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Abstract

The Sparse Bayesian Extreme Learning Machine (SBELM) has been recently
proposed to reduce the number of units activated on the hidden layer. To
deal with high-dimensional data, a novel sparse Bayesian Double-Layer ELM
(DL-ELM) is proposed in this paper. The first layer of the proposed DL-
ELM is based on a set of SBELM subnetworks which are separately applied
to the features on the input layer. The second layer consists in a set of
weight parameters to determine the contribution of each feature in the out-
put. Adopting a Bayesian approach and using Gaussian priors, the proposed
method is sparse in both the hidden layer (of SBELM subnetworks) and the
input layer. Sparseness in the input layer (i.e. pruning of irrelevant features)
is achieved by decaying weights on the second layer to zero, such that the
contribution of the corresponding input feature is deactivated. The proposed
framework then enables simultaneous feature selection and classifier design
at the training time. Experimental comparisons on real benchmark data
sets show that the proposed method benefits from efficient feature selection
ability while providing a compact classification model of good accuracy and
generalization properties.

Keywords: Extreme learning machine, Feature selection, Sparse Bayesian
learning, Subnetwork architecture, Binary classification.
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1. Introduction

Sparse learning methods allow the automatic selection and use of only
the most important features in the input set. The human mind performs
operations analogous to feature selection and the application of a machine
learning algorithm to a reduced feature set [1]. It is known for example that
the human brain is able to reconstruct a total 3D model of a previously
known object, by observing that object only from one point of view.

Support Vector Machine (SVM) [2] and Relevance Vector Machine (RVM)
[3] have been shown to be efficient for classification, while being the base of
several approaches facilitating sparseness over the input features. By the in-
put sparsity we mean that feature selection property is enabled for the derived
approaches. Some embedded feature selection methods have been derived
from SVM classifiers [4, 5, 6]. The joint classifier and feature optimization
(JCFO) model of Krishnapuram et al. (2004) performs feature selection us-
ing adjustment of the kernel scaling parameter [6]. Nguyen et al. (2010)
proposed a weighted SVM relying on a convex energy-based framework for
joint feature selection and classification [5].

Few embedded methods for joint feature selection and classifier design
based on RVM have been proposed in the literature [7, 8]. The negative log-
likelihood loss function in the proposed joint feature selection and classifier
learning (JFSCL) method of Lapedriza et al. (2008) is augmented with two
terms: a regularization term on the parameters of RVM and a term for
feature selection [7]. An extended version of RVM known as the Relevance
Sample-Feature Machine (RSFM) was recently introduced by Mohsenzadeh
et al. (2013), which is sparse in both observation space and input feature
space [8]. However, the drawbacks of this method is that the training of
the RVM-based models is slow given its high computational complexity due
to matrix inversions. Moreover, the performance of RVM-based models is
sensitive to the selection of kernel-width, whose determination requires using
the inaccurate and time consuming cross-validation procedure.

The Extreme learning machine (ELM) [9, 10, 11] has recently gained
increasing interest from various research fields [12, 13, 14, 15]. ELM is a
single hidden layer feed-forward neural network with random weight hidden
neurons. However, the accuracy of ELM is highly sensitive to the number
of hidden neurons. The approach developed in [15], uses some optimization
algorithms to find the appropriate number of neurons. However, it does not
benefit from an embedded feature selection scheme in which relevant features
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are selected during the learning process, and the learning effectiveness can
be improved dramatically.

A more general form of ELM in which a hidden node itself can be a
subnetwork of several hidden nodes has been recently introduced [16]. The
construction of subnets plays distinctive roles in the performance of different
learning networks. In a recent deep network architecture, subnets based on
multilayer perceptron are successfully applied to replace the linear convolu-
tion filter for better modelling of highly nonlinear data [17]. In the approach
presented in [18], a set of subnets based on auto-associative neural networks
(AANN) are employed to reduce input dimension. However, researchers who
are trying to use subnets in the configuration of their learning networks are
still facing following questions.

What is the smallest proper number of hidden subnets required without af-
fecting learning effectiveness. In order to reduce the size of hidden layer, a
couple of incremental learning algorithms have been proposed [16, 19], in
which subnetworks of hidden nodes are added one by one until achieving
the expected training error. It is proved by Yang et al. (2015) that efficient
updates of some hidden nodes during the growth of the networks results in a
better ability of achieving minimum error than other incremental networks.

What should be the number of nodes used in the input layer of each individual
subnet. In the incremental methods [16, 19], there are as many input nodes
for the subnets as the number of attributes in the corresponding data. In
other researches, the set of features that is used as the input of subnets
are subjected to quantitative or qualitative modification. The qualitative
modifications involve a change in the feature space such as the hierarchical
ELM method proposed in [18]. In this method a set of AANN subnets are
used as a feature transformations stage before an ELM block. However, this
method does not provide the feature selection ability for the ELM method.
A quantitative modification to input features is conducted in [20] using a
method called Evolutionary WRAPPER. This method attempts the possible
combination with the attributes subnets. The presented method is complex
and much time consuming in implementation.

Sparse Bayesian learning (SBL) is a family of Bayes methodologies that
aims to find a sparse estimate of output weights, by imposing a hierarchical-
independent hyperparameters for the priors of different weights. It is shown
that SBL retains a desirable property of the 0-norm optimization (i.e., the
global optimum point is achieved at the maximally sparse solution) [21, 22].
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As alternative technologies to incremental methods and in order to auto-
matic selection of an appropriate number of neurons, sparse Bayesian versions
of ELM method are also introduced for both regression [23] and classifica-
tion [24] tasks. The Sparse Bayesian ELM (SBELM) [24] is a derivative
of SBL with automatic relevance determination (ARD) prior. ARD prior
methodology assumes a zero-mean Gaussian prior with a different variance
for each weight and a flat Gamma prior on the hyperparameters (variance
of the weights). This hierarchical prior gives rise to an implicit (marginal-
ized) prior over the weight parameters with a Student-t distribution which
is packed around zero and hence gains sparsity by tuning some weights to
zeros.

Inspired by [16], a SBELM block itself can be used as a subnetwork of
a larger modular network. In this paper, we propose a double layer feed-
forward neural network. The first layer consists of a set of SBELM subnets
with equal weight parameters, where each of them are applied to an input
feature. Then a second layer of weights is added to the network to specify the
contribution of each feature in modelling the data. The proposed DL-ELM
method aims to fill the gap between ELM and feature selection methods by
efficient combination of SBELM subnetworks (see Fig. 1). We propose the
sparse Bayesian inference approach for learning the model parameters under
the evidence framework.

Briefly, the main contributions of the proposed DL-ELM can be summa-
rized as:

• Different from other ELM methods with subnet architecture, which are
only able to reduce the size of hidden layer, DL-ELM is a sparse model
in both the hidden layer and input layer;

• Sparseness in the input layer provides DL-ELM with robustness against
irrelevant features and low system complexity;

• Fast convergence due to the use of the evidence approximation to effi-
ciently compute the optimum value of model hyperparameters;

• Bayesian inference provides probabilistic predictions in contrast to pre-
viously presented feature selection methods on SVM in the literature
that only produce a point estimation.

Experimental results on 24 binary datasets and one handwritten dig-
its dataset indicate that the accuracy of the proposed DL-ELM method is
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superior or very close to the SBELM model while being sparser in the hid-
den layer. Furthermore, DL-ELM is sparse in the input layer by successfully
pruning irrelevant features. Comparison of the proposed DL-ELM with other
state-of-the-art methods (such as JCFO, JFSCL, RSFM, and weighted SVM)
shows that the DL-ELM method allows small models to be obtained while
being able to accurately classify the datasets.

The organization of this paper is as follows. Section 2 provides a short
review on SBELM for binary classification. Our proposed DL-ELM model,
as an extension of SBELM for joint feature selection and classification based
on double-layer network, is described in Section 2. The evaluation of the
performance of the proposed DL-ELM are conducted in Section 3. Finally,
we conclude our paper in Section 4.

2. Classification Methods

Consider a set of input-target pairs {xn, tn}Nn=1 as the samples for model
training, where tn represents the target output of the n− th sample and xn
represents the corresponding input vector. We assume that xn is composed
of d features, xn = {xn,1, xn,2, . . . , xn,d}.

In the case of binary classification, every training sample can be consid-
ered as an independent Bernoulli event. Then the log-likelihood function of
all the training samples is:

log p(t|M ) =
N∑
n=1

[tn log σ(yn) + (1− tn) log(1− σ(yn))]. (1)

where σ(·) is the sigmoid function, σ(x) = 1/(1 + exp(−x)). M is the set
of unknown model parameters and yn is a function of M which is defined
precisely for each model in the following.

2.1. Spare Bayesian Extreme Learning Machine (SBELM)

A SBELM [24] is defined by L hidden neurons and an activation function
h(·). Thus, the set of unknown parameters in (1) is M = {w} and the term
yn is represented as

yn = wTh(Θ,xn), (2)

where h(Θ,xn) = [1, h1(θ1,xn), . . . , hL(θL,xn)]T is the hidden feature map-
ping with respect to input xn and Θ = [θ1, . . . , θL] is the vector of randomly
generated parameters of the hidden layer. The vector w = [w0, w1, . . . , wL]T
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includes the output weights between the nodes of the hidden layer and the
output node. The structure of a standard SBELM block is shown in Fig. 2.

The relation can be written in matrix form as

y = wTH , (3)

where the (L + 1) × N hidden layer feature-mapping matrix, H , can be
expressed as

H =


1 . . . 1

h1(θ1,x1) . . . h1(θ1,xN)
...

. . .
...

hL(θL,x1) . . . hL(θL,xN)

 . (4)

More specifically, the prior is defined in a hierarchical way. Some in-
dependent zero-mean Gaussian prior distributions are considered on weight
parameters, leading to the following joint prior density:

p(w|α) =
L∏
i=0

N (wi|0, α−1
i ) =

|A| 12
(2π)

L
2

exp

(
−w

TAw

2

)
, (5)

where each inverse variance (precision) hyperparameter αi is associated with
the prior of wi parameter and α = [α0, . . . , αL]T . A is defined as A =
diag(α). In addition a Gamma distribution prior with zero parameters is
also imposed on the hyperparameters.

The two-stage hierarchical prior on the weight parameters is actually a
Student’s t-distribution and is called sparse, since it enforces most of the
αis to be large, thus the corresponding weights are set to zero and pruned
from the model. This way, the complexity of the model is controlled in an
automatic way and over-fitting is avoided.

In the SBELM model, the optimum weight parameters,wMAP, are achieved
by maximizing the following objective function in which the log-likelihood
of the model (1) is augmented with a penalty term that corresponds to the
logarithm of the prior,

L(w,α) = log p(t,w|α) = log p(t|w)− 1

2
wTAw. (6)

To find the optimum values of the hyperparameters α in SBELM, the dif-
ferential of the marginal log-likelihood function with respect to the logarithm
of each αi is set to zero, which results in the updating equations:

αnew
i =

γi
(wiMAP)2

; γi = 1− αiΣii. (7)
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2.2. Double-Layer Extreme Learning Machine (DL-ELM)

The proposed double-layer ELM extends the SBELM with adjustable
parameters M = {w,β} such that the following relation is satisfied:

yn =
d∑
j=1

(wTh(Θ, xn,j)) βj = wTHnβ, (8)

where h(Θ, xn,j) = [1, h1(θ1, xn,j), . . . , hL(θL, xn,j]
T is the output vector of

the hidden layer with respect to the jth input feature of the nth sample xn,j
and Θ = [Θ1, . . . ,ΘL] is the vector of randomly generated parameters of the
hidden layer.

The structure of the proposed double-layer ELM as shown in Fig. 3 in-
cludes d standard SBELM subnetworks. w = [w1, . . . , wL]T is the weight
vector of hidden neurons to the output neuron that is shared in all SBELM
subnetsworks. The outputs of SBELM subnets are combined with an added
set of unknown weight parameters β = [β1, . . . , βd]

T to give the final output.

The matrixHn, in the matrix form representation in (8), can be expressed
as

Hn =


1 . . . 1

h1(θ1, xn,1) . . . h1(θ1, xn,d)
...

. . .
...

hL(θL, xn,1) . . . hL(θL, xn,d)

 . (9)

Hence, in terms of matrices, a formulation of (8) that includes all of the N
training samples can be written as

y = Hwβ = Hβw, (10)

in which Hw and Hβ are defined as Hw = [HT
1w,H

T
2w, . . . ,H

T
Nw]T and

Hβ = [HT
1 β,H

T
2 β, . . . ,H

T
Nβ]T , respectively.

Similar to (5), zero-mean Gaussian prior distributions are considered on
weight parameters

p(w|αw) =
L∏
i=0

N (wi|0, α−1
wi

) =
|Aw|

1
2

(2π)
L+1
2

exp

(
−w

TAww

2

)
, (11)

p(β|αβ) =
d∏
i=1

N (βi|0, α−1
βi

) =
|Aβ|

1
2

(2π)
d
2

exp

(
−β

TAββ

2

)
, (12)

7



where each inverse variance (precision) hyperparameters αwi
and αβi are as-

sociated with the prior of wi and βi, respectively, and αw = [αw0 , . . . , αwL
]T ,

αβ = [αβ1 , . . . , αβd ]T . Matrices Aw and Aβ are defined as Aw = diag(αw)
and β = diag(αβ). Analogous to the approach presented in the SBELM, the
hyperparameters are assumed to follow a flat Gamma prior distribution.

The posterior distribution of unknown parameters of the proposed model
can be factorized as

p(w,β,αw,αβ|t) = p(w,β|t,αw,αβ)p(αw,αβ|t). (13)

where the term in the right-hand side of (13) is the posterior over the weights
multiplied by the hyperparameter posterior. The details of the optimization
of the weights and hyperparameters is described in the next sections.

2.2.1. Inference of the weight parameters

Using the Bayes’ rule, the posterior over the weights (the first term on
the right hand side of (13)) can be extended as

p(w,β|t,αw,αβ) ∝ p(t|w,β)p(w|αw)p(β|αβ). (14)

Replacing the first term on the right hand side of (14) by (1) gives rise to

L(w,β,αw,αβ) = log p(w,β|t,αw,αβ)

= p(t|w,β)− 1

2
wTAww −

1

2
βTAββ. (15)

A Gaussian distribution is then approximated for the objective function L
using the Laplace approximation approach.

L(w,β,αw,αβ) = L(wMAP,βMAP,αw,αβ)

+ (w −wMAP)Σ−1
w (w −wMAP)

+ (β − βMAP)Σ−1
β (β − βMAP), (16)

where the meanwMAP and βMAP of the approximated Gauss are the Laplace’s
mode around w and β, respectively. The covariance matrix Σw and Σβ of
the approximated Gaussian are negated inverse Hessian matrices (presented
next in (20) to (23), respectively).

In general, it is efficient to find the Laplace’s mode wMAP and βMAP using
the iterative reweighted least squares (IRLS) method [25]. The IRLS involves
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computation of the gradient and Hessian of the model

∇wL = HT
β [t− σ(y)]−Aww, ∇2

wL = −HT
βBHβ −Aw, (17)

∇βL = HT
w[t− σ(y)]−Aββ, ∇2

βL = −HT
wBHw −Aβ, (18)

where B is an N ×N diagonal matrix with element bi = σ(yi)(1− σ(yi)).
It can be seen from (17) and (18) that the gradient vector and Hessian

matrix corresponding to w will depend on β. Similarly, the gradient and
Hessian with respect to β will depend on w. To solve this problem, we use
an iterative algorithm so that in each step one of the variables w or β is
considered to be constant and the covariance matrix and mean vector of the
other variable is computed.

Therefore, using the IRLS method, w is estimated from the following
equation

wnew = wold − (∇2
wL)−1∇wL = (HT

βBHβ +A)−1HT
βBt̂, (19)

where t̂w = Hβw+B−1(t−y), giving rise to the following update equations
for the mean parameter wMAP and covariance matrix Σw of the Laplace
approximated Gaussian distribution over w,

wMAP = ΣwH
T
βBt̂w, (20)

Σw = −(∇2
wL | w = wMAP)−1 = (Aw +HT

βBHβ)−1. (21)

Similarly, the update equations for the mean parameter βMAP and covariance
matrix Σβ are

βMAP = ΣβH
T
wBt̂β, (22)

Σβ = −(∇2
βL | β = βMAP)−1 = (Aβ +HT

wBHw)−1, (23)

where t̂β = Hwβ +B−1(t− y).

2.2.2. Hyperparameters optimisation

For the calculation of the hyperparameter posterior, considering the ap-
proximation p(αw,αβ|t) ∝ p(t|αw,αβ)p(αw)p(αβ) allows finding that the
mode of the hyperparameter posterior p(αw,αβ|t) is approximately equiva-
lent to maximizing the marginal likelihood p(t|αw,αβ), which is also known
as the evidence of the hyperparameters [26]:

p(t|αw,αβ) =

∫
p(t,w,β |αw,αβ) dw dβ. (24)
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Applying the Laplace approximation in (16) to the term inside the integral,
the evidence can be analytically determined as

p(t|αw,αβ) =

∫
p(t,wMAP,βMAP |αw,αβ)

exp

[
− (w −wMAP)TΣ−1

w (w −wMAP)

2

−
(β − βMAP)TΣ−1

β (β − βMAP)

2

]
dw dβ,

≈ p(t,wMAP,βMAP |αw,αβ) (2π)N
√
|Σw||Σβ|. (25)

This gives rise to the Gaussian distribution approximation of the posterior
distribution for the weights

p(w,β | t,αw,αβ) =
p(t,w,β |αw,αβ)

p(t |αwαβ)

≈ N (wMAP,Σw)N (βMAP,Σβ). (26)

Using evidence approximation in (25) yields the following objective func-
tion

C = L+N log(2π) +
1

2
log(|Aw|)

+
1

2
log(|Aβ|) +

1

2
log(|Σw|) +

1

2
log(|Σβ|). (27)

Ultimately, using the method presented in [3] and differentiating C with
respect to logαw and logαβ, we obtain the following update equations

αnew
wi

=
γwi

(wiMAP)2
, γwi

= 1− αwi
Σwi,i

, (28)

αnew
βi

=
γβi

(βi
MAP)2

, γβi = 1− αβiΣβi,i , (29)

where Σwi,i
and Σβi,i denote the ith diagonal element of covariance matrices

Σw and Σβ, respectively. Re-estimation stops when maximum changes in
two consecutive iterations are less than a small threshold value.

Therefore the proposed EM training procedure iterates between estimat-
ing the unknown weights using (20) to (23) and updating hyperparameters
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Algorithm 1 Learning procedure for the proposed DL-ELM model

1: αnew
β = [1, . . . , 1]Td×1, αnew

w = [1, . . . , 1]T(L+1)×1

2: function DL-ELM({ti,xi}, i = 1, . . . , N)
3: do
4: αβ = αnew

β , αw = αnew
w

5: Estimate SBELM block weights wMAP from (20)
6: Estimate SBELM covariance matrix Σw from (21)
7: Estimate feature weights β from (22)
8: Estimate feature covariance matrix Σβ from (23)
9: Prune hidden neurons with large αw weights

10: Prune features with large αβ weights
11: Compute αnew

w based on (28)
12: Compute αnew

β based on (29)
13: while maxβ(|αnew

β −αβ|) < δ ∧maxw(|αnew
w −αw|) < δ

14: return w, β
15: end function

(28) and (29), sequentially. During the learning steps, many of αwi
s and

αβis tend to infinity, and thus the corresponding weights are shrunk toward
zero and sparsity is realized in hidden and input layers. The outline of the
DL-ELM approach is summarized in Alg. 1.

3. Experimental Results

In this section, the performance of the proposed DL-ELM is evaluated
and compared with other state-of-the-art models. In all of the experiments,
the simulations are carried out in MATLAB R2011 executed under Windows
7 on a 3 GHz CPU with 4 GB RAM PC.

3.1. Experiments on Benchmark Datasets

In the first set of experiments, the performance of DL-ELM is evaluated
using a set of benchmark data sets from the UCI machine learning repository.
The properties of the 24 evaluated datasets are listed in Table 1. The datasets
are preprocessed by applying a linear scaling to each feature to the range
[−1, 1]. The number of samples of covtype-binary is cut to the first 50,000
instances. Instances with unknown values are removed from all datasets.
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Table 1: Description of the datasets used for the experiments

Dataset # instances # features
ijcnn1 191681 22
w8a 64702 300

covtype-binary 50000 54
adult 45222 14
a8a 32561 123

magic04 19020 22
mushroom 8124 21

krvskp 3196 36
splice 3175 60

madelon 2600 500
svmguide3 1284 21
German 1000 24

australian 690 14
Breast-cancer 683 10

WBC 569 30
Pima 532 7

congress 435 16
ionosphere 351 34

heart 270 13
Spect 267 22
Liver 345 6
Crabs 200 5

parkinsons 195 22
Colon 62 2000

For all of the datasets, the generalization performance of the methods is
investigated using ten random holdout procedures with 4N/5 instances for
the training set and the remaining N/5 instances for the test set.

The experiment was first run with a varying number of initial hidden
neurons L. For each number of hidden neurons L, the results are averaged
over 10 holdout repetitions of train sets. In the experiments, the generation
of hidden layer random parameters may have an impact on the performance.
Hence, the process is repeated for the different seeds s ∈ [1, 2, . . . , 10] to
generate uniformly random hidden parameters and the seed corresponding
to the best mean performance is selected for predictions of the test sets.
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The accuracy performance of the SBELM and DL-ELM methods is shown
in Fig. 4. It can be observed from this figure that the accuracy performance
of both models in most of the datasets are comparable. Furthermore, the
sparse nature of SBELM and DL-ELM models causes the redundant hidden
neurons to be deactivated during the training stage. Hence, for SBELM and
DL-ELM models, the initial hidden neuron number used in Fig. 4 may not be
equal to the number of active hidden neurons at the end of training. Fig. 5
shows the number of active hidden neurons for SBELM and DL-ELM at the
end of training, against different initial number of hidden neurons. Fig. 6
shows the number of features selected by DL-ELM (remember that SBELM
works on the complete input feature space).
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Figure 2: Standard SBELM model.
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The best initial number of nodes in the hidden layer is then selected based
on the training error. Then the accuracy performance as well as the number
of final active neurons (AN) of the methods on the test set are reported in
Table 2.

In order to check the statistical significance of the results, we conduct a
pairwise Wilcoxon signed-rank test at a significance level of 0.05. The null
hypothesis of the test is that the median performance of the SBELM is equal
to that of the proposed DL-ELM, while the one-tailed alternate hypothesis
is that the median performance of the SBELM method is worse than that of
the DL-ELM. The counted wins / losses / ties across datasets are reported
in Table 2.

One may notice from Table 2 that the proposed DL-ELM method offers
the best accuracy rate on 12 data sets while the hidden layer sparsity perfor-
mance of the proposed DL-ELM method is significantly better than SBELM
on almost all datasets.

In order to compare the overall performance of the methods on all datasets,
the one-tailed Wilcoxon signed-rank test is again conducted pairwisely on the
performance of the two methods on all 24 datasets [27]. The p-values are
reported in the last row of Table 2. As Wilcoxon p-values suggest, the accu-
racy of DL-ELM in the trained model is nearly the same as the accuracy for
SBELM, while its hidden layer sparsity of DL-ELM significantly outperforms
the SBELM method. Moreover, from Fig. 6, it can be seen that DL-ELM
is able to reduce the input dimensionality significantly for many datasets.
Therefore, the main advantages of the proposed DL-ELM method in com-
parison to the SBELM can be summarized as: 1) joint features selection and
classifier learning, 2) better generalization and thus avoidance of overfitting,
and 3) lower computational cost during the test stage.

Afterwards, the performance of the proposed DL-ELM method is com-
pared with the other state-of-the-art algorithms in this field. For a fair
comparison of our model with existing results in [6], the leave-one-out cross-
validation procedure is used to compute the accuracy of the DL-ELM method
on the gene expression Colon dataset. The accuracy performance of the pro-
posed DL-ELM method is superior to most of the methods in Table 3 but not
better than that of the JCFO method. However, as reported in [6], JCFO
suffers from high computational complexity (compared to RVM and SVM)
which makes it impractical for large datasets, while the computational com-
plexity of the proposed DL-ELM method is at the same order of SBELM,
and so it is much better than JCFO method.
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Table 2: Comparison of the DL-ELM and the SBELM model. (The
√
/× symbol indicates

that, according to the Wilcoxon signed rank test, the SBELM method is significantly
better/worse than our proposed DL-ELM. The ∼ symbol stands for the methods without
significance differences.) The p-values of the Wilcoxon signed rank test over all datasets
are presented in the last row.

Datasets
Accuracy #AN

DL-ELM SBELM DL-ELM SBELM
ijcnn1 0.96 0.97

√
60.00 135.20×

w8a 0.97 0.97∼ 7.40 7.20∼
cov-binary 0.77 0.77× 28.60 137.20×

adult 0.85 0.85× 18.67 108.00×
a8a 0.84 0.84

√
12.20 84.60×

magic04 0.84 0.86
√

19.40 72.40×
mushroom 1.00 1.00× 12.90 35.00×

krvskp 0.97 0.97× 7.90 89.40×
splice 0.93 0.83× 22.40 97.20×

madelon 0.59 0.57× 27.00 76.20×
svmguide3 0.81 0.80× 4.00 20.80×

german 0.72 0.72
√

6.80 48.10×
australian 0.58 0.63

√
1.20 19.40×

Breast-can 0.94 0.94× 11.40 16.40×
WBC 0.99 0.96× 4.00 9.70×
Pima 0.72 0.65× 2.00 4.20×

congress 0.92 0.94
√

3.90 13.80×
ionosphere 0.87 0.82× 7.80 14.50×

heart 0.78 0.82
√

3.80 10.60×
Spect 0.72 0.73∼ 3.90 17.90×
liver 0.60 0.65

√
2.20 6.60×

crabs 1.00 1.00
√

2.90 5.00×
parkinsons 0.83 0.92

√
2.80 10.10×

colon 0.82 0.52× 1.20 26.30×
win/tie/loss - 12/2/10 - 23/1/0

p-value - 0.3484 - 0.0000
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Table 3: Accuracy of diagnostic classification for gene expression Colon dataset

Classifier accuracy
(%)

Adaboost (Decision stumps) [28] 72.6
SVM (Linear Kernel) [28] 77.4

SVM (Quadratic Kernel) [28] 74.2
RSFM [8] 88.7

Logistic regression [6] 71.0
RVM [6] 88.7

Sparse probit regression [6] 88.7
Sparse probit regression (Linear Kernel) [6] 91.9

Sparse probit regression (Quadratic Kernel) [6] 84.6
JCFO (Linear Kernel) [6] 96.8

JCFO (Quadratic Kernel) [6] 88.7
DL-ELM 91.9

Furthermore, similarly to the reported experiments in the literature [6,
7, 29], we used 200, 300, and 80 samples for training and 332, 269, and 120
samples for testing, in the Pima Indians diabetes, Wisconsin breast cancer
(WBC), and Crabs datasets, respectively. The accuracy measure for the
proposed method and other state-of-the-art algorithms is reported in Table
4. The performance of the proposed method in Table 4 is comparable to the
best results for each dataset. DL-ELM benefits from the sparsity in both
input layer and hidden layer. DL-ELM selected 5 out of 100 hidden neurons
and 5 out of 7 input features in the Pima dataset. For the WBC dataset, 6
out of 100 hidden neurons and 7 out of 30 input features are selected, while
for the Crabs dataset 2 out of 80 hidden neurons and 3 out of 5 features have
been retained with the DL-ELM approach.
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Table 4: Number of instances erroneously classified for Pima, WBC, and Crabs datasets

Classifier Pima WBC Crabs
Linear discriminant [30] 67 19 3

Neural network [31] 75 N/A 3
Gaussian process [31] 67 8 3

SVM [30] 64 9 4
Logistic regression [31] 66 N/A 4

RVM [3] 65 9 0
RSFM [8] 66 9 0

Sparse probit regression [29] 62 9 0
JCFO [6] 64 8 0
DL-ELM 65 9 0
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Table 5: Performance of DL-ELM, weighted SVM, and RSFM on MNIST dataset for the digits 4 Versus 9 and 8 Versus 0
digits. AN: number of active neurons; AF: number of active features; SV: number of support vectors; SF: number of support
features; RV: number of relevance vectors; RF: number of relevance features.

DL-ELM Weighted SVM RSFM
# Acc. (%) Time AN AF Acc. (%) Time SV SF Acc. (%) Time RV RF

9
ve

rs
u
s

4

100 89.31 0.63 8 38 89.50 2.38 55 60 88.25 0.72 9 42
200 89.83 1.21 16 52 89.95 6.83 72 76 88.80 1.42 18 84
300 91.86 1.82 17 86 89.85 8.22 56 108 91.46 2.31 20 112
400 90.42 2.01 18 72 90.96 13.21 48 94 90.06 2.34 20 84
600 90.58 2.99 26 71 90.10 25.36 71 127 90.39 3.49 31 84
1000 91.59 5.18 27 83 93.92 68.65 81 97 91.62 5.77 33 98

8
ve

rs
u
s

0

100 97.62 0.27 5 32 97.75 2.76 21 24 97.34 0.36 5 56
200 97.35 0.38 5 35 97.29 6.38 23 25 97.13 0.59 6 70
300 97.84 0.88 5 29 98.47 10.72 26 29 97.65 1.18 5 42
400 98.80 1.02 7 27 98.16 17.30 26 56 98.41 1.42 9 42
600 98.15 2.71 5 25 98.87 32.43 26 57 97.96 3.20 5 28
1000 97.84 4.61 6 24 97.29 86.41 41 60 97.75 5.22 6 28
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3.2. Results on Handwritten Digit Recognition
Our second set of experiments were conducted on the large publicly avail-

able MNIST dataset. The dataset contains 60, 000 handwritten examples of
digits 0 to 9 for training and 10, 000 examples for testing. Each class of a digit
contains 6000 training instances and 1000 instances for testing. Similarly to
the reported experiments in [8], two separate evaluations are considered.
The first one is the evaluation of the DL-ELM classifier for discriminating
the digits 8 and 0, where a portion of the dataset composed of digits 8 and 0
is selected in order to conduct the evaluation. Similarly, the second evalua-
tion involves the more challenging digits 9 and 4. In order to investigate the
ability of the proposed DL-ELM method to prune the irrelevant input fea-
tures, 200 irrelevant normally distributed features are added to each sample,
increasing the input space to a total of 984 features.

We split each dataset into a training (with varying number of training
samples N as shown in Table 5) and test (2000 instances) portion. Moreover,
another N random samples are chosen as validation in order to tune the num-
ber of initial hidden nodes and the seed for generating random parameters
of the hidden layer in the DL-ELM method. The average performance of the
DL-ELM method on 20 repetitions of the described training/test procedure
is presented in Table 5. Also presented in Table 5 are the results reported in
[8] for the weighted SVM and RSFM models.

The experiments are executed on a similar computer to the one used in
[8]. The results in Table 5 show that the accuracy (Acc) of the DL-ELM in
discriminating 4 and 9 is comparable with the weighted SVM and RSFM.
The number of final active neurons (AN) in the DL-ELM is smaller than the
number of support vectors (SV) in the weighted SVM and comparable to the
number of relevance vectors (RV) in the RSFM model, suggesting that DL-
ELM can achieve a sparser model compared to the weighted SVM model.
Moreover, the number of active features (AF) for the proposed DL-ELM
method is smaller than the number of relevance features (RF) for RSFM and
support features (SF) for weighted SVM models, implying that the proposed
DL-ELM model can achieve to a better feature selection property.

Comparison of the training times of both algorithms, demonstrate that
the training time with DL-ELM is smaller than for the two other methods,
particularly for larger training sets. The experimental results (Figs. 3-5)
indicate that , DL-ELM tends to reach the best performance at a small
number of hidden neurons L. Hence, by setting a small initial L, the training
time of Dl-ELM can be significantly reduced, while still obtaining an accurate
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model. From Table 5, it can be seen that the evaluation of the methods to
distinguish the digit 8 versus digit 0 gives the same result based on the
accuracy and complexity properties of the methods.

4. Conclusion and Future Work

In this paper, we introduced a novel neural model with two layers which
is sparse in both the hidden layer and input layer. A set of sparse Bayesian
ELM subnets with shared weights construct the hidden layer. Each subnet
is applied on a single feature. The output of the subnets are combined in
the second layer with a sparse set of weights which gives rise to input layer
sparsity. As a result of sparseness in the input layer, the proposed DL-
ELM model is capable of automatic input feature selection. We presented
the Bayesian inference of the proposed model and the learning algorithm
based on the EM procedure. The proposed DL-ELM model was evaluated
on 24 real benchmark datasets and one handwritten digits dataset. While
the accuracy of the proposed DL-ELM method is comparable to that of the
SBELM model, its hidden layer sparsity outperforms that of the SBELM, not
to mention that DL-ELM is sparse in the input layer by successfully pruning
irrelevant features. The DL-ELM method in comparison to the other state-of-
the-art methods namely JCFO, JFSCL, RSFM, and weighted SVM, achieves
compact model while is able to accurately classify the datasets.

In many practical applications, different neural and kernel based models
are proposed which are not sparse in the input feature space and depend
on all input explanatory variables. Extending the DL-ELM model for the
classification problem to other applications such as those presented in [12, 32]
is our future plan.
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