
Probabilistic Sensing Model for Sensor Placement Optimization based on

Line-of-sight Coverage

Vahab Akbarzadeh Christian Gagné Marc Parizeau Meysam Argany
Mir Abolfazl Mostafavi

November 1, 2012

Abstract

This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely
on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic
simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic
sensing model for sensors with line-of-sight based coverage (e.g. cameras) to tackle the sensor placement problem for
these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle,
which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain
topography. We then implement several optimization schemes for sensor placement optimization, including simulated
annealing, L-BFGS, and CMA-ES.

1 Introduction

Wireless Sensor Networks (WSN) are built from a collection of small, inexpensive sensor devices, where each sensor
has limited sensing, storage, processing, and communication capabilities. With the recent proliferation of Micro-Electro-
Mechanical Systems (MEMS), we have seen a rapid increase of interest in WSNs [30], where sensors can make measurements
in the environment and gather information for end-users.

There are a number of fundamental issues that should be addressed for effective exploitation of WSNs, such as
localization, tracking, security, data aggregation, and placement. Placement is an example of a more general problem of
configuring sensor parameters. Depending on the application of WSN and the sensor type being used, each sensor has a
number of variable parameters that must be determined, e.g., latitude and longitude, orientation, and operating range of
each sensor in the placement problem. There are four main issues which should be taken into consideration for an optimal
placement of WSNs, namely, performance maximization, reliability maximization, energy saving, and cost minimization.

Considering a region of interest monitored by sensors, overall performance of the network is measured by coverage
[14, 16, 19, 26, 28, 31]. In general, one of the basic requirements for a WSN is that each location in a region of interest
should be within the sensing range of at least one of the sensors. An alternative approach is to have a region of interest
covered simultaneously by at least K sensors [28,31].

Although many deterministic methods have been explored to address the problem of coverage, traditional sensor place-
ment strategies often rely on oversimplified sensor models and environmental factors [23,25,26,28,31]. These deterministic
approaches cannot deal with environmental factors such as terrain topography, and usually assume an omnidirectional
disk sensing model for each sensor. In fact, under the assumptions of uniform disk sensing model, it has been shown that
optimal coverage can be deterministically achieved with a regular placement of sensors [5,14,16]. Similar results have also
been reported when multiple coverage of the target area is required [5, 26,28,31].

The direct consequence of such oversimplifications is that the theoretical perfect coverage shown in deterministic
methods may not hold true in practice. This may be the result of a number of causes. First, most sensor placement
optimization methods assume that sensors are placed on a 2D plane, without taking into account the topography of
the terrain [5, 14, 16]. Second, many methods assume that sensors have omnidirectional sensing capabilities [15]. But
antennas and microphones have non-uniform 3D reception fields that depend on factors like orientation, distance, and
other environmental factors [15], cameras have narrow field of views, etc. Third, sensors usually do not have a binary
coverage range as it is often assumed in traditional sensor placement methods [5,16]. Although some probabilistic sensing
range models [1,5,14,16,33] and sensing models with irregular sensing ranges [6] have been proposed, they all operate on
a 2D flat space and are omnidirectional. Dhillon et al. [9] was among the first who proposed the combination of terrain
modelling and probabilistic sensor model for sensor placement. Still, the paper implements and tests an unrealistic model
for the terrain and the obstacles inside the terrain. Besides, their greedy approach has high chance of getting trapped in

V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany and M.A. Mostafavi. Probabilistic Sensing Model for Sensor Placement Optimization
Based on Line-of-Sight Coverage. IEEE Transactions on Instrumentation and Measurement, in-press, 2012. doi: 10.1109/TIM.2012.2214952

1

a suboptimal solution. Ma et al. [21] has also proposed a sensor placement method based on virtual force mechanism and
simulated annealing. Although authors presented their approach to have a 3D model, their model does not take topography
or obstacles into consideration, also they used a binary sensing coverage model. Recently, Topcuoglu et al. [27] proposed
a new formulation for deployment of the sensors in a synthetically generated 3D environment. Although the proposed
approach makes several realistic assumptions regarding the modelling of the environment and sensors, it assumes a binary
sensing area for each sensor inside the environment. The combinational effects of terrain variations, blind points sensing
angle or irregular sensing range, and probabilistic sensing property of sensors have never been studied before. For a rather
recent survey on coverage optimization algorithms for directional sensor networks, interested readers are referred to [12].

Placement problem in WSNs is closely related to the observers sitting problem which has been addressed in the
geomatics science literature [10, 20]. In this problem, one tries to find the optimal position for a number of observers,
required to cover a certain ratio of an area. Methods proposed for this problem have been applied to determine the
location of telecommunication base stations [8], to protect endangered species [4], and to determine the location of wind
turbines [17]. More recently, Murray et al. [22] combined the idea of viewshed analysis from geomatic science within a
surveillance camera placement problem.

The limitations of the deterministic placement methods are thus obvious, and the 100% coverage claims are often
over-estimated. This issue is critical because it further complicates the problem of sensor placement: while a WSN may
seem to satisfy the requirements to achieve full coverage on a target area using a deterministic method, the deployers of
such a network have no means of ensuring that this coverage is truly effective in a real environment.

Facing this challenge, we follow a more flexible non-deterministic avenue. Our aim is to optimize sensor placement using
topographic information of the terrain and probabilistic sensor modelling. Our approach differs from previous methods in
the following three ways:

1. Deterministic schemes only consider 2D environments and ignore the effects of elevation, whereas our method takes
into account the 3D terrain information. In our approach, the environment is defined using a Geographic Information
System (GIS), which is an information system designed to store, manipulate and analyze geographically referenced
data [29].

2. Deterministic schemes usually assume omnidirectional sensors, whereas our method allows for constraints to be
applied on sensors, such as limited sensing angles and range.

3. Deterministic schemes implement mainly binary coverage, i.e., a point can only be classified as covered or uncovered,
whereas our method applies probabilistic coverage in both sensing distance and sensing angle.

In summary, deterministic approaches assume omni-directional sensors with binary coverage on a flat terrain, while our
probabilistic approach assumes directional sensors, for which omni-directional sensors are a special case, with probabilistic
coverage on a realistic spatial model of the environment.

In order to tackle these problems, we develop a novel probabilistic coverage function for sensor placement that takes
into account the above mentioned issues, and then compare this approach with some classical optimization algorithms.
This paper extends our previous work [2, 3] by proposing directional and probabilistic sensor models along the pan and
tilt sensing angles, and comparing the optimization with other methods, that is simulated annealing and L-BFGS.

The remainder of the paper is organized as follows. The proposed model is presented in the next section (Sec. 2),
followed by a presentation of the optimization methods in Sec. 3, including experimental protocol and results on sensor
placement. We conclude the paper in section IV with a summary of results and perspectives.

2 Proposed Probabilistic Sensor Model

2.1 Coverage Definition in a Sensor Network

The sensing model mainly depends on distance, orientation, and visibility. We first assume that all sensors are positioned
at a certain constant height τ above the ground level. The sensor position is thus described by a 3D point p = (x, y, z),
where (x, y) are free parameters and z = g(x, y) is constrained by the terrain elevation at position (x, y), as defined by
a Digital Elevation Model (DEM) provided by a GIS. We further assume that the anisotropic properties of sensors are
fully defined by a pan angle θ around the vertical axis and a tilt angle ξ around horizontal axis. Given the DEM, a sensor
network N = {s1, s2, . . . , sn} of n sensors is thus fully specified by 4n free parameters si = (pi, θi, ξi), i = 1, 2, . . . , n, with
pi = (xi, yi) (see Figure 1).

Now the coverage C(si,q) of sensor si at point q in the environment can be defined as a function of distance d(si,q) =
‖pi − q‖, pan angle p(si,q) = ∠p(q− pi)− θi, tilt angle t(si,q) = ∠t(q− pi)− ξi, and visibility v(si,q) from the sensor:

C(si,q) = f [µd(‖pi − q‖), µp(∠p(q− pi)− θi), µt(∠t(q− pi)− ξi), v(pi,q)], (1)

2

Figure 1: The free parameters (xi, yi, θi, ξi) for sensor si inside the environment.

Figure 2: The effect of visibility function. Here sensor and point A are inter-visible, therefore v(si,A) = 1, but it is not
the case for si and B, because the line-of-sight is obscured at point C.

where ∠p(q − pi) = arctan
(
yq−ypi

xq−xpi

)
is the angle between the sensor si and the point q along the X direction, and

∠t(q − pi) = arctan
(
zq−zpi

‖pi−q‖

)
is the angle between the sensor si and the point q along the Z direction. In other words,

for q to be covered by sensor si, we need to take into account its sensing range, sensing angles, and visibility. Let
µd, µp, µt ∈ [0, 1] represent some membership functions of the mentioned coverage conditions, then Equation 1 can be
rewritten as multiplication of these memberships:

C(si,q) = µd(‖pi − q‖) · µp(∠p(q− pi)− θi) · µt(∠t(q− pi)− ξi) · v(pi,q), (2)

Function v(pi,q) is usually binary. Given a sensor position pi, if the line-of-sight between sensor si and q is obscured,
then we assume that the coverage cannot be met (v = 0), otherwise the visibility condition is fully respected (v = 1),
(see Figure 2). In our experiment, we assume that all sensors are one metre above the ground. Memberships µd, µp,
and µt need to be defined according to their parameters. At each position q ∈ Ξ of environment Ξ, the coverage for a
single sensor is thus the multiplication of the three above conditions. The coverage function is probabilistic as each of the
membership functions provide the probability that an object of interest at point q is detected by the sensor si. Therefore,
C(si,q) represents the probability of coverage while 1− C(si,q) gives the probability of non-coverage. If more than one
sensor covers q, then a way to compute the local network coverage Cl is:

Cl(N,q) = 1−
∏

i=1,...,n

(1− C(si,q)) . (3)

This formulation is based on the assumption that the coverage of several sensors with respect to one position in the
environment is independent from each other. This assumption roots in the probabilistic coverage definition of each sensor.
Each position q is also attributed with another parameter wq ∈ [0,∞). This parameter defines the importance of location
q for the coverage task. Therefore, higher values of wq represents higher importance of the location q in the goal coverage
problem. The global coverage Cg can be:

Cg(N,Ξ) =
1∑

q∈Ξ wq

∑
q∈Ξ

wqCl(N,q). (4)

3

(a) Top view (b) Side view

Figure 3: Visibility function behaviour. Assuming that the visibility between two points p and q is of question, the grey
cells represent the set of cells whose elevation should be compared with the straight line between points p and q.

Given an environment Ξ, the problem statement is thus to determine the sensor network deployment N that maximizes
Cg(N,Ξ).

2.2 Visibility Function

Visibility function calculates the visible area for each sensor. The main factor which affects the visibility between two
points is the elevation of all points in the straight line connecting those two points. This information is provided by a
DEM, which is basically a two dimensional matrix, where each cell stores the elevation of the corresponding location in
the real environment (see Fig.3).

In order to calculate visibility between two points p and q, the list of all cells in the matrix which intersects with the
line-of-sight between those two points should be first calculated. Then each point in the list is checked versus the line
connecting points p and q. If the elevation of an intermediate point is more than the elevation of the line at that point,
then points p and q are not inter-visible, otherwise they are inter-visible.

Assuming that point p represents the location of a sensor in the environment, first the elevation of point p is increased
by the elevation of the sensor and then the mentioned visibility calculation process is repeated between point p and all
other points in its vicinity. In order to save computation, this process is repeated only for points whose distance is less
than the maximum coverage range threshold of the sensor, over which the coverage of the sensor is almost zero.

2.3 Probabilistic Membership Functions

The membership functions µd, µp, and µt can be defined as crisp function, with value of 1 when the position is within a
fixed sensing range or angle of view, and otherwise 0.

µd(‖pi − q‖) =

{
1 ‖pi − q‖ ≤ dmax

0 otherwise

µp(∠p(q− pi)− θi) =

{
1 (∠p(q− pi)− θi) ∈ [−a, a]
0 otherwise

µt(∠t(q− pi)− ξi) =

{
1 (∠t(q− pi)− ξi) ∈ [−b, b]
0 otherwise

However, such functions used in a coverage function provide essentially a binary 0/1 signal, which is not a realistic
performance model of real sensors. Moreover, for some local optimization methods, we would need coverage functions
that are differentiable. Therefore, we propose to use probabilistic membership functions that provide a monotonically
decreasing membership value over distance and relative angle of position to sensor. Hence, these functions have two
benefits: first, they better comply with the performance of the real sensors, and second, they are differentiable.

We propose to use sigmoid function for distance membership function:

µd(‖pi − q‖) = 1− 1

1 + exp (−βd(‖pi − q‖ − td))
, (5)

4

0 2 4 6 8 10

||pi−q||
0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
n
ce

 f
u
n
ct

io
n
 µ
d

βd =1

βd =3

βd =6

Figure 4: The effects of variations of βd on µd(‖pi − q‖). Assuming that td = 5.

150 100 50 0 50 100 150

Angle (degree)
0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

b
e
rs

h
ip

 f
u
n
ct

io
n
 (
µ
p
,µ
t
)

βp =0.1

βp =0.3

βp =0.6

Figure 5: The effects of variations of βp on µp(θi − ∠p(q− pi)). Assuming that tp = 60.

with βd and td as the parameters configuring the membership function (see Figure 4). Parameter βd can be approximated
using experimental observations on sensor behaviours. As shown in the figure, parameter βd controls the slope of the
function and td determines the distance where the sensor has 50% of its maximum coverage.

As for the pan angle membership functions, we propose another sigmoid function:

µp(∠p(q− pi)− θi︸ ︷︷ ︸
γi

) =
1

1 + exp (−βp(γi + tp))
− 1

1 + exp (−βp(γi − tp))
, (6)

where tp controls the “width” of the function and βp controls the slope of the function at the boundaries (see Figure 5).
Note that the proposed function has the range [-180,180] degrees. Therefore, any calculated angle should be brought into
this range accordingly. In the same way, membership function µt is defined as:

µt(∠t(q− pi)− ξi︸ ︷︷ ︸
ζi

) =
1

1 + exp (−βt(ζi + tt))
− 1

1 + exp (−βt(ζi − tt))
, (7)

with a range in [-90,90].
For a reasonable model of a sensor, we propose to use the parameters shown in Table 1. With these values, the sensors

have 50% of the maximum coverage at 30m or at sensing angle of 120o (see Figure 6 for an illustration of the coverage
obtained).

5

Figure 6: Probabilistic coverage model of a sensor. Assuming that a sensor is positioned at (30,40) heading upward, the
colour shows different degrees of coverage for points inside the map.

Table 1: The parameter values for a realistic model of a sensor which has a 50% of the maximum coverage at 30m or span
of view of 120o.

Parameter βd td βp tp βt tt
Value 30 1 60 1 30 1

3 Implemented Optimization Methods

From this model for sensor placement optimization, we compare four sensor placement schemes: a deterministic approach
found in the WSN literature, an adaptation of Simulated Annealing (SA) [18] for sensor placement, the limited-memory
Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS) [7], and the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [13], an evolutionary algorithm for real-valued optimization. The deterministic approach is purely geometrical
and does not take into account the model proposed in the previous section. As for the three other optimization methods,
they have been applied on a real-valued vector composed of four values per sensor (xi, yi, θi, ξi), so as to maximize the
global sensor network coverage Cg(N,Ξ) over a given elevation map Ξ:

N = {(x1, y1, θ1, ξ1), (x2, y2, θ2, , ξ2), . . . , (xn, yn, θn, ξn)},
N∗ = argmaxNCg(N,Ξ).

We briefly explain each method in the following sections.

3.1 Deterministic Sensor Placement

The deterministic method has been shown to achieve full coverage on the Cartesian plane [5,14]. Figure 7 illustrates this
placement pattern, where sensors are organized in layers of horizontal stripes. Assuming sensors with sensing range rs,
they are simply distributed

√
3 rs apart on every stripe, and the stripes are themselves separated from one another by

3
2rs. Furthermore, the stripes are interleaved to form a triangular lattice pattern. This approach does not take the terrain
into consideration.

As presented in Figure 6, the pan angle coverage of each sensor is roughly 120o. Therefore, to obtain an omnidirectional
coverage at each position (because the deterministic approach assumes that all sensors have omnidirectional coverage), we
place three sensors facing 120o degrees apart from each other, at each position specified by the deterministic method.

3.2 Simulated Annealing Method on Single Sensor

SA [18] is a stochastic optimization algorithm. With a generic probabilistic heuristic approach, simulated annealing may
escape local optimum and converge to global optimum, and thus may be more effective for a global optimization problem
of a given function in a large search space. Our implementation of SA is described in Figure 9. It requires the definition
of the temperature function (temperature(t)), and the setting of two parameters (M , σ)

• Parameter M defines the maximum iterations for simulated annealing. The larger the M , the more time consuming
the optimization, and the more likely the global optimum can be reached.

6

d

d

b

a

Figure 7: Pattern of the deterministic method [5, 14] implemented in the paper, where da =
√

3rs, db = 3
2rs, and rs is

sensing range for a sensor. Circles are sensor sensing ranges, and dots are sensor positions.

Figure 8: Illustration of the temperature function used for the simulated annealing method. Here, it is assumed that the
maximum number of iterations (M) is 4550.

• σ defines candidate generator, i.e., the size of neighbourhood where subsequent solutions will be generated. An
essential requirement for σ is that it must provide a sufficiently short path from the initial state to any state which
may be the global optimum. Another issue is that σ should be selected so that the search path avoids becoming
trapped in a local minimum, i.e., it must be large enough to cross local minima in an effort to reach the global
optimum.

• Temperature function (temperature(t)) defines the probability of accepting a move in simulated annealing. Initially,
the temperature(t) is set to a high value, then it is decreased at each step according to some annealing schedule, and
finally ends with temperature(t)→ 0 towards the end of the allocated maximum steps, M . When the temperature
is high, the probability of accepting a move will be high. When the cooling rate is low, the probability of accepting
a move decreases. The idea is that the system is expected to wander initially towards a broad region of the search
space containing good solutions, ignoring small features of the energy function; then drift towards low-energy regions
that become narrower and narrower. To satisfy the conditions above, the temperature(t) is defined as an exponential
decay function (see Figure 8) as follows:

temperature(t) =
1

2
exp

[
−2 ln 2× t

M

]
(8)

3.3 Limited-memory BFGS method

BFGS [24] is a numerical optimization method for solving non-linear optimization problems. This method is an example
of Quasi-Newton optimization methods, which find the stationary point of a function without computing the Hessian

7

Initialize sensor network with random positions uniformly distributed in placement domain (assuming domain to be in pi ∈ [0, 1]2), and
random orientations,

xi ∼ Unif(0, 1), i = 1, . . . , n,

yi ∼ Unif(0, 1), i = 1, . . . , n,

θi ∼ Unif(0, 1), i = 1, . . . , n,

ξi ∼ Unif(0, 1), i = 1, . . . , n,

N = {(p1, θ1, ξ1), (p2, θ2, ξ2), . . . , (pn, θn, ξn)}.

Assess performance of initial sensor network, f = Cg(N,Ξ).
Set best sensor network and best performance to the initial one, Nbest = N, fbest = f.
for t = 1, . . . ,M do

Select a random sensor with uniform distribution, s ∼ DiscUnif(n).
Apply a random perturbation of sensor position ps = (xs, ys) and orientation (θs, ξs) to generate new candidate sensor network placement
N ′,

rx ∼ N (0, σ), ry ∼ N (0, σ), rθ ∼ N (0, σ), rξ ∼ N (0, σ),

x′s = xs + rx, y
′
s = ys + ry , θ

′
s = θs + rθ, ξ

′
s = ξs + rξ,

N ′ = {(p1, θ1, ξ1), . . . , (p′s, θ
′
s, ξ
′
s), . . . , (pn, θn, ξn)}.

Evaluate performance of new candidate sensor network N ′, f ′ = Cg(N ′,Ξ).
if f ′ > f , the new sensor network is better than current one, then

Accept new sensor network, N = N ′, f = f ′.
if f ′ > fbest, new sensor network is better than best so far, then

Set best sensor network and best performance to the current one, Nbest = N ′, fbest = f ′.
end if

else
Get temperature of current iteration, Ei = temperature(t).
if ei < Ei, ei ∼ Unif(0, 1), current sensor network is accepted given the temperature, then

Accept new sensor network, N = N ′, f = f ′.
end if

end if
end for
Return best sensor network found, Nbest, as final result.

Figure 9: Pseudo-code of sensor placement with simulated annealing, with perturbation of one sensor position at a time.

matrix of the objective function. It rather updates an estimate of the inverse Hessian matrix. Limited-memory BFGS
(L-BFGS) stores few past inverse Hessian matrix updates instead of the full matrix. The method can make an estimation
of the derivatives through numerical computation, or use the analytical formula. With the numerical gradients which are
used here, L-BFGS can be considered as a black-box deterministic optimization method. Moreover, compared to other
black-box methods, it scales better for problems with a high number of variables.

The execution of L-BFGS algorithm needs determination of four parameters, namely, m, ε, f , and p. Parameter m
defines the maximum number of past updates over the approximation of the Hessian Matrix stored in the algorithm.
Parameter ε represents the step size used for the numerical calculation of the objective’s function gradient. Parameters f
and p define the stopping criteria, so that, the iteration of the algorithm stops if any of the following conditions become
true [32]:

(xk − xk+1)

max(|xk|, |xk+1|, 1)
≤ f ∗ ep, (9)

max |pgi| ≤ p (10)

where ep is the machine precision, and pgi is the ith component of the gradient projection. Equations 9 and 10 make sure
that the algorithm will stop when the size of the correction updates over the Hessian matrix becomes very small.

3.4 CMA-ES Evolutionary Algorithm

CMA-ES [13] is an evolutionary algorithm known for its good performance and stability [11]. It updates the covariance
matrix of the distribution to learn a second order model of the underlying objective function, similar to the approximation
of the inverse Hessian matrix in the Quasi-Newton method in classical optimization. However, it does not require analytical
derivatives of the partial derivatives.

For sensor placement optimization, the position and orientation of the sensors can be encoded inside an individual,
and a population of individuals can be evolved through generations. At the end of the evolution, the individual with the
best coverage is chosen as the final solution.

The algorithm’s parameters include the number of parents (µ), the number of offspring (λ), the mutation factor (σ),
and the number of generations through which the algorithm runs. In each generation of the algorithm, a collection of the
best µ candidate solutions are selected from the set of λ offspring of the previous generation. These solutions are then
used to update the distribution parameters, which will eventually generate the offspring for the next generation.

8

Table 2: Information about the test maps used for the experiments.

Method NC-A NC-B NC-C NC-D NC-E ULaval
West boundary 638775 638684 638606 638300 638820 245615
East boundary 638820 638774 6386686 638480 639000 245915

South boundary 220250 220250 220170 220615 220220 5182550
North boundary 220295 220295 220250 220750 220490 5182850
Highest elevation 115.9 116.4 120.3 131.5 123.8 140.1
Lowest elevation 112.7 112.6 112. 123.9 111.5 80.7
No. of Columns 45 90 80 180 180 300

No. of Rows 45 45 80 135 270 300
No. of grid points 2025 4050 6400 24300 48600 90000

3.5 Experiments

To conduct our experiments, we selected a mountainous area in North Carolina. The data was provided by a raster layer
map in the “OSGeo Edu” dataset, that stores geospatial information about parts of the North Carolina State, USA. More
specifically, we focus on a portion of the map that covers a small watershed in a rural area near NC capital city, Raleigh.
The coordinate system of the map is the NC State Plane (Lambert Conformal Conic projection), metric units, and NAD83
geodetic datum. We used five portions of the map for our experiments (see Figure 10). The information about different
selected portions of the map is presented in Table 2. Testing the optimization methods with different map sizes, allows to
check the scalability of each method over different map sizes.

Figure 10: Map of the watershed area chosen for the experiments. The test areas have been highlighted inside the map.

We also tested the optimization algorithms over a map of the campus of Université Laval. The map of the area is
shown in Figure 11. In this experiment, which is an example of a surveillance system for the campus, the goal is twofold.
First we want to test the performance of each algorithm in the presence of man-made obstacles (i.e. buildings). Second,
the target area is weighted, meaning that each pixel is attributed with a different weight (wq) as described in Sec. 2.
For this experiment, we assume that the top of the buildings have no importance in the total coverage (i.e. wq = 0), the
streets have an average importance (i.e. wq = 0.4), and the ground level where the pedestrians walk have the highest
importance (i.e. wq = 0.8).

Sensors are modelled following a description given in Sec. 2, using the parameters presented in Table 1. For all
methods except for the deterministic approach, each sensor placement optimization scheme was run 30 times, from which

Available at http://grass.itc.it/download/data.php.

9

Figure 11: Part of the Université Laval map, chosen for the weighted experiments. Here, different parts of the map have
different weights. Buildings are shown in red and have the weight wq = 0, ground in represented in green and have the
weight wq = 0.8, and the streets are shown in black and have the weight wq = 0.4.

Table 3: The value of the ε parameter for the L-BFGS method. Each dimension of freedom has a different value calculated
by εr = 1.

Rr
, where εr and Rr are the ε and range for dimension r respectively.

Parameter NC-A NC-B NC-C NC-D NC-E ULaval
εx 0.023 0.011 0.012 0.0056 0.0056 0.0033
εy 0.023 0.023 0.012 0.0074 0.0037 0.0033
εθ 0.0028 0.0028 0.0028 0.0028 0.0028 0.0027
εξ 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056

are estimated the average and the standard deviation of each method. The initial position and orientation of the sensors
were determined randomly for each run of each method. CPU times are also averaged over the 30 runs, in order to
compare the resources required by each method to produce a solution. These time values have been evaluated by running
the methods on one core of Intel i7 computers clocked at 2.8 GHz.

For simulated annealing the perturbations for positions and for orientation is a Gaussian distribution with standard
deviation σsa. The optimal value for σsa is found by trial and error, and set to σsa = 0.01 for each map. With L-BFGS, a
history of the m = 20 past updates of the position and gradient are used to limit the memory usage, and the stop criteria
is parametrized by values f = 10 and p = 1.0−10. The other parameter for L-BFGS is the ε used for numerical calculation
of the derivative. In our implementation, all the parameter values are assumed to be in [0, 1] boundary, therefore, each
map would have a different ε value with respect to each of its free parameters. These values are reported in Table 3
CMA-ES is run with a population of λ = b4 + 3 ∗ log(N)c offspring and µ = bλ2 c parents, for 350 generations. Here, N is
the dimensionality of the given problem, determined by the number of sensors in each map. A mutation factor σ = 0.167
is also used. All the parameters are summarized in Table 4.

The stop criterion for L-BFGS method has been explained in Section 3 and depends on the value of parameters f ,
p, and ε. For the stop criterion of CMA-ES optimization method, we run the method until convergence. To check for
convergence, we run the method and report the best solution found for each iteration. If the best solution found does not
improve (meaning that the difference is below 0.1%) for a specific number of iterations (referred to as τ), then we assume
that the algorithm has converged and we stop the algorithm. The value of τ for each map depends on the size of the map
and the number of sensors needed to cover the map. It is an estimate for the complexity of the map. The bigger the map,
the bigger the value of τ , because the speed of convergence decreases as the size of the map increases. The τ value for
each map is reported in Table 5.

Table 4: The parameter values for simulated annealing, L-BFGS, and CMA-ES optimization methods.

SA L-BFGS CMA-ES

Parameter σsa m f p σ
Value 0.01 20 10 1.0−10 0.167

10

Table 5: The number of iterations (τ) for which CMA-ES method is checked for convergence. It means that if the
performance of a method does not improve during the mentioned number of iterations, it is assumed that the method has
converged and the algorithm is stopped.

Map NC-A NC-B NC-C NC-D NC-E ULaval
τ 50 100 150 225 300 400

Table 6: The average number of iterations for the CMA-ES method, which is used to calculate the maximum number of
iterations for the SA method. Here, the maximum number of iterations is calculated by multiplying the average number
of iterations by the number of function evaluations in each iteration λ.

Map NC-A NC-B NC-C NC-D NC-E ULaval
Average iterations, CMA-ES 171 256 338 700 1037 2944

λ, CMA-ES 11 13 14 18 20 22
Maximum iterations, SA 1881 3328 4732 12600 20740 64768

We cannot take the same approach for the SA method. The reason lies in the definition of the temperature function,
as explained in Section 3. The temperature function needs the value of the maximum number of iteration as an input
parameter. For this purpose, we run the CMA-ES method with the mentioned setting, and for each map, take the average
number of iterations needed for the method to converge. Next, the number of passed iterations is multiplied by the number
of function evaluations at each iteration to reach the total number of function evaluations that the CMA-ES method has
performed on each map. This value is assigned as the maximum number of iterations for the SA method, because SA
performs only one function evaluation in each iteration. In Table 6 we have reported the average number of iterations for
the CMA-ES value and the maximum number of iterations calculated for the SA method.

All optimization programs are written in Python, except the line-of-sight calculation which was implemented in C++
to gain computation speed. We used the implementation of L-BFGS from the well-known SciPy library. CMA-ES
implementation was taken from DEAP, a Python library for evolutionary algorithms developed at Université Laval.

3.6 Experimental Results

We compare the performance of the four mentioned placement methods, that is Deterministic approach, Simulated An-
nealing, L-BFGS, and CMA-ES.

We ran each optimization scheme 30 times and calculated the corresponding coverage percentage on the target areas.
A qualified sensor optimization scheme should have high coverage and low standard deviations of coverage given a number
of runs. In other words, we are evaluating each algorithm in terms of both accuracy and robustness. The results of each
method using the best parameter sets are shown in the Table 7. In order to show the statistical significance of the results,
we also performed a Student’s t-test on the two methods having the best results. We would reject the hypothesis that
there is a significant difference between the performance of those two methods if the resulting p-value is above 0.05. We
have also presented the optimal results found over the six mentioned maps in Figures 12 and 13.

Among tested methods, CMA-ES outperformed the other two in almost all maps, except one (NC-B), where SA
produced the best result. On the smaller maps (NC-A, NC-B, and NC-C), SA produced results very close to CMA-ES in
terms of coverage, but as the size of the maps increase, the difference between the coverage in the two mentioned methods
become more apparent. In larger maps the performance of SA becomes closer to L-BFGS, which performs worse than the
other two methods in general. In terms of the standard deviation, SA produced more stable results compared to the two
other methods.

L-BFGS performs a local search, therefore, it is not surprising that it performed worse than the other two global
optimization methods. In comparison, the deterministic method produced the worst result among all others, as it does
not take terrain into consideration.

With respect to computational power, SA and CMA-ES consumed roughly the same amount of computation on smaller
maps. The reason is that on smaller maps, the main computational demand of the algorithms, lies in evaluating the
coverage for the candidate solutions. But as the size of the map increases, CMA-ES requires more expensive calculations
to estimate its covariance matrix.This generates the larger difference obtained on the computational requirements for
higher dimensions.

The computational demand of L-BFGS also increases with the dimensionality of the search space. The main reason for
high computational demand of the L-BFGS method is the numerical evaluation of the derivatives. Indeed, L-BFGS method

Available at http://www.scipy.org.
Available at http://deap.googlecode.com.

11

Table 7: Coverage percentage on the target areas with various number of sensors. Each scheme has been run 30 times,
with coverage loss averages and the corresponding standard deviations reported. Note that 100% coverage is not possible
with less sensors than the number of grid points in the map, given the probabilistic model used.

Method NC-A NC-B NC-C NC-D NC-E ULaval
Number of sensors 3 6 9 34 72 108
Search dimensions 12 24 36 144 288 432

Deterministic 94.4% 76.73% 70.98% 79.29% 64.09% 52.89%
SA average 95.69% 94.80% 97.10% 96.11% 96.20% 92.68%
SA stdev 0.3% 0.7% 0.6% 0.2% 0.3% 0.7%

SA CPU time 16 sec. 171 sec. 569 sec. 9203 sec. 36392 sec. 154437 sec.
CMA-ES average 96.39% 94.69% 97.55% 97.90% 97.88% 96.77%
CMA-ES stdev 0.8% 1.9% 0.6% 0.3% 0.6% 0.4%

CMA-ES CPU time 34 sec. 181 sec. 572 sec. 9730 sec. 38988 sec. 162706 sec.
L-BFGS average 91.65% 86.12% 96.10% 96.05% 96.02% 85.72%
L-BFGS stdev 4.7% 5.2% 0.7% 0.4% 0.6% 2.1%

L-BFGS CPU time 46 sec. 266 sec. 3180 sec. 41456 sec. 67566 sec. 260124 sec.

Table 8: Performance of the L-BFGS method using f = 1e12. Compared to Table 7, it is clear that the performance of
the algorithm has decreased, but the computation time of the algorithm has also decreased significantly.

Method NC-A NC-B NC-C NC-D NC-E ULaval
L-BFGS average 90.52% 82.6% 95.23% 93.87% 95.46% 83.57%
L-BFGS stdev 5.6% 2.9% 1.5% 1.6% 0.8% 5.6%

L-BFGS CPU time 12 sec. 64 sec. 191 sec. 3672 sec. 15952 sec. 69122 sec.

needs to calculate derivative with respect to all the free dimensions of the problem, and for each derivative one coverage
calculation needs to be done. High computational demand of L-BFGS is also related to our setting of the algorithm. As
mentioned before in Section 3 and Table 4, we chose the value of the parameter f (which determines if the algorithm has
converged or not) to be equal to 10. Higher values for this parameter results in much faster convergence of the algorithm,
at the price of slight decrease in the performance. For example, Table 8 presents the performance of L-BFGS for f = 1e12.
The high processing time of the method in the high accuracy setting is related to the line-search step of the algorithm.
In this step the position of the next optimal point in the direction of the gradient is calculated. In the starting iterations,
the algorithm can make large steps in the direction of the optimal position, but as the algorithm converges the gradient
becomes less informative and the line-search mechanism needs to be restarted more often. Therefore, if the performance
is not of great importance, this gradient-based methods can provide a good yet suboptimal results in a time less than the
other stochastic optimization methods.

The best result for placement in Campus map is shown in Figure 13. Although the obtained result is comparatively
good, there are some sensors that are covering the areas with coverage weight of zero (wq = 0). A potential extension to
our current approach is to modify the optimization methods, so that in each iteration, sensors placed in areas with zero
weight will be moved to the closest location with a non-zero weight value.

4 Conclusion

This paper proposes a novel model for optimization of sensor placement. The novelty of this model lies in the integration
of terrain information (elevation maps) with a probabilistic sensor model. Results are reported for different optimization
methods tested with this model. CMA-ES optimization method outperformed the three others (deterministic, SA, and
L-BFGS). This demonstrates that the optimization problem as defined in the current framework is quite a difficult one,
requiring stochastic search method.

From a modelling perspective, refinements are possible, for example by simulating signal propagation. However, our
objective here is to make a proof of concept of sensor placement through the use of black-box optimization, using a
probabilistic model of sensors operating in a given environment. If one has better models, the proposed optimization
approaches used should still be applicable.

This serves as a starting point to further investigate the use of evolutionary algorithms in sensor placement optimization.
We are considering as another future work to make use of evolutionary multi-objective optimization for sensor deployment,
optimizing over multiple criteria simultaneously such as number of sensors used, energy saving, and multiple coverage.

12

Map NC-A

Map NC-B

Map NC-C

Map NC-D Map NC-E

Figure 12: The optimal result obtained for each of the NC maps. Different colour represents different degree of coverage,
using the same colour-map than in Fig. 6. The sensors are presented by white circles in the environment, and the black
line connected to each sensor represents the direction of coverage for each sensor. All maps are produced by CMA-ES,
except map NC-B which is produced by SA.

Acknowledgements

This project has been funded by the GEOIDE Network of Centres of Excellence (Canada), Defence Research and Devel-
opment Canada (DRDC), and MDA Systems Ltd. We thank Patrick Maupin and Anne-Laure Jousselme from DRDC
Valcartier for scientific discussions on the project. We also thank Albert Hung-Ren Ko for his early participation in the
project and Annette Schwerdtfeger for proofreading the manuscript.

References

[1] N. Ahmed, S. S. Kanhere, and S. Jha. Probabilistic coverage in wireless sensor networks. LCN ’05: Proceedings of
the The IEEE Conference on Local Computer Networks, pages 672–681, 2005.

[2] V. Akbarzadeh, C. Gagné, M. Parizeau, and M.A. Mostafavi. Black-box Optimization of Sensor Placement with
Elevation Maps and Probabilistic Sensing Models. International Symposium on Robotic and Sensors Environment,
ROSE, pages 89–94, 2011.

[3] V. Akbarzadeh, A. Ko, C. Gagné, and M. Parizeau. Topography-Aware Sensor Deployment Optimization with
CMA-ES. Parallel Problem Solving from Nature (PPSN XI), pages 141–150, 2010.

[4] A.S. Aspbury and R.M. Gibson. Long-range visibility of greater sage grouse leks: a GIS-based analysis. Animal
Behaviour, 67(6):1127–1132, 2004.

[5] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T.H. Lai. Deploying wireless sensors to achieve both coverage and connec-
tivity. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing, pages
131–142, 2006.

[6] A. Boukerche and X. Fei. A coverage-preserving scheme for wireless sensor network with irregular sensing range. Ad
Hoc Network, 5(8):1303–1316, 2007.

[7] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM
Journal on Scientific Computing, 16(5):1190–1208, 1995.

[8] L. De Floriani, P. Marzano, and E. Puppo. Line-of-sight communication on terrain models. International Journal of
Geographical Information Science, 8(4):329–342, 1994.

[9] S.S. Dhillon and K. Chakrabarty. Sensor placement for effective coverage and surveillance in distributed sensor
networks. Wireless Communications and Networking, WCNC, 3, 2003.

13

(a) Map A (b) Map B

Figure 13: Result of placement on the Campus ULaval map: (a) A two dimensional view of the map with buildings in
red, (weight wq = 0), streets in dark green (weight wq = 0.4) and the ground shown in light green (weight wq = 0.8). (b)
Optimal result obtained with CMA-ES, having a coverage rate of 97.3%. Here sensors are shown as white circles, with
the black lines representing the coverage direction. Different colors in (b) shows different coverage values using the same
colour-map than in Fig.6

[10] W.R. Franklin and C. Vogt. Multiple observer siting on terrain with intervisibility or lo-res data. In XXth Congress,
International Society for Photogrammetry and Remote Sensing, Istanbul, pages 12–23, 2004.

[11] S. Garcia, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter
Optimization. Journal of Heuristics, 6(15):617–644, 2009.

[12] M.A. Guvensan and A.G. Yavuz. On coverage issues in directional sensor networks: A survey. Ad Hoc Networks,
2011.

[13] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Com-
putation, 9(2):159 – 195, 2001.

[14] M. Hefeeda and H. Ahmadi. Energy efficient protocol for deterministic and probabilistic coverage in sensor networks.
IEEE Transactions on Parallel and Distributed Systems, 99:579–593, 2009.

[15] M.M. Holland, R.G. Aures, and W.B. Heinzelman. Experimental investigation of radio performance in wireless sensor
networks. In Wireless Mesh Networks, 2006. WiMesh 2006. 2nd IEEE Workshop on, pages 140–150. IEEE, 2006.

[16] S. Banerjee K. Kar. Node placement for connected coverage in sensor networks. Proceedings of the Workshop on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.

[17] D. Kidner, A. Sparkes, and M. Dorey. GIS and wind farm planning. Geographical Information and Planning, pages
203–223, 1999.

[18] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. science, 220(4598):671, 1983.

[19] Benyuan Liu and Don Towsley. A study of the coverage of large-scale sensor networks. In Proc. of the IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS04), pages 475–483, 2004.

[20] P. Lv, J. Zhang, and M. Lu. An optimal method for multiple observers sitting on terrain based on improved simulated
annealing techniques. Advances in Applied Artificial Intelligence, pages 373–382, 2006.

14

[21] H. Ma, X. Zhang, and A. Ming. A coverage-enhancing method for 3d directional sensor networks. In IEEE Interna-
tional Conference on Computer Communications (INFOCOM), pages 2791–2795. IEEE, 2009.

[22] A.T. Murray, K. Kim, J.W. Davis, R. Machiraju, and R. Parent. Coverage optimization to support security moni-
toring. Computers, Environment and Urban Systems, 31(2):133–147, 2007.

[23] J. V. Nickerson and S. Olariu. Protecting with sensor networks: Attention and response. Proceedings of the 40th
Annual Hawaii International Conference on System Sciences, 2007.

[24] J. Nocedal and S.J. Wright. Numerical optimization. Springer verlag, 1999.

[25] S. Olariu and J.V. Nickerson. Protecting with sensor networks: perimeters and axes. In Military Communications
Conference, 2005. MILCOM 2005. IEEE, pages 1780–1786. IEEE, 2005.

[26] J. Balogh S. Kumar, T. H. Lai. On k-coverage in a mostly sleeping sensor network. Wireless Network, 14:277 – 294,
2006.

[27] H.R. Topcuoglu, M. Ermis, and M. Sifyan. Positioning and utilizing sensors on a 3-d terrain part i—theory and
modeling. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, (99):1–7, 2010.

[28] Y. C. Wang and Y. C. Tseng. Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel
coverage. IEEE Transactions on Parallel and Distributed System, 19(9):1280 – 1294, 2008.

[29] M. Worboys and M. Duckham. GIS: A computing perspective. CRC, 2004.

[30] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer Networks, 52(12):2292–2330, 2008.

[31] H. Gupta Z. Zhou, S. Das. Connected k-coverage problem in sensor network. Proceedings of 13th International
Conference on Computer, 1, 2007.

[32] C. Zhu, R.H. Byrd, and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, fortran routines for large scale bound
constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, 1997.

[33] Y. Zou and K. Chakrabarty. A distributed coverage- and connectivity-centric technique for selecting active nodes in
wireless sensor networks. IEEE Transaction on Computers, 54(8):978–991, 2005.

15

