maximize the global
sensor network coverage Cg(N,Ξ) over a given elevation map
Ξ:

N = {(x1, y1, θ1), (x2, y2, θ2), . . . , (xn, yn, θn)}, (9)
N∗ = argmax

N
Cg(N,Ξ). (10)

We briefly explain each method in the following sections.

A. Deterministic Sensor Placement

The deterministic method has been shown to achieve full
coverage on the Cartesian plane [7], [17]. Figure 4 illustrates
this placement pattern, where sensors are organized in layers
of horizontal stripes. Assuming sensors with sensing range rs,
they are simply distributed

√
3 rs apart on every stripe, and

the stripes are themselves separated from one another by 3
2rs.

Furthermore, the stripes are interleaved to form a triangular
lattice pattern. This approach does not take the terrain into
consideration.

As presented in Figure 3, the pan angle coverage of each
sensor is roughly 120o. Therefore, to obtain an omnidirectional
coverage at each position (because the deterministic approach
assumes that all sensors have omnidirectional coverage), we
place three sensors facing 120o degrees apart from each other,
at each position specified by the deterministic method.

B. Simulated Annealing Method on Single Sensor

SA [18] is a heuristic optimization algorithm. With a generic
probabilistic heuristic approach, simulated annealing may es-
cape local optimum and converge to global optimum, and thus
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Fig. 4. Pattern of the deterministic method [7], [17] implemented in the
paper, where da =

√
3rs, db = 3

2
rs, and rs is sensing range for a sensor.

Circles are sensor sensing ranges, and dots are sensor positions.

may be more effective for a global optimization problem of a
given function in a large search space. Our implementation of
SA is described in Figure 5. It requires the definition of the
temperature function (temperature(t)), and the setting of two
parameters (M , σ)
• Parameter M defines the maximum iterations for simu-

lated annealing. The larger the M , the more time con-
suming the optimization, and the more likely the global
optimum can be reached.

• σ defines candidate generator, i.e., the size of neigh-
bourhood where subsequent solutions will be generated.
An essential requirement for σ is that it must provide
a sufficiently short path from the initial state to any
state which may be the global optimum. Another issue is
that σ should be selected so that the search path avoids
becoming trapped in a local minimum, i.e., it must be
large enough to cross local minima in an effort to reach
the global optimum.

• Temperature function (temperature(t)) defines the prob-
ability of accepting a move in simulated annealing. Ini-
tially, the temperature(t) is set to a high value, then it
is decreased at each step according to some annealing
schedule, and finally ends with temperature(t) → 0
towards the end of the allotted maximum steps, M . When
the temperature is high, the probability of accepting a
move will be high. When the cooling rate is low, the
probability of accepting a move decreases. The idea is
that the system is expected to wander initially towards
a broad region of the search space containing good
solutions, ignoring small features of the energy func-
tion; then drift towards low-energy regions that become
narrower and narrower. To satisfy the conditions above,
the temperature(t) is defined as an exponential decay
function as follows:

temperature(t) =
1

2
exp

[
−2 ln 2× t

M

]
(11)

C. Limited-memory BFGS method

BFGS [19] is a numerical optimization method for solving
non-linear optimization problems. This method is an exam-
ple of Quasi-Newton optimization methods, which find the

Initialize sensor network with random positions uniformly dis-
tributed in placement domain (assuming domain to be in pi ∈
[0, 1]2), and random orientations,

xi ∼ Unif(0, 1), i = 1, . . . , n,

yi ∼ Unif(0, 1), i = 1, . . . , n,

θi ∼ Unif(0, 1), i = 1, . . . , n,

N = {(p1, θ1), (p2, θ2), . . . , (pn, θn)}.

Assess performance of initial sensor network, f = Cg(N,Ξ).
Set best sensor network and best performance to the initial one,
Nbest = N, fbest = f.
for t = 1, . . . ,M do

Select a random sensor with uniform distribution, s ∼
DiscUnif(n).
Apply a random perturbation of sensor position ps = (xs, ys)
and orientation θs to generate new candidate sensor network
placement N ′,

rx ∼ N (0, σ), ry ∼ N (0, σ), rθ ∼ N (0, σ),

x′s = xs + rx, y
′
s = ys + ry, θ

′
s = θs + rθ,

N ′ = {(p1, θ1), . . . , (p′
s, θ

′
s), . . . , (pn, θn)}.

Evaluate performance of new candidate sensor network N ′,
f ′ = Cg(N

′,Ξ).
if f ′ > f , the new sensor network is better than current one,
then

Accept new sensor network, N = N ′, f = f ′.
if f ′ > fbest, new sensor network is better than best so
far, then

Set best sensor network and best performance to the
current one, Nbest = N ′, fbest = f ′.

end if
else

Get temperature of current iteration, Ei =
temperature(t).
if ei < Ei, ei ∼ Unif(0, 1), current sensor network is
accepted given the temperature, then

Accept new sensor network, N = N ′, f = f ′.
end if

end if
end for
Return best sensor network found, Nbest, as final result.

Fig. 5. Pseudo-code of sensor placement with simulated annealing, with
perturbation of one sensor position at a time.

stationary point of a function without computing the Hessian
matrix of the objective function. It rather updates an estimate
of the inverse Hessian matrix. Limited-memory BFGS (L-
BFGS) which stores few past inverse Hessian matrix updates
instead of the full matrix. Therefore, L-BFGS is a black-box
deterministic optimization method well suited for problems
with a high number of variables.

D. CMA-ES Evolutionary Algorithm

CMA-ES [20] is an evolutionary algorithm known for its
good performance and stability [21]. It updates the covariance
matrix of the distribution to learn a second order model of
the underlying objective function, similar to the approximation
of the inverse Hessian matrix in the Quasi-Newton method
in classical optimization. However, it does not require partial



(a) Small map (b) Medium map

(c) Large map

Fig. 6. Two dimensional view of the environment used for placement
evaluation by different methods: (a) small map of 45 rows and 45 columns,
with elevation ranging from 112.73 m to 115.93 m; (b) medium map of 45
rows and 90 columns, with elevation ranging from 112.63 m to 116.41 m;
and (c) large map of 80 rows and 80 columns, with elevation ranging from
112.07 m to 120.30 m.

derivatives.
For sensor placement optimization, the position and orienta-

tion of the sensors can be encoded inside an individual, and a
population of individuals can be evolved through generations.
At the end of the evolution, the individual with the best
coverage is chosen as the final solution.

E. Experiments

To conduct our experiments, we selected a mountainous
area in North Carolina. The data was provided by a raster
layer map in the “OSGeo Edu” dataset1, that stores geo-spatial
information about parts of the North Carolina State, USA.
More specifically, we focus on a portion of the map that
covers a small watershed in a rural area near NC capital city,
Raleigh. The coordinate system of the map is the NC State
Plane (Lambert Conformal Conic projection), metric units and
NAD83 geodetic datum. We used three portions of the map for
our experiments (See Figure III-E). A small map with 2025
cells to be covered by 3 sensors, a medium map with 4050
cells to be covered by 6 sensors, and a large map with 6400
cells to be covered by 9 sensors.

Sensors are modelled following a description given in
Sec. II, using as parameters α = 350, β = 10, and ω = 3. For
all methods except for the deterministic approach, each sensor
placement optimization scheme was run 10 times, from which
are estimated the average and the standard deviation of each
method. CPU times are also averaged over the 10 runs, in
order to compare the resources required by each method to
produce a solution. These time values have been evaluated by
running the methods on one core of Intel I7 computers clocked
at 2.8 GHz.

1Available at http://grass.itc.it/download/data.php.

TABLE I
COVERAGE PERCENTAGE ON THE TARGET AREAS WITH VARIOUS NUMBER
OF SENSORS. EACH SCHEME HAS BEEN RUN 10 TIMES, WITH COVERAGE

LOSS AVERAGES AND THE CORRESPONDING STANDARD DEVIATIONS
REPORTED. NOTE THAT 100% COVERAGE IS NOT POSSIBLE WITH A FINITE

NUMBER OF SENSORS, GIVEN ITS PROBABILISTIC NATURE.

Method Small map Med. map Large map
Number of sensors 3 6 9
Search dimensions 9 18 27

Deterministic 74.42% 81.68% 71.90%
SA average 86.07% 84.75% 80.48%
SA stdev 0.71% 4.18% 3.26%

SA CPU time 7 min. 12 min. 22 min.
L-BFGS average 84.69% 83.64% 78.98%
L-BFGS stdev 1.86% 1.99% 2.67%

L-BFGS CPU time 15 min. 87 min. 186 min.
CMA-ES average 87.76% 90.97% 89.65%
CMA-ES stdev 0.65% 0.75% 0.68%

CMA-ES CPU time 60 min. 133 min. 285 min.

For simulated annealing the perturbations for positions
and for orientation is a Gaussian distribution with standard
deviation σsa. The optimal value for σsa is found by trial
and error, so that the optimal value for each map was found
independently. These optimal values are σsa = 0.02 for the
small map, σsa = 0.02 for the medium map, and σsa = 0.08
for the large map. For each run, SA last 350 iterations, which
is more than necessary to reach convergence of the algorithm
to a solution. With L-BFGS, a history of the m = 10 past
updates of the position and gradient are used to limit the
memory usage, and the stop criteria is parametrized by values
factr = 107 and pgtol = 1.0−5. CMA-ES is run with the
a population of µ = 6 parents and λ = 13 offspring, for
350 generations, which was enough to achieve convergence.
A mutation factor σ = 0.167 is also used.

All optimization programs are written in Python. We used
the implementation of L-BFGS from the well-known SciPy
library2. CMA-ES implementation was taken from DEAP3,
a Python library for evolutionary algorithms developed at
Université Laval.

F. Experimental Results

We compare the performance of the four mentioned place-
ment methods, that is Deterministic approach, Simulated An-
nealing, L-BFGS, and CMA-ES.

We ran each optimization scheme 10 times and calculated
the corresponding coverage loss percentage on the target
areas. A qualified sensor optimization scheme should have low
coverage loss and low standard deviations of coverage loss
given a number of runs. In other words, we are evaluating
each algorithm in terms of both accuracy and robustness. The
results of each method using the best parameter sets are shown
in the Table I.

Among all tested methods, CMA-ES has by far the best
performance, in terms of both low coverage loss and low

2Available at http://www.scipy.org.
3Available at http://deap.googlecode.com.



Fig. 7. Example of a sensor placement optimization result on the large map
using CMA-ES.

standard deviation of coverage loss. This is not surprising,
because CMA-ES performs a parallel search in the search
space and unlike simulated annealing combines the results of
several stochastic search paths to find the optimal solution. It
is however the most expensive optimization in terms of com-
putation resources required, as the number of tested solutions
is much higher than with the other methods (4550 solutions
evaluated by runs, that is 13 offspring over 350 generations).
Figure 7 presents a sample result of sensor placement using
CMA-ES on a large map.

IV. CONCLUSION

A framework for optimization of sensor placement is pro-
posed in this paper. The novelty of this framework lies in
the integration of terrain information (elevation maps) with
a probabilistic sensor model. Different optimization methods
have been tested with this framework, with the results reported
showing a variability in the performances. The CMA-ES
optimization method clearly outperformed the two others (SA
and L-BFGS) that showed similar levels of performance.
This demonstrates that the optimization problem as defined
in the current framework is quite a difficult one, requiring a
sophisticated parallel stochastic search method.

From a modelling perspective, we agree that our proposal
has room for refinement, for example by simulating signal
propagation. However, our point is to make a proof of concept
of sensor placement through the use of black-box optimization,
using sophisticated probabilistic modelling of sensors oper-
ating in a given environment. If one has better models, our
proposed optimization approach should still be applicable.

This serves as a starting point to further investigate the use
of evolutionary algorithms in sensor placement optimization.
Beside these, another potential future work will be the multi-
objective optimization for sensor deployment, given multiple
concerns such as number of sensors used, energy saving, and
multiple coverage.

ACKNOWLEDGEMENTS

This project is funded by the GEOIDE Network of Centres
of Excellence (Canada) and MDA Systems Ltd. We also thank
Albert Hung-Ren Ko for his early participation in the project
and Annette Schwerdtfeger for proofreading the manuscript.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] Y. C. Wang and Y. C. Tseng, “Distributed deployment schemes for
mobile wireless sensor networks to ensure multilevel coverage,” IEEE
Transactions on Parallel and Distributed System, vol. 19, no. 9, pp. 1280
– 1294, 2008.

[3] S. B. K. Kar, “Node placement for connected coverage in sensor
networks,” Proceedings of the Workshop on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks, 2003.

[4] H. G. Z. Zhou, S. Das, “Connected k-coverage problem in sensor
network,” Proceedings of 13th International Conference on Computer,
vol. 1, 2007.

[5] J. B. S. Kumar, T. H. Lai, “On k-coverage in a mostly sleeping sensor
network,” Wireless Network, vol. 14, pp. 277 – 294, 2006.

[6] B. Liu and D. Towsley, “A study of the coverage of large-scale sensor
networks,” in Proc. of the IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS04), 2004, pp. 475–483.

[7] M. Hefeeda and H. Ahmadi, “Energy efficient protocol for deterministic
and probabilistic coverage in sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 99, pp. 579–593, 2009.

[8] J. V. Nickerson and S. Olariu, “Protecting with sensor networks: Atten-
tion and response,” Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, 2007.

[9] S. Olariu and J. V. Nickerson, “Protecting with sensor networks:
Perimeters and axes,” MILCOM, 2005.

[10] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless
sensors to achieve both coverage and connectivity,” Proceedings of the
7th ACM international symposium on Mobile ad hoc networking and
computing, pp. 131–142, 2006.

[11] W. B. H. M. M. Holland, R. G. Aures, “Experimental investigation of
radio performance in wireless sensor network,” Proceedings of IEEE
SECON, 2006.

[12] Y. Zou and K. Chakrabarty, “A distributed coverage- and connectivity-
centric technique for selecting active nodes in wireless sensor networks,”
IEEE Transaction on Computers, vol. 54, no. 8, pp. 978–991, 2005.

[13] N. Ahmed, S. S. Kanhere, and S. Jha, “Probabilistic coverage in wireless
sensor networks,” LCN ’05: Proceedings of the The IEEE Conference
on Local Computer Networks 30th Anniversary, pp. 672–681, 2005.

[14] A. Boukerche and X. Fei, “A coverage-preserving scheme for wireless
sensor network with irregular sensing range,” Ad Hoc Network, vol. 5,
no. 8, pp. 1303–1316, 2007.

[15] H. Topcuoglu, M. Ermis, and M. Sifyan, “Positioning and utilizing
sensors on a 3-d terrain part i—theory and modeling,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
no. 99, pp. 1–7, 2010.
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