
The Master-Slave Architecture for Evolutionary
Computations Revisited

Christian Gagné, Marc Parizeau, and Marc Dubreuil

Laboratoire de Vision et Systèmes Numériques (LVSN),
Département de Génie Électrique et de Génie Informatique,

Université Laval, Québec (QC), Canada, G1K 7P4.
{cgagne,parizeau,dubreuil}@gel.ulaval.ca

The recent availability of cheap Beowulf clusters has generated much interest
for Parallel and Distributed Evolutionary Computations (PDEC) [1]. Another
often neglected source of CPU power for PDEC are networks of PCs, in many
case very powerful workstations, that run idle each day for long periods of time.
To exploit efficiently both Beowulfs and networks of heterogeneous workstations
we argue that the classic master-slave distribution model is superior to the cur-
rently more popular island-model [1].

The key features of a good PDEC capable of exploiting networks of hetero-
geneous workstations are transparency for the user, robustness, and adaptivity.
Transparency is essential to both the user of the PDEC and the user of the work-
station, as none want to deal with the other. One way to implement such a PDEC
is as a screen-saver. Robustness is very important because evolutionary compu-
tations may execute over long periods of time during which different types of
failures are expected: hard failures caused by network problems, system crashes
or reboots, and soft failures that stem from the use of the workstation for other
tasks (e.g. when the user deactivates the screen-saver). Finally, adaptivity refers
to the capability of the PDEC to exploit new or compensate for lost computing
resources (dynamical network configuration). The classical island-model is not
designed to deal with these features, essentially because populations (demes) are
tightly coupled with processing nodes.

In contrast, the master-slave model has all required features. One issue that
needs to be addressed, however, is its ability to scale with a large number of slave
nodes, knowing that there is a communication bottleneck with the master node.
In the rest of this short paper, we build a mathematical model of the master-
slave and show that, given current Local Area Network (LAN) technologies, a
quite large PDEC can be built before reaching this bottleneck.

For real world applications, assuming that the time needed for fitness evalu-
ation is the dominant time factor for evolutionary algorithms, the speedup of a
master-slave system over that of a single processor can be modeled by NTf/Tp,
where N is the population size, Tf is the time needed to evaluate the fitness of
a single individual, and Tp is the time needed to evaluate all individuals using P
processors. Possible distribution policies range from separating the population
into P sets and sending each of them to a different slave, or sending the individ-
uals one-by-one to available slaves until all are evaluated. Let S designate the
average size of the sets that are sent to processing nodes, and C = dN/PSe the



(a)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

P

sp
ee

du
p

S=1
S=10
S=0.1N/P
S=N/P

(b)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

P

sp
ee

du
p

S=1
S=10
S=0.1N/P
S=N/P

Fig. 1. Speedup for S = {1, 10, 0.1N
P

, N
P
} as a function of number of processors

P ∈ [1, 400], (a) with no failure (K = 0); and (b) with five failures (K = 5). Other
parameters are N = 500000, Tf = 1 s, Tc = 1.4× 10−4 s, and Tl = 0.1 s.

number of communication cycles needed to complete a generation. Then:

Tp = CSTf︸ ︷︷ ︸
computation

+ CPSTc︸ ︷︷ ︸
communication

+ CTl︸︷︷︸
latency

+ Tk︸︷︷︸
failure

(1)

where Tc is the transmission time for one individual, Tl the average connection
latency, and Tk the delay associated to the observation of K ∈ [0, P ] failures:

Tk = (1− 0.5K)STf︸ ︷︷ ︸
synchronization

+ KSTc︸ ︷︷ ︸
communication

+ dK/P eTl︸ ︷︷ ︸
latency

(2)

The synchronization term assumes that each failure follows a Poisson process
and occurs on average at half-way time during an evaluation cycle. Figure 1
presents the speedup curves of different S values in a plausible scenario, with
(a) no failure, and (b) exactly five failures per generation. With no failure, the
figure shows linear speedup close to optimal for all S except when S = 1, where
performance starts to degrade given the relatively large latency Tl. However,
when failures occur, the figure shows that a value S = N

P no longer achieves
linear speedup, and that the intermediary value of S = 10 (for this scenario)
makes a good compromise between efficiency and robustness. These curves thus
globally show that parameter S should be adjusted dynamically in order to
optimize performance.

For the above model, using the conservative parameters of Figure 1 (that
assumes 7 MB/sec peek throughput for 100Mb/sec LANs), it can be shown
that a master-slave system of 7K processing nodes could be build, at least in
theory, with a speedup of about 50% of the optimal value (i.e. 3.5K). Even if this
result may be overly optimistic in practice, it goes to show that the scalability
limitation of the master-slave model is a relative matter that needs to be put
in perspective with its advantages. Moreover, if one needs to experiment with
an island-model, it can always be simulated using a multidemic framework (e.g.
Open BEAGLE; http://www.gel.ulaval.ca/~beagle) over a master-slave.

References

1. E. Cantú-Paz. Efficient and accurate parallel genetic algorithms. Kluwer Academic
Publishers, Boston, MA, USA, 2000.


