
Bayesian Optimization for
Conditional Hyperparameter Spaces

Julien-Charles Lévesque
Université Laval

julien-charles.levesque.1@ulaval.ca

Audrey Durand
Université Laval

audrey.durand.2@ulaval.ca

Christian Gagné
Université Laval

christian.gagne@gel.ulaval.ca

Robert Sabourin
École de Technologie Supérieure

robert.sabourin@etsmtl.ca

Abstract—Hyperparameter optimization is now widely applied
to tune the hyperparameters of learning algorithms. The hy-
perparameters can have structure, resulting in hyperparameters
depending on conditions, or on the values of other hyperparam-
eters. We target the problem of combined algorithm selection
and hyperparameter optimization, which includes at least one
conditional hyperparameter: the choice of the learning algorithm.
In this work, we show that Bayesian optimization with Gaussian
processes can be used for the optimization of conditional spaces
with the injection of knowledge concerning conditions in the
kernel. We propose and examine the behavior of two kernels, a
conditional kernel which forces the similarity of two samples from
different condition branches to be zero, and the Laplace kernel,
based on similarities with Mondrian processes and random
forests. We show the benefit of using such kernels, as well as
proper imputation of inactive hyperparameters, on a benchmark
of scikit-learn models.

I. INTRODUCTION

In order to correctly apply machine learning algorithms, a
practitioner must often specify some free parameters, known
as hyperparameters. An example of hyperparameter is the
strength of the regularization applied to model weights or the
number of layers and neurons in a neural network. Executing
an external optimization procedure to select those hyperparam-
eters is known as hyperparameter optimization [1], and can
lead to substantial benefits given that proper cross-validation
strategies are used.

Rather than concerning oneself only with the hyperparam-
eters of a single learning algorithm chosen beforehand, one
could extend the scope of the hyperparameter optimization
problem to include the choice of the learning algorithm. The
resulting problem has been called a Combined Algorithm
Selection and Hyperparameter optimization (CASH) problem,
examples of which are solved by the Auto-WEKA [2] and
Auto-Sklearn frameworks [3]. For instance, given a classifica-
tion or regression dataset, the Auto-WEKA platform attempts
to identify the best algorithm and the best hyperparameters
amongst a wide selection of algorithms available in the WEKA
library (the same goes for the Auto-Sklearn framework with
the scikit-learn library).

One challenge with combined algorithm and hyperparam-
eter selection is the conditionality of some hyperparameters.
Indeed, some parameters need only be specified if another
parameter is active or has a certain value. For example, given
a joint search space over multiple classifiers, once the classifier
choice is known, only the parameters specific to this classifier

are relevant. The Sequential Model-based Algorithm Configu-
ration (SMAC) [4] and the Tree Parzen Estimators (TPE) [1],
both handling conditional or hierarchical hyperparameters,
were compared on the Auto-WEKA problem, with SMAC
outperforming TPEs. Bayesian optimization with Gaussian
Processes (GPs) and conditional hyperparameters have been
considered in [1, 5], but appear to be inferior to TPE and
SMAC with random forests as a surrogate model on the Auto-
WEKA benchmark [6].

In this work, we show that Bayesian optimization with
GPs can perform well in conditional spaces, provided some
adjustments are made. The traditional Bayesian optimization
pipeline itself is not going to change, and we will mostly
concern ourselves with the underlying probabilistic model
used, that is the GP and its kernel. We show that by integrating
knowledge concerning the problem in the covariance function
of the GP, the performance of a Bayesian optimization proce-
dure can be greatly improved, comparing favorably with other
sequential model-based optimization methods in the literature.
We evaluate our suggested methods on a CASH problem, but it
can be applied for any black-box optimization problem which
includes some form of conditionality.

In the next section, we briefly describe some previous work
on hyperparameter optimization. In Section III, we present
Bayesian optimization, define the concepts of conditionality
and imputation, and state how they can be applied to hyper-
parameter optimization in conditional spaces. In Section IV,
our proposed kernels for the optimization of conditional spaces
are presented, which are the conditional kernel and the Laplace
kernel. Section V presents experiments on a CASH problem
with models from scikit-learn, and following discussions.

II. RELATED WORKS

The Spearmint toolbox was proposed to perform Bayesian
optimization of hyperparameters with GPs as a prior over
functions [7]. It makes use of slice sampling to tune the
hyperparameters of the GPs [8], proposes a technique for the
evaluation of many solutions in parallel, and uses LBFGS
for the optimization of the acquisition function. TPEs de-
fine a custom hierarchy for Bayesian optimization with tree-
structured Parzen density estimators [1], which supports con-
ditions in the hyperparameter space. SMAC is another toolbox
for the Bayesian optimization of hyperparameters for learning
algorithms and SAT solvers, with support for conditional

hyperparameters [4]. Key features of SMAC are incumbent
challenging mechanisms and the use of random forests as a
surrogate model for the objective function. SMAC has been
shown to outperform Spearmint and TPEs on the combined
algorithm selection and hyperparameter optimization on all
classifiers available in the Weka toolbox [2, 6]. Another
toolbox called Auto-Sklearn allows for the optimization and
selection of classifier and preprocessing methods amongst
a wide selection of algorithms available in the scikit-learn
library [3].

Amongst more recent contributions, dataset subsampling
has been exploited to speed up hyperparameter optimization
with great success. Li et al. [9] iteratively increase the
size of the training and prune unpromising solution with
the successive halving strategy. Klein et al. [10] model the
function of validation error with regards to dataset size and
let the Bayesian optimization procedure choose the subset
size with relevant acquisition functions. Our work does not
prevent the application of any of these methods, and they
should be considered by any practitioner looking to improve
the efficiency of their Bayesian hyperparameter optimization
pipeline.

III. BAYESIAN OPTIMIZATION

When considering a single learning algorithm A, Bayesian
optimization of hyperparameters is performed by posing a GP
prior on the loss function f(γ) in the space of hyperparameters
γ ∈ Γ. This loss function can be observed with some noise
through a validation dataset XV :

L(hγ , XV) =
1

|XV |
∑

(xi,yi)∈XV

l(hγ(xi), yi), (1)

f(γ) = L(hγ , XV) + ε, (2)

where hγ is the prediction rule obtained by running learning
algorithm A with hyperparameters γ on a given training
dataset XT , and l(·, y) is a target loss function (e.g., the zero-
one loss for classification). The true function f(γ) is unknown
and we are only glimpsing it through noisy observations
computed on the validation dataset.

A GP can be defined as a generalization of the Gaussian
probability distribution, where a stochastic process governs the
properties of Gaussian distributions at every point of a space.
A GP(µ, k) is completely described by its mean function µ :
Γ → R, µ(γ) = E[f(γ)] and covariance (kernel) function
k : Γ× Γ→ R, k(γ, γ′) = E[(f(γ)− µ(γ))(f(γ′)− µ(γ′))].
Suppose we condition a GP(µ, k) on observed outputs y =
{L(hγi , XV)}ti=1 associated with inputs G = {γ1, . . . , γt},
where yn = f(γn)+ε with i.i.d. Gaussian noise ε ∼ N (0, σ2

n).
The predictive distribution at test point γ∗ is estimated by

f̂∗ = kT∗ (K + σ2
nI)−1y, (3)

V[f∗] = k(γ∗, γ∗)− kT∗ (K + σ2
nI)−1k∗, (4)

where k∗ = [k(γ1, γ∗), . . . , k(γN , γ∗)]
T and K is the positive

semi-definite kernel matrix [k(γ, γ′)]∀(γ,γ′)∈(G×G). On each
trial t, the GP is conditioned on the full history of observations

Algorithm 1 Bayesian Optimization Procedure
Input: XT and XV , some training and validation datasets, A

the learning algorithm (or a wrapper around many learning
algorithms), and L the loss function

1: H0 ← ∅
2: for t ∈ 1, . . . , T do
3: f(γ)← GP (Ht−1) // Fit GP on observations
4: γt ← arg maxγ a(γ|f(·)) // Choose next hypers
5: hγt ← A(γt, XT) // Train model
6: lγt ← L(hγt , XV) // Compute validation loss
7: Ht ← Ht−1 ∪ {(γt, lγt)} // Update observations
8: end for
9: return arg minh∈HT

L(h,XV) // Return best model

H = {γi, L(hγi , XV)}t−1
i=1 . One can then use the posterior

mean and variance to select the next hyperparameters to
evaluate with an acquisition function balancing exploration
and exploitation.

A. Conditional Hyperparameters

A straightforward way to solve CASH problems with
Bayesian optimization is to produce a single posterior on the
joint space of all classifiers hyperparameters, adding an extra
algorithm selection parameter. Given a set of m algorithms
from which to choose from A = {A1, A2, . . . , Am} and
their respective hyperparameter spaces Γ1,Γ2, . . . ,Γm, the
resulting search space is G = A ∪ Γ1 ∪ Γ2, . . . ,Γm, where
the first hyperparameter a ∈ A is a new hyperparameter
representing the choice of the learning algorithm. The dimen-
sionality of this joint space is 1 +

∑C
i=1 |Γi|. On each trial t,

the model is conditioned on the full history of observations
H = {κi, Li}t−1

i=1 , where κi = {ai, γ1,i, . . . , γm,i} and Li
is the empirical loss of algorithm Aci using hyperparameters
γci,i. This formulation is the equivalent of assuming that
there is information shared between the hyperparameters of
different learning algorithms. A GP with a regular distance-
based kernel would not be able to distinguish between active
and inactive parameters in a dense input κi, generating a
confusion concerning the responsibility of hyperparameters
for model performance, or, in other words, making an invalid
credit assignment.

Combined algorithm selection and hyperparameter opti-
mization is just one example where conditions are present.
Single classifiers can also generate levels of conditionality, so
rather than referring to classifier choices, we will be referring
to conditions for the remainder of this work. The effective
dimensionality of a space with conditionality is not given by
the concatenation of all spaces; in fact it depends upon the
currently activated conditions and hyperparameters. Figure 1
shows a generic configuration space with hierarchical struc-
ture. Given hyperparameters γi, the conditionality is defined
vertically in the graph, with subgroups separated by different
values for parent hyperparameters, recursively. For example,
hyperparameter γ5 would only be relevant if γ2 takes the value
c, and γ1 takes the value a (otherwise parameter γ2 would not

ᶕ1

ᶕ2 ᶕ3 ᶕ4

ᶕ5 ᶕ6

if ᶕ1 = a if ᶕ1 = b

if ᶕ2 = c if ᶕ2 = d

ᶕ = [ᶕ1, ᶕ2, ᶕ3, ᶕ4, ᶕ5, ᶕ6]

Fig. 1. Generic hyperparameter space with conditions activating hyperparam-
eters

be active, in which case its child parameters could not be active
either). At any given time, only a subset of the parameters are
active, and the other parameters do not need to have a defined
value. Formally, a hyperparameter γi which depends on parent
hyperparameter γj will be referred to as active if γj ∈ Vj,i,
where Vj,i ⊂ Γj is the set of values for γj which should result
in the activation of γi.

SMAC handles conditional parameters in the way described
above [4]. However, in order to train a surrogate model of f(γ)
some values need to be given even for inactive parameters. In
this case, an imputation strategy is defined to give a value
to those inactive parameters. A common strategy is to give a
default value to the inactive parameters, and let the surrogate
model ignore those default values (either by generating a split
for a random forest, or by having a distance of 0 for a kernel
GP), as was done by Feurer et al. [3].

Even such a simple imputation scheme is vital to obtain
properly behaving surrogate models. This can be illustrated
with a simple example taking advantage of Gaussian Pro-
cesses. With GPs, the impact of each sample over others can
be measured through the covariance function, which can be
drawn in 2D. The reader should note that this type of similarity
analysis is not possible with other surrogate models such as
the random forest.

Let us define a dummy search space with four parameters,
one being a categorical classifier choice parameter and the
other three being single parameters for each of those three
classifiers (with values between 0 and 1). We can analyze
the covariance of random samples from this space in order
to observe the impact of imputation. A standard squared
exponential kernel is used, giving the following covariance
between samples:

k(x, x′) = exp

(
−‖x− x′‖22

`

)
, (5)

where ` is a length-scale parameter manually set to 0.75 in
this example. Figure 2 shows the resulting covariance matrix
for two cases, the case where the evaluated hyperparameters
were densely sampled in the unit cube [0, 1]4, and the case
where inactive parameters were imputed with a default value
(in this case the central value of the space 0.5). It can be seen
that the imputation has a positive impact on discrimination
between different choices (labeled a, b, and c on the figure),
however it can also be seen that even with imputation there is

a b c

No imputation

a

b

c

a b c

With imputation

a

b

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 2. Two covariance matrices for the same sample. On the left is the
covariance for densely sampled hyperparameters, with inactive values left
set to random value, and on the right side the inactive values have been
replaced with a default value. The three blocks correspond to three different
classifiers (samples are sorted along the value of the classifier choice parameter
to highlight differences).

still confusion between the hyperparameters that are close in
the search space, e.g. the pairs a− b and b− c.

B. Surrogate Model Optimization

At each iteration t during a model-based optimization
procedure, a so-called acquisition function is used to sample
the next points to evaluate. This acquisition function uses a
surrogate model trained on observations of f(γ), and lends
a value to each given potential hyperparameter to explore
a(γ|f(·)). The acquisition function balances between explo-
ration and exploitation, in order to maximize the chances
of finding the global optimum, or in the case of greedier
acquisition functions some local optima. The next hyperpa-
rameters to evaluate are chosen through a proxy optimization
γt = arg maxγ a(γ|f(·)). Popular choices of acquisition
functions include the Expected Improvement aEI(γ|µ, σ) =
E [max (0, f(γ)− f(γbest))], where γbest is the best found
solution so far, and the Predictive Entropy Search, which
entails maximizing the information gain about the location of
the global optima [11].

One way to optimize the acquisition function is through
random sampling, and then selecting hyperparameters which
maximize the acquisition function. Another way is to directly
optimize it, like any regular function, given that the surrogate
model is much cheaper to evaluate than the true underlying
function. Snoek et al. [7] use LBFGS to find the minimum
of the acquisition function, while in [1] the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) is used. These
methods are suitable for dense spaces, but the conditionality of
the search spaces considered in this work might be problematic
for such optimization procedures. Constrained optimization
techniques would hardly apply in this case given that the
conditions are complex and cannot be formulated explicitly.
For this reason, the SMAC toolbox [3] uses a technique
called local search, which is similar to coordinate ascent,
performing steps in single coordinates one at a time. The value
of the acquisition function for a hyperparameter configuration
γ is evaluated and compared with that of its neighboring
configurations, by alternatively taking steps in each direction

for each active parameter. Given a starting point x, the local
search updates the candidate hyperparameter tuple to evaluate
for a number of iterations with the following rule:

γi+1 = arg max
γ∈S(γi)

a(γ|f(·)), (6)

S(γi) = {γi} ∪ {Nj(γi)}|Γ|j=1, (7)

where the function Nj returns the neighbors of a configuration
according to hyperparameter or coordinate j. The neighbors
vary according to the type of the hyperparameter: for a real
number they are a step in both directions (with fixed step size),
for a categorical hyperparameter the neighbors are every other
value possible, and for integer values they are a step with plus
or minus one.

IV. KERNELS FOR CONDITIONAL SPACES

The main contribution of this paper is to highlight the need
for better kernels in handling the structure of hierarchical hy-
perparameter spaces with Gaussian Processes. Staying within
the framework of kernel-based methods is desirable because it
allows us to inject knowledge concerning the problem through
the kernel. Our first proposed kernel forces zero values on
the covariance of hyperparameters in different branches of
the hyperparameter hierarchy. Secondly, we propose to use an
already existing kernel, the Laplace kernel, which has strong
ties to random and Mondrian forests [12, 13]. The interest of
the Laplace kernel is to have a kernel that behaves similarly
to a random forest. These proposed kernels, combined with
proper imputation of inactive values when it applies, allow
for Bayesian optimization on problems such as combined
algorithm selection and hyperparameter selection.

A. Conditional Kernel

The conditional kernel is based on the idea that observations
from one condition branch should not influence the surrogate
model on other condition branches. This can be encoded
through a kernel that observes the conditional structure or hier-
archy of the search space. Given two hyperparameter instances
γ and γ′, the indexes of active conditional hyperparameters
C, and an underlying kernel k, the conditional kernel kC is
expressed as a wrapper around k:

kC(γ, γ′) =

{
k(γ, γ′) if γc = γ′c ∀c ∈ C
0 otherwise

. (8)

Here the conditions are stated as equalities for simplicity,
but the essence is to check that the conditions activate the
same children. Thus, if all active conditions are the same, it
means that the two samples γ and γ′ are directly comparable
with the chosen kernel function k. The active conditions
C are determined by descending a graph posed solely on
the conditional hyperparameters. Let us take the same space
as shown in Figure 1, where the graph to parse contains
two conditions, θ1 which would always be active, and θ2

which would only be active when θ1 = a. This graph is
descended and the descent stops once hyperparameters have
no children. This is required to prevent the evaluation of

a b c

Conditional kernel

a

b

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 3. Covariance matrix for the same sample and space used defined in
Section III-A. The conditional kernel enforces a null covariance if samples
have different choices for activated hyperparameters. The three blocks corre-
spond to three different conditions (samples are sorted along the value of the
conditional parameter to highlight differences).

inactive conditions, which could force a zero kernel value. The
comparison of an active condition with an inactive condition is
defined as being false, returning a zero kernel value (hence no
shared information). It should be noted that forcing the length
scale of the conditional variables to very low values should
have the same effect as posing equality conditions, resulting
in zero covariance between samples from different conditions.
However, this method would not allow the definition of more
complex conditions, such as conditions depending on more
than one variable, and range conditions.

This kernel has the attractive property of completely isolat-
ing otherwise unrelated hyperparameters, by returning a null
covariance between hyperparameters from different branches.
It is usable with a regular Gaussian Process as is. The defini-
tion of a derivative for such a covariance function is slightly
more involved, however in our case it is not required. Indeed,
the derivative could be used for gradient descent optimization
of the acquisition function, but since the hyperparameter space
is filled with holes, this might not lead to valid solutions.

The conditional kernel also produces a covariance matrix
that is highly sparse. If the evaluated samples are sorted by
groups of identical conditions, i.e. groups of values for which
the condition of Equation 8 is true, then the covariance matrix
will be filled with small dense squares of non zero-values
centered on a 1-valued diagonal (since k(x, x) = 1). Figure 3
shows the values of the covariance matrix evaluated for the
same example proposed for Figure 2.

The structure induced by the conditional kernel can be
exploited to compute the GP posterior faster, an operation
which involves the inversion of the covariance matrix K (or
K + σ2

nI). Supposing a space with three conditions, we can
express the covariance matrix of the conditional kernel as:

KC =

Kcond1 0 0
0 Kcond2 0
0 0 Kcond3

 , (9)

where Kcondi is a dense matrix of covariance for terms
that fall under the same condition condi. The invert of this

matrix can be computed blockwise, which can be shown with
straightforward manipulations (omitted here for space):

K−1
C =

K−1
cond1

0 0

0 K−1
cond2

0

0 0 K−1
cond3

 . (10)

This can represent a significant speedup on the longest op-
eration present in the GP training procedure. The original
complexity is roughly O(n3), where n is the number of
samples observed so far, and the new complexity becomes
O(m3

1 + · · · + m3
c), where mi is the number of samples

present in a subspace, with n =
∑c
i=1mi. The Cholesky

decomposition is often used to solve the system of equations
resulting from the GP problem. This decomposition can be
segmented into a series of sub-problems, resulting in a similar
speedup. This process is very similar to training a different
GP for each conditional subspace (keeping all other factors
constant).

B. Laplace Kernel

Lastly, we propose the use of the Laplace kernel, which has
been shown to have ties with random forests. Balog et al. [13]
have recently proposed the Mondrian kernel, a kernel which
proceeds by drawing multiple samples of Mondrian processes,
and encoding an explicit feature mapping from it. They show
that this kernel acts as a randomized feature map to the Laplace
kernel, converging to the Laplace kernel in the number of
Mondrian process samples. The Laplace kernel is a l1 distance-
based kernel, which is rather similar in form to the squared
exponential kernel:

k(x, x′) = exp

(
−‖x− x

′‖1
`

)
. (11)

Mondrian processes and Mondrian forests [12] have strong ties
to random forests, where Mondrian forests draw partitionings
as random Mondrian process samples and random forests
obtain partitionings of the space through decision trees trained
on random subspaces.

Random forests have been used in the past for Bayesian
optimization due to their strong predictive accuracy, and po-
tentially because they are better suited for higher dimensional
spaces and discrete spaces [2]. However, one downside of
random forests is that their predictive variance is usually
computed by taking the variance of the output of the individual
trees in the random forest [4]. What was observed empirically
in [14] is that random forests are overconfident in their
outputs. Therefore the Mondrian kernel and the Laplace kernel
can result in models conceptually close to random forests,
while maintaining the advantages of Gaussian Processes and
allowing a completely Bayesian reasoning with respect to
uncertainty.

As stated above, since the Mondrian kernel serves as a
random feature approximation to the Laplace kernel and since
the link between these and random forests has been clearly
established in [13], we will be using the Laplace kernel for
this work. The interest of using a Mondrian kernel in this case

a b c

Mondrian kernel

a

b

c

a b c

Laplace kernel

a

b

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 4. Covariance matrix for the same sample and space used defined in
Section III-A. The conditional kernel enforces a null covariance if samples
have different choices for activated hyperparameters. The three blocks corre-
spond to three different conditions (samples are sorted along the value of the
conditional parameter to highlight differences).

would be to have a noisier split of the data, or save time both in
the tuning of the kernel λ and the training of the Gaussian Pro-
cess, given that Mondrian kernels provide an explicit feature
mapping. Figure 4 shows the resulting covariance matrix for
the Mondrian1 and Laplace kernels, with m = 30 Mondrian
process samples for the Mondrian kernel and the same length-
scale parameter as in the previous examples (` = 0.75, with
the lifetime parameter of the Mondrian processes being the
inverse of the length-scale λ = 1/`). We can see that the two
kernels are indeed closely related, in fact at a quick glance
they appear identical.

We began with the rather noisy and blurry covariance
estimates of the squared exponential kernels with or without
imputation of Figure 2, and we have now defined much better
suited kernels for conditional spaces. In the next section, these
new kernels will be evaluated on a benchmark of problems.

V. EXPERIMENTS

In order to assess the impact of using the suggested kernels
for Bayesian optimization in comparison with state of the art
methods, we compare them on a search space of medium scale
with 14 hyperparameters and one level of conditionality. The
search space consists of learning algorithms implemented in
the scikit-learn library2. The models and their hyperparameters
include the following:
• K nearest neighbors (knn) with the number of neighbors
n_neighbors in {1, 2, . . . , 30};

• RBF SVM (svm) with the penalty C logarithmically in
[10−5, 105] and the width of the RBF kernel γRBF loga-
rithmically in [10−5, 105];

• linear SVM (linsvm) with the penalty C logarithmically
scaled in [10−5, 105];

• decision tree (dt) with the maximal depth max_depth
in {1, 2, . . . , 10}, the minimum number of examples in a
node to split min_samples_split in {2, 3, . . . , 100},

1Computed with source code from: github.com/matejbalog/mondrian-kernel
2Source: scikit-learn.org, also available directly from PyPI.

https://github.com/matejbalog/mondrian-kernel
https://www.scikit-learn.org

and the minimum number of training examples in a leaf
min_samples_leaf in {2, 3, . . . , 100};

• random forest (rf) with the number of trees
n_estimators in {1, 2, . . . , 30}, the maximal depth
max_depth in {1, 2, . . . , 10}, the minimum number of
examples in a node to split min_samples_split
in {2, 3, . . . , 100}, and the minimum number of
training examples in a leaf min_samples_leaf in
{2, 3, . . . , 100};

• AdaBoost (adab) with the number of weak learners
n_estimators in {1, 2, . . . , 30};

• Gaussian Naive Bayes (gnb) and Linear Discriminant Anal-
ysis (lda) both without any hyperparameters;

• Quadratic Discriminant Analysis (qda) with the regulariza-
tion reg_param logarithmically in [10−3, 103].

Finally, there is a root hyperparameter which is the choice of
the learning algorithm – it determines which underlying hyper-
parameters should be active or inactive. Hyperparameters are
rescaled in [0, 1] for the surrogate model, and integer hyperpa-
rameters are rounded to the closest value. The classifier choice
is represented as an integer. After the fact, it was remarked
that a categorical variable would be more principled for the
classifier choice, but some preliminary experiments showed no
major difference. We used the ConfigSpace library provided
by the maintainers of SMAC to define the search space along
with the relationships between the hyperparameters3.

The acquisition function used for all methods requiring one
(i.e., all except random search and CMA) is the Expected
Improvement. The hyperparameter optimization methods com-
pared were all allocated a total of 200 observations (or
classifiers trained). The methods are the following:

Random search (RS): An often overlooked baseline of
comparison, random search still performs very well especially
in complex search spaces. Hyperparameters are sampled uni-
formly in the search space defined above (in logarithmic or
linear space, depending on the hyperparameter).

Bayesian optimization with GPs (Spearmint): This is the
equivalent of the method proposed in [7], which is Bayesian
optimization with slice sampling for GP hyperparameters and
surrogate optimization to locate minima of the acquisition
function. The kernel used is the Matern52 kernel as in the
original article. No imputation of hyperparameters is done.

Sequential model-based algorithm configuration (SMAC):
The implementation used is the Python version, or SMAC34.
No meta-features are used in order to be fair with other
compared methods. Each configuration is allowed only one
instance, and its performance is evaluated with the same 5-
fold cross-validation procedure as other methods. Inactive
hyperparameters are imputed to a default value (which is
roughly the middle value of each space, so 0.5 for a parameter
in [0, 1]).

Covariance matrix adaptation evolution strategy (CMA):
The CMA-ES algorithm is also included to have a baseline of

3Source code: github.com/automl/ConfigSpace
4Source code: github.com/automl/SMAC3

what a purely numerical optimization tool can achieve. Note
that CMA-ES most likely deals very badly with conditional
hyperparameters. The population size used is λ = 4 + 3 log d,
which is suggested as a rule of thumb in [15]. The DEAP
toolbox is used5. No imputation of inactive parameters is
performed.

Bayesian optimization with a GP and without imputa-
tion (GP-matern-noimpute): : This is similar to Spearmint,
minus the optimization of the acquisition function. This extra
comparison method is added to assess the importance of the
imputation of hyperparameters.

Bayesian optimization with a conditional kernel (GP-
cond): One of the proposed approaches, with the kernel
defined in Equation 8, wrapped around a Matern52 kernel
with automatic relevance determination. Length-scales and GP
hyperparameters are determined through slice sampling. Note
that there are two variants of this approach:
• one without local optimization (GP-cond), where the ac-

quisition function is maximized over 1000 random samples
from the search space;

• one with a local search optimization (GP-cond-ls), such as
the one used in SMAC.

Bayesian optimization with a Laplace kernel: The other
proposed kernel, with length-scales applied for each dimension
(similar to the automatic relevance determination for the
Matern52 kernel). Length-scales and GP hyperparameters are
determined through slice sampling. There are also two variants
of this approach, one without local optimization (GP-laplace)
and one with a local search optimization (GP-laplace-ls).
Inactive hyperparameters are imputed to a default value.

Bayesian optimization with a Matern52 kernel (GP-
matern): In order to assess the impact of imputation, we
compare against another variant of GP, where hyperparameter
values used to condition the GP prior have inactive values
imputed the same as the other methods in this section. There
is also a variant of this method which had local optimization
applied (GP-matern-ls).

All GP-based methods include the use of priors on GP
hyperparameters, which are then tuned with slice sampling [7,
8]. A log normal prior with zero mean and unit standard
deviation is placed on the length-scales ` and the kernel
amplitude σf , and a horseshoe prior with scale 1 is placed
on the noise σn.

We evaluate the methods on a series of 24 datasets rang-
ing from about 500 to 60K instances taken from UCI and
OpenML6. All the datasets were preprocessed to have zero
mean and unit standard deviation. At each iteration, the per-
formance of chosen hyperparameters is evaluated with 5-fold
cross-validation. Each experiment is repeated 10 times where

5DEAP: github.com/DEAP
6From UCI: Adult (adlt), Bank (bnk), Car (car), Chess-krvk (ches), Letter

(ltr), Magic (mgic), Musk-2, Page-blocks (p-blk), Pima (pim), Semeion (sem),
Spambase (spam), Stat-german-credit (s-gc), Stat-image (s-im), Stat-shuttle (s-
sh), Steel-plates (s-pl), Titanic (tita), Thyroid (thy), Wine-quality-red (wine).
Datasets identified by numbers were taken from OpenML, the numbers
represents their ID in the OpenML database.

https://github.com/automl/ConfigSpace
https://github.com/automl/SMAC3
https://github.com/DEAP
http://www.openml.org/

new data splits are sampled for each repetition, including a
test with 20% of the data if it wasn’t provided in the original
dataset. The same splits are used across all methods for the
same repetition.

A. Results and Discussion

Table I shows the empirical error rate of each method on
the test set, averaged over repetitions. The best performance
per dataset is highlighted in bold, and for each dataset the
methods that are significantly worse than the best according to
a Wilcoxon signed-rank test with α value 0.05 are underlined.

From Table I, we can see that no method significantly out-
performs GP-cond-ls. In other words, it is not always the best
method found (in bold), but it is never significantly different
from the best. In comparison, GP-matern-ls is significantly
worse than the best on only one dataset, while SMAC is worse
on 10 datasets, and Spearmint is worse on 14 datasets. With
respect to average ranks, we can see that the best method is
again GP-cond-ls (2.56), followed by GP-matern-ls (4.10), and
GP-matern (4.83).

When compared all together, the methods are significantly
different according to a Friedman’s test (p = 9 × 10−12).
Figure 5 shows the result of a post-hoc Nemenyi test with
α value of 0.05. All methods linked with a bold line are
on the same level according to the Nemenyi test. Methods
that have a difference in average rank over datasets greater
than CD are deemed significantly different. We can see that
optimization of the acquisition function is important to obtain
a better performing solution, that is, all GP-X-ls methods
perform better than their non-optimized counterparts. Finally,
we can see that according to this test, the only method able
to outperform a random search is GP-cond-ls, although it
should be pointed that the Nemenyi test is rather conservative
in its estimates. It might be interesting to note that GP-
laplace-ls and SMAC perform on the same level and use
roughly similar mechanisms, although one striking difference
would be the fact that the length-scales of the Laplace kernel
are optimized with slice sampling while the random forest
hyperparameters are kept fixed for SMAC (default values
used). This is surprising as we thought that a GP with a
Laplace kernel would be able to outperform a random forest
surrogate model by providing more reliable mean and variance
estimates.

Table II shows the result of pairwise Wilcoxon signed-
rank tests. Methods highlighted in bold show a significant
difference between row and column, and parentheses highlight
when the method on the corresponding row performs worse
than the method in the corresponding column. From these
tests, it is interesting to note that GP-cond-ls significantly
outperforms all approaches apart from GP-matern-ls, and that
the naive Spearmint application is significantly outperformed
by all other methods, including the CMA evolution strategy.

B. Visualization of Classifier Choices

Another angle providing insight into the behavior of com-
bined algorithm selection and hyperparameter optimization is

1234567891011

Spearmint
GP-matern-noimpute

GP-laplace
RS

CMA
SMAC

GP-laplace-ls
GP-cond
GP-matern
GP-matern-ls
GP-cond-ls

CD

Fig. 5. Nemenyi post-hoc test. Methods joined by a bold horizontal line are
not statistically different (p > 0.05).

svm lda linsvm dt rf adab knn qda
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ra
ti

o

Fig. 6. Resulting classifier choices for an optimization with GP-cond-ls over
all 24 datasets and 10 repetitions.

to look at the final classifier choice, once the optimization
procedure is over. Here we look at the results for a single
optimization method for simplicity, GP-cond-ls. Figure 6
shows the distribution of classifier choices over all datasets
and repetitions. We can see that the best performing classifiers
are, by a wide margin, random forests and SVMs with an
RBF kernel. Other classifiers do see limited use, although
only around 5 or 10 percent of the time. Figure 7 provides
further details, showing the classifier choices for each dataset
in the benchmark. In this case, each column represents the
10 final classifier choices made for a single dataset. In this
figure, we can see that some datasets benefit from different
families of learning algorithms – for instance, the problem
tita (titanic) always converged on a decision tree classifier,
and dataset 0917 always resulted in a linear SVM classifier
choice. Further analyses would definitely be interesting in this
space of problems and learning algorithms, although this is
left for future work.

VI. CONCLUSION

In this paper we proposed two kernels for the optimization
of hyperparameter spaces with conditional variables, such as
combined algorithm selection and hyperparameter optimiza-
tion. We also discussed the importance of proper imputation
of values for inactive hyperparameters in order to obtain valid
covariance estimates, rather than noise. Our comparison of
suggested methods with the state of the art showed that one can
indeed apply hyperparameter optimization with GPs and we
show that the conditional kernel outperforms other suggested
approaches. Future work should investigate different search
spaces, and focus on large scale optimization problems.

TABLE I
AVERAGE TESTING ERROR OF EACH METHOD. BOLDFACE HIGHLIGHTS THE BEST PERFORMING METHOD PER DATASET, AND UNDERLINED METHODS

HIGHLIGHT METHODS THAT WERE SIGNIFICANTLY DIFFERENT FROM THE BEST METHOD ACCORDING TO A WILCOXON SIGNED-RANK TEST (p < 0.05).

46 184 389 772 917 1049 adlt bnk car ches ltr mgic msk p-blk pim s-gc s-im s-pl s-sh sem spam thy tita wine ranks

RS 0.09 18.39 14.20 46.61 46.17 11.85 14.44 10.70 1.45 20.73 3.14 12.76 0.64 3.34 23.83 23.25 3.77 24.09 0.09 6.07 5.67 1.10 24.06 37.30 7.08
Spearmint 0.22 33.02 20.32 44.63 46.37 12.05 15.53 10.83 6.16 31.77 8.81 13.61 2.66 3.17 23.44 23.10 4.52 27.42 0.86 9.47 6.86 2.09 21.50 35.62 9.15
SMAC 0.09 13.62 14.22 44.63 46.27 12.60 14.42 10.59 0.92 17.40 2.83 12.66 0.26 3.48 23.38 23.45 3.31 23.96 0.08 4.40 5.84 1.12 22.70 36.61 5.52
CMA 0.09 18.02 14.26 44.66 46.67 11.88 14.48 10.64 2.63 19.08 3.04 12.66 1.85 3.09 23.96 23.75 3.66 25.06 0.07 6.10 5.69 1.09 23.74 35.56 6.94
GP-matern-noimpute 0.11 25.11 17.52 44.63 46.82 11.61 14.50 10.61 4.65 26.45 3.87 12.40 2.38 3.05 23.51 23.50 3.42 25.91 0.08 8.98 5.87 1.61 23.79 33.23 7.75
GP-matern 0.09 12.68 14.10 45.32 48.36 11.20 14.36 10.72 0.75 18.29 3.16 12.53 0.27 2.55 23.70 23.35 3.51 23.53 0.05 4.98 5.27 1.11 21.36 33.54 4.83
GP-cond 0.11 18.72 15.48 44.91 47.21 15.92 14.33 10.51 0.72 18.75 3.47 12.44 0.28 2.50 24.29 23.75 2.84 24.04 0.04 4.89 5.28 1.10 21.77 32.76 5.48
GP-laplace 0.13 21.60 17.08 44.89 45.97 12.36 14.39 10.51 2.34 23.25 8.18 13.03 2.11 2.72 24.68 23.45 3.27 24.14 0.09 7.43 5.28 1.10 20.93 34.50 7.10
GP-matern-ls 0.06 11.78 20.10 45.60 46.27 11.88 14.39 10.35 0.84 16.18 3.48 12.49 0.26 2.60 24.61 23.10 2.71 23.17 0.03 5.29 5.01 1.09 21.52 33.17 4.10
GP-cond-ls 0.06 12.95 14.12 44.56 46.02 11.51 14.34 10.45 0.81 16.43 2.62 12.22 0.26 2.54 23.70 23.05 2.64 23.48 0.57 4.74 4.86 1.09 21.72 32.20 2.56
GP-laplace-ls 0.13 17.87 14.68 44.89 47.06 11.82 14.38 10.20 1.39 19.56 4.19 12.72 1.73 2.49 23.51 23.30 3.23 24.27 0.04 7.59 5.17 1.35 20.45 32.98 5.48

TABLE II
PAIRWISE WILCOXON SIGNED-RANK TESTS

1 2 3 4 5 6 7 8 9 10 11

1 - RS – 0.01 (0.02) (0.76) 0.16 (0.00) (0.19) 0.29 (0.01) (0.00) (0.24)
2 - Spearmint (0.01) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
3 - SMAC 0.02 0.00 – 0.02 0.01 (0.45) (0.41) 0.17 (0.13) (0.00) (0.36)
4 - CMA 0.76 0.00 (0.02) – 0.12 (0.00) (0.20) 0.61 (0.01) (0.00) (0.16)
5 - GP-matern-noimp. (0.16) 0.00 (0.01) (0.12) – (0.01) (0.01) (0.11) (0.01) (0.00) (0.01)
6 - GP-matern 0.00 0.00 0.45 0.00 0.01 – 0.61 0.01 (0.57) (0.03) 0.24
7 - GP-cond 0.19 0.00 0.41 0.20 0.01 (0.61) – 0.02 (0.36) (0.00) 0.89
8 - GP-laplace (0.29) 0.00 (0.17) (0.61) 0.11 (0.01) (0.02) – (0.01) (0.00) (0.00)
9 - GP-matern-ls 0.01 0.00 0.13 0.01 0.01 0.57 0.36 0.01 – (0.10) 0.14
10 - GP-cond-ls 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.10 – 0.00
11 - GP-laplace-ls 0.24 0.00 0.36 0.16 0.01 (0.24) 0.89 0.00 (0.14) (0.00) –

00
46

01
84

03
89

07
72

09
17

10
49

ad
lt

bn
k

ca
r

ch
es lt
r

m
gi

c
m

sk
p-

bl
k

pi
m

s-
gc

s-
im s-
pl

s-
sh

se
m

sp
am th

y
ti

ta
w

in
e0

5

10

re
pe

ti
ti

on
s

svm
lda
linsvm
dt
rf
adab
knn
qda

Fig. 7. Resulting classifier choices for an optimization with GP-cond-ls. Each
column represents the distribution of classifier choices across the 10 repetitions
on a single dataset. Figure best viewed in color.

ACKNOWLEDGEMENTS

This work was supported financially by the Mitacs program
and E Machine Learning Inc. It also benefited from computing
resources provided by Calcul Québec and Compute Canada.

REFERENCES

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
“Algorithms for hyper-parameter optimization,” in Pro-
ceedings of NIPS, 2011, pp. 2546–2554.

[2] C. Thornton, F. Hutter, Holger H. Hoos, and K. Leyton-
brown, “Auto-weka : combined selection and hyper-
parameter optimization of classification algorithms,” in
Proceedings of the 19th SIGKDD, 2013, pp. 847–855.

[3] M. Feurer, A. Klein, K. Eggensperger, J. T. Springen-
berg, M. Blum, and F. Hutter, “Efficient and robust
automated machine learning,” in Proceedings of NIPS,
2015.

[4] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequen-
tial model-based optimization for general algorithm
configuration,” Learning and Intelligent Optimization,
pp. 507–523, 2011.

[5] M. W. Hoffman, B. Shahriari, and N. de Freitas, “On
correlation and budget constraints in model-based ban-
dit optimization with application to automatic machine
learning,” Proceedings of the 17th AISTATS, 2014.

[6] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J.
Snoek, H. H. Hoos, and K. Leyton-Brown, “Towards
an empirical foundation for assessing bayesian opti-
mization of hyperparameters,” in NIPS Workshop on
Bayesian Optimization in Theory and Practice, 2013.

[7] J. Snoek, H. Larochelle, and R. P. Adams, “Practical
bayesian optimization of machine learning algorithms,”
in Proceedings of NIPS, 2012.

[8] I. Murray and R. P. Adams, “Slice sampling covariance
hyperparameters of latent gaussian models,” in Proceed-
ings of NIPS, 2010.

[9] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh,
and A. Talwalkar, “Hyperband: a novel bandit-based
approach to hyperparameter optimization,” ArXiv, 2016.

[10] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F.
Hutter, “Fast bayesian optimization of machine learning
hyperparameters on large datasets,” ArXiv, 2016.

[11] J. M. Hernández-Lobato, M. W. Hoffman, and Z.
Ghahramani, “Predictive entropy search for efficient
global optimization of black-box functions,” in Proceed-
ings of NIPS, 2014.

[12] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh,
“Mondrian forests: efficient online random forests,” in
Proceedings of NIPS, 2014.

[13] M. Balog, B. Lakshminarayanan, Z. Ghahramani, D. M.
Roy, and Y. W. Teh, “The mondrian kernel,” in Proceed-
ings of the 32nd UAI conference, 2016.

[14] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh,
“Mondrian forests for large-scale regression when un-
certainty matters,” in Proceedings of the 19th AISTATS,
2016.

[15] N. Hansen, “The cma evolution strategy: a tutorial,”
Inria, Tech. Rep., 2005.

	Introduction
	Related Works
	Bayesian Optimization
	Conditional Hyperparameters
	Surrogate Model Optimization

	Kernels for Conditional Spaces
	Conditional Kernel
	Laplace Kernel

	Experiments
	Results and Discussion
	Visualization of Classifier Choices

	Conclusion

