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ABSTRACT
Estimation of Distribution Algorithms (EDAs) have been
successfully applied to a wide variety of problems. The
algorithmic model of EDA is generic and can virtually be
used with any distribution model, ranging from the mere
Bernoulli distribution to the sophisticated Bayesian network.
The Hidden Markov Model (HMM) is a well-known graphi-
cal model useful for modelling populations of variable-length
sequences of discrete values. Surprisingly, HMMs have not
yet been used as distribution estimators for an EDA, even
though it is a very powerful tool especially designed for mod-
elling sequences. We thus propose a new method, called
HMM-EDA, implementing this idea. Preliminary compara-
tive results on two classical combinatorial optimization prob-
lems show that HMM-EDA is indeed a promising approach
for problems that have sequential representations.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.3 [Probability
and Statistics]: Markov processes

Keywords
Estimation of distribution algorithms; Hidden Markov mod-
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Several graphical models have been used in EDAs. The
most widely known is probably the Bayesian optimization
algorithm (BOA) [3], which relies on a Bayesian network to
learn the model and sample solutions, but there are more,
like DEUM (Distribution Estimation Using Markov network)
[5] and dtEDA (dependency-tree EDA) [4]. HMM-EDA is a
novel approach which uses a Hidden Markov Model (HMM)
[2] as the underlying distribution. While its versatility may
allow it to model various kinds of distributions, the focus of
this work is on combinatorial optimization problems.

The proposed approach integrates an HMM in the generic
EDA model, using it to directly estimate the distribution of
the samples making up the population. Using an HMM
for that purpose is quite versatile, as it only assumes that
the samples are sequences of discrete values. Such a model
should be useful in a wide variety of optimization prob-
lems, including problems where solutions can be modelled

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

as bit strings. HMM should be able to capture complex in-
teractions between the elements of sequences, not only the
first order relations captured in observable Markov models.
Our intuition is that hidden states of the HMM can capture
intrinsic sequential patterns that characterize populations,
and link these patterns together in various ways to produce
better individuals, through transitions between the hidden
states.

The HMM-EDA algorithm interprets individuals as se-
quences. Each possible value of the problem’s “alphabet”
is mapped to a possible observation of the HMM. For in-
stance, with the travelling salesman problem, there would
be as many possible observations as the number of cities in
the tour. Given that HMMs can easily handle up to several
dozens of observable emissions, the implementation is quite
straightforward for many problems. The HMM is trained
with the best individuals, and then produces a new gen-
eration, effectively leading to an offspring population with,
hopefully, a better average fitness than the parent popula-
tion. In the process, the probabilistic nature of the HMM
will allow for exploring some regions of the search space.
A detailed description of the method based on a (µ + λ)
selection loop is presented in Algorithm 1.

Some problems require that the generation of the same
observation twice in a given individual be avoided. In order
to do so, restrictions can be applied on the emitted obser-
vations, to ensure that only valid individuals are generated.
This restriction is implemented by adding a binary mask
over the emission matrix. At emission time, the probability
of a used emission is set to 0, and the other probabilities are
normalized to 1.

The proposed method also makes use of some mutation
when generating individuals with the HMM. It consists in
modifying the usual mechanism of observation emission, such
that, according to a given mutation probability (about 2%),
an observation is selected randomly (uniformly) instead of
using the HMM emission probabilities of the current state.

Experiments were made using two classical problems: the
Travelling Salesman Problem (TSP), and the 0-1 Knapsack.
Comparison is made with a standard GA (using a permu-
tation representation), and, in the case of Knapsack, with
the PBIL EDA [1]. For each problem, 100 independent
runs were conducted. The stopping criteria used was the
number of evaluations performed. The population was of
(µ + λ) = (250 + 750) for HMM-EDA and 500 for GA and
PBIL. A tournament size of 5 was used for selection, and
the number of hidden states was set to 3 for the Knapsack
and 25 for the TSP. All experiments were conducted using



Algorithm 1 Optimization loop of HMM-EDA.

1: P 0 ← initialize population(µ)
2: Estimate fitness of all individuals in P 0

3: for i = 1→ imax do
4: Ptrain ← tournament(P i−1, n)
5: θ0 ← initial random HMM parameters
6: θ ← BaumWelch(Ptrain, θ0)
7: Poffspring = ∅
8: for k = 1→ λ do
9: Reset HMM state

10: t← generate offspring(θ)
11: Poffspring ← Poffspring ∪ {t}
12: end for
13: Estimate fitness of all individuals in Poffspring

14: Poffspring ← Poffspring ∪ P i−1

15: P i = ∅
16: repeat
17: t← select best(Poffspring)
18: if not t ∈ P i then
19: P i = P i ∪ {t}
20: end if
21: Poffspring = Poffspring \ {t}
22: until |P i| = µ or |Poffspring| = ∅
23: end for
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Figure 1: Evolution of the fitness against the num-
ber of evaluations performed for TSP.

the DEAP (Distributed Evolutionary Algorithms in Python)
framework1.

Figures 1 and 2 plot the best fitness against the number
of evaluations performed, while Figure 3 presents a boxplot
of the final best-of-run fitness for each problem.

Results show that HMM-EDA always offers a respectable
level of performance when compared to the permutation
representation GA approach. Indeed, there is no situation
where the HMM falls far behind the GA, whether we look
at the final performance or the convergence speed.

On the specific case of the Knapsack problem, results un-
veil that HMM-EDA reaches its optimum value about two
times faster than the GA, which is an interesting achieve-
ment. The experiments with TSP show another scenario,
where GA converges faster than HMM-EDA, but with a sig-
nificantly worse final fitness value. Moreover, the standard
deviation on the HMM-EDA results is almost one third of
the GA, meaning that the approach is quite stable.

All in all, experiments confirmed some promising features

1http://deap.gel.ulaval.ca
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Figure 2: Evolution of the fitness against the num-
ber of evaluations performed for 0-1 Knapsack.
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Figure 3: Box plots of the final best fitness (left :
TSP, right : 0-1 Knapsack)

of HMM-EDA, both from fitness and performance view-
points, and suggest that other studies should be conducted
to unveil its full potential, in particular with other sequential
or combinatorial problems.
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