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ABSTRACT
We are proposing to use the Nondominated Sorting Genetic
Algorithm II (NSGA-II) for optimizing a hydrological fore-
casting model of 800 simultaneous streamflow predictors.
The optimization is based on the selection of the best 48 pre-
dictors from the 800 that jointly define the “best” ensemble
in terms of two probabilistic criteria. Results showed that
the difficulties in simplifying the ensembles mainly originate
from the preservation of the system reliability. We conclude
that Pareto fronts generated with NSGA-II allow the devel-
opment of a decision process based explicitly on the trade-off
between different probabilistic properties. In other words,
evolutionary multiobjective optimization offers more flexi-
bility to the operational hydrologists than a priori methods
that produce only one selection.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.6.6 [Simulation
and Modelling]: Simulation Output Analysis

Keywords
Evolutionary multiobjective optimization, Probabilistic fore-
casting, Streamflow forecasting, Hydrological ensemble pre-
diction system, Uncertainty cascade model

General Terms
Experimentation

1. INTRODUCTION
The physics of hydrological processes inevitably leads us

to different sources of uncertainty when forecasting their
outcomes. First comes the uncertainty associated with me-
teorological variables. In this regard, in recent years, Me-
teorological Ensemble Prediction Systems (MEPS) have be-
come increasingly popular. Second comes the uncertainty in
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the conceptualization of the hydrological processes such as
evapotranspiration and the interactions among vegetation,
land surface, and groundwater. Finally comes hydraulic
routing conceptualization and parametric uncertainty in both
the hydraulic and hydrological models. This uncertainty
chain propagation model has been called uncertainty cas-
cade model [24].

In recent years, the hydrometeorological community has
focused on the development of Hydrological Ensemble Pre-
diction Systems (HEPS) taking into account the uncertainty
process chain evaluation as an important part of the deci-
sion making stage [7, 26, 28]. Consequently, hydrological
response is seen as a pool of multiple probable scenarios,
accepting the paradigm of complementarity (diversity) for
forecasting purposes.

The classical evaluation of multiple forecast scenarios leads
to the use of reductionist decision schemes based on com-
bining functions such as average or more elaborated com-
bination functions, ignoring the importance of uncertainty
evaluation. In this context, the hydrometeorological commu-
nity has developed probabilistic performance metrics, called
scores, used not only to evaluate the most likely prediction,
but also its uncertainty. Probabilistic response properties
such as reliability, resolution, sharpness, and consistency
have been highlighted as complex features in HEPS [3, 31].

However, the HEPS complexity may become an opera-
tional burden when one has to evaluate several hundreds of
scenarios at each time step, a situation easily achieved with
the increasing computational resources and the advance-
ments of each component of the uncertainty chain presented
above. As a result, simplification of such a HEPS becomes
a mandatory step from an operational standpoint [5].

At this complexity level, represented by the number of sce-
narios and its probabilistic properties interaction, an “over-
produce and select” mechanism appears as a natural pro-
cedure of simplification into the so-called combiner response
level of a multiple classifier system [20]. So, in this work, the
overproduce step is a consequence of evaluating multiple pre-
diction scenarios from a pool of hydrological models, while
the selection step is tackled with the NSGA-II algorithm.
At this point, it is important to note the analogy between
the classical problem of finding the inputs that give us the
most information for training a given forecasting model (i.e.
features selection) and selecting the predictors making the
ensembles, which is investigated here. Henceforth we will
refer to predictors selection as the effect of applying a fea-
tures selection tool for selecting members at the response
predictors level.



Features selection algorithms, as well as predictors selec-
tion, can roughly be grouped into two categories depending
on their application model, that is filter methods and wrap-
per methods. Filter methods allow the selection to be made
without involving the chosen learning/combining system, us-
ing instead some other measures, generally statistical ones.
In contrast, wrapper methods use the performance of the
chosen learning/combining system to guide the selection [1].
It is generally accepted that wrapper methods lead to higher
performance [18] at the expense of high computational cost
compared to filter approaches. It is frequently categorized
as a “brute force” method, although it is not necessarily so
[16]. Meta-heuristic procedures such as Genetic Algorithms
(GA) have been proposed [9, 30, 36] as a wrapper method for
features selection, with the advantage of reducing the com-
putational cost, but also showing a capacity to find better
solutions given its global search capabilities.

Another remarkable aspect in predictors selection based
on wrapper methods is the central role played by the per-
formance measures guiding the optimization process. More-
over, depending on the application, one might want to use
several measures of different nature available for selecting
the predictors. In that context, a common approach con-
sists in aggregating these performance measures into a scalar
global criterion, which has been called by some a global
criterion method [21]. That approach has its drawback,
foremostly requiring to articulate the trade-off between the
performance measure beforehand, and being inefficient at
handling an aggregation of objectives that have non linear
(non convex) relations. Thus, a multiobjective framework
emerges as a more natural and practical model of predic-
tors selection with several performance measures. Indeed, in
such a context, it may be more efficient to resort to an a pos-
teriori multiobjective technique such as the Nondominated
Sorting Genetic Algorithm II (NSGA-II) [8], where the op-
timization is generating as output a group of solutions that
represents various trade-offs between the objectives, corre-
sponding to the so-called Pareto front. An example of such
an application, but in a deterministic context and with two
UCI datasets, is presented in Waqas et al. [33].

In our work, based on the concepts outlined above, we
apply NSGA-II in a multi-score framework for the select-
ing of the best predictors (better complementarity) in a real
world application, that is a pool of 800 streamflow forecast-
ing models. The remainder of the paper is organized as
follows. Sec. 2 provides a presentation of the HEPS of ref-
erence and the cases studied. Sec. 3 summarizes the basic
concepts underlying the scores to evaluate the performances
of the HEPS. Follows in Sec. 4 a presentation of the working
hypothesis used for our experiments. Sec. 5 details the ex-
perimental setup, while results and the corresponding anal-
ysis are presented in Sec. 6. Finally, some conclusions and
a guideline for future work are given in Sec. 7.

2. HEPS SETUP AND LOCATIONS
The HEPS under study is formed of 16 hydrological mod-

els combined with 50 meteorological inputs given by the
ECWMF EPS, leading to a grand ensemble of 800 members,
usable for 1 to 9 days ahead forecasting. The precipitation
inputs are a priori assumed to be equally likely [15]. An-
other important aspect of the HEPS at hand is the short
duration of the series, from March 2005 to July 2006. This
HEPS was implemented over 28 French catchments with an
average response time of 3.2 days, representing a large range

Figure 1: Catchments location.

of hydro-climatic conditions (Fig. 1). The results presented
here are based on a selection of four basins that show differ-
ent behaviours according to simplification. Basins H24, H93,
M06, and P70 are used for training, whereas corresponding
neighbouring basins H36, M04, M15, and P72 are used for
testing.

The high performance of the 800-member HEPS for the
9-th day Forecast Time Horizon (FTH), and a lesser extent
in the other FTHs, has been demonstrated in [31]. How-
ever, preliminary analysis has shown the high redundancy
of the models response, opening the way to the hydrological
model selection and precipitation clustering as an efficient
simplification idea.

3. PERFORMANCE EVALUATION
In the machine learning community, the evolution of the

bias-variance dilemma [12] to the accuracy-diversity break-
down [19], and the bias-variance-covariance decomposition
[29], naturally supports the multiple classifier systems ap-
proach and, more generally speaking, the evaluation of mul-
tiple scenarios. However, this is frequently reduced to a sin-
gle response to use in a scalar objective function. But in a
probabilistic context, it is imperative to use the distribution-
oriented approach (scores) that reveals more details about
the response uncertainty.

The distribution-oriented approach reveals that forecast
quality is inherently multifaceted in nature [7, 23]. In the
following, we quote two of the properties commonly eval-
uated in probabilistic forecasting, that is the bias and the
reliability. The reader is referred to Wilks [35] for a more
detailed description of these and other features. Note that
we use Gaussian distributions in the following examples for
the sole purpose of facilitating the explanations.

The bias, also called unconditional bias or systematic
bias, measures the correspondence between the mean fore-
cast and the mean observation. In Fig. 2 we illustrate two
cases regarding pdf A. The observation ot first occurs near
the mean forecast1 (case 1), i.e. a system with low bias. Sec-
ond, the observation ot is located further from the central
value (case 2), i.e. a highly biased system.

1Note that mean, median, and mode coincide with the peak
of the Gaussian distribution.



Figure 2: Probabilistic forecasting evaluation.

The reliability relates to the occurrence of event ot given
a probability threshold m, averaged over all N observation
- forecast pairs. In Fig. 2, the reliability evaluation of a
threshold probability equal to 68.2% in pdf A. So, at each
time step, it must be determined whether the event falls
or not into the Im region bounded by this probability value.
Subsequently, the conditional observed frequency ōm is eval-
uated for the N observation - forecast pairs by Eq. 1:

ōm =
1

N

N∑
t=1

rt, where rt =

{
1 if ot ∈ Im
0 otherwise

. (1)

Finally, for this probability threshold, the system is perfectly
reliable if ōm is equal to m. For instance, in a perfectly re-
liable system with a probability threshold of 68.2%, we can
imagine that for 1000 cases the event fell 682 times within
the intervals evaluated. We say that the system is overfore-
casting if ōm is less than m, and underforecasting otherwise.

Given that m denotes the different M thresholds of prob-
ability to assess, the reliability of the system can be directly
measured from the comparison of these thresholds with the
M observed conditional probabilities. The goal is to have
well-calibrated forecast systems for which the relative fre-
quency is essentially equal to the probability of the forecast,
i.e. ōm = m.

In the following, we present two scores that represent bias
and reliability, that is the ignorance score and the reliability
diagram. Note that this antagonistic behaviour can be easily
seen as another dimension of the bias-variance dilemma.

3.1 Ignorance score
Proposed by Good [14] as the logarithmic score, the IG-

Norance Score (IGNS), given in Eq. 2, is defined as the log-
arithm of the ensemble probability density function f(yt) at
the point corresponding to the observation ot, all evaluated
at time t:

IGNS
(
yt, ot

)
= − log2

[
f
(
yt)

ot

]
. (2)

Note that this score can take negative values because the
pdf may be larger than one2. Smaller values indicate better
performance. The IGNS is a local measure that severely pe-
nalizes the bias because positioning the observation in fore-
cast regions of low probability leads to values that tend to
infinity. The logarithmic score involves a harsh penalty for
low probability events and therefore is highly sensitive to
extreme cases [13]. To rule out the possibility that the re-
sults solely reflect the effect of a few outliers, we analyzed

2pdf values denotes an intensity of probability or a proba-
bility rate.
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Figure 3: Reliability diagram.

trimmed means of the IGNS series excluding the highest
and lowest 2% data values, following Weigend and Shi [34].
Infinite values were replaced by the next worst non-infinite
value, following Boucher et al. [2].

3.2 Reliability diagram
The reliability diagram or attributes diagram is a graph-

ical representation of the joint distribution of the forecasts
and observations. For its construction, we define M prob-
ability thresholds, often deciles, then we compute the con-
ditional observed frequency for each of these M thresholds.
Finally, we illustrate the relationship between forecast prob-
abilities and conditional observed frequency. In a perfectly
reliable system, ōm will be equal to m, i.e. the distance or
area between the 1:1 line and computed pairs (m, ōm), will
be very small (left panel of Fig. 3). Consequently we can
evaluate the reliability of the system from a distance mea-
sure such as the Mean Square Error (MSE):

RDMSE(Y, o) =
1

M

M∑
i=1

(ōmi − mi)
2 , (3)

where mi ∈ [0, 1].
Note that Eq. 3 corresponds to the reliability as defined

in the Brier score decomposition [35]. It is clear that to
maximize the reliability, one seeks at minimizing Eq. 3. The
reliability diagram proposes a direct assessment of reliability
and resolution of a probability forecast. Regarding the res-
olution (ability of the forecast to distinguish situations with
different frequencies of occurrence), its measure is given by
the difference between each of conditional observed proba-
bilities ōm and the overall unconditional mean observation
ō (see No-resolution line in right panel of Fig. 3).

Finally, a reliability diagram diagnosis leads to determin-
ing overforecasting or underforecasting. For example if the
curve is below the 1:1 line, that indicates that the average
forecast is larger than the average observation (overforecast-
ing). But, if the curve is above the 1:1 line (underforecast-
ing), the average forecast is smaller than the average obser-
vation.

4. BASIC ASSUMPTIONS
A subtle but key aspect in the simplification scheme is

the equiprobability condition of the precipitation inputs.
Note that while meteorological members are interchange-
able, the occurrence of each hydrological model within HEPS
stays invariable. For all time steps, the first 50 hydrological
members correspond to the combination of 50 precipitation
members and the hydrological model #1. Similarly the last



Figure 4: HEPS simplification based on clustering
and different HMP.

50 hydrological members (751-800) correspond to the same
combination with the hydrological model #16. It is clear
that hydrological models act as non-linear filters in which
one of the variables is precipitation. We assume that the
hydrological models that form the HEPS of reference reflect
different conceptualizations of the hydrological process. In
this way, the removal of a member only represents a loss
of model weight in the proposed simplified scheme that is
based on the Hydrological Models’ Participation (HMP) as
a key concept of HEPS simplification.

In conclusion, we hypothesize that considering each hy-
drological member as a variable is not in conflict with the
proposed methodology, because the selection of members,
for subsequent interpretation in terms of HMP, is not made
on members of the ECMWF EPS but rather on the 800-
member hydrological response. The empirical validity of
these assumptions will be evaluated particularly in Sec. 6
from the evaluation of multiple random predictors selections.

Beside that, Brochero et al. [3] and Velázquez et al. [31]
showed that the 800-member HEPS has a high performance
on the 9-th day FTH. Consequently, we apply the simpli-
fication process on the database corresponding to this lead
time. This decision about the FTH is justified since the
hydrological model participation as a method of simplifying
HEPS should be unique regardless of the FTH.

5. EXPERIMENTAL SETUP
In Fig. 4 we illustrate the scheme of simplification and

test. This procedure consists of four stages: overproduce,
select, inference, and test. In this figure we outline how
to train and test systematic selection results. For training,
an 800-member HEPS database of a given catchment is an-
alyzed for the 9-th day lead time. For testing, we use a
neighbouring basin and other forecast time horizons.

5.1 Overproduce
The HEPS under study is formed of 16 hydrological mod-

els combined to one of the 50 meteorological inputs of the
ECWMF EPS, leading to a grand-ensemble of 800 mem-
bers. The MEPS members are a priori assumed to be
equally likely [15]. Another important feature of the HEPS

Representation Truncated permutations
Recombination Partially mapped crossover (PMX)
Recombination probability 90%
Mutation Swap
Mutation probability 2% for each allele
Parent selection Best 2 out of random 4
Survival selection Pareto-front rank and crowding distance
Population size 100
Initialization Random
Termination condition 300 generations

Table 1: NSGA-II setup.

at hand is the short duration of the series, from March 2005
to July 2006. This has been highlighted by several au-
thors as a negative point in the evaluation of system per-
formance in the case of extreme events [7, 25]. However,
other studies that focused on periods of analysis very simi-
lar to the one used here have also proven the usefulness of
the ECMWF EPS. For example Rousset et al. [27] evalu-
ated hundreds of French catchments from 4 September 2004
to 31 July 2005 showing that the information given by the
ensemble forecast is useful for flood warning and water man-
agement agencies.

5.2 Predictors Selection

5.2.1 Schemes to analyze
Following [3, 4], who demonstrated in this same database

that the best balance of scores is achieved with a number
of selected members fluctuating between 30 and 100, here
we use NSGA-II to select the best 48 predictors based on
the scores presented in Sec. 3. This allows a fair comparison
to be made with two reference models: i) a naive model
that consists in a uniform participation of three forecasts
for each of the sixteen hydrological models, resulting in a
48-member HEPS called 48UP, and ii) the Median of 200
Random member selections, scheme called 48MR.

5.2.2 NSGA-II setup
This technique uses a permutation representation GA fol-

lowing the NSGA-II algorithm. It has received the most
attention because of its simplicity and demonstrated supe-
riority over other multiobjective optimization methods [32].
A detailed description of the NSGA-II algorithm appears
in [8]. Like any evolutionary algorithm, its configuration
is given by way of representing potential solutions (geno-
type), evaluation function (or fitness function), population,
initialization, parent selection mechanism, variation opera-
tors, survivor selection, and termination condition. Table 1
presents a summary of the configuration evaluated here.

Truncated permutation as representation is defined by the
following guidelines: i) the individual should represent 48
unique members in order to compare solutions with other
methods, and ii) in terms of selection of variables, the per-
mutation of the same group of members does not represent
a new solution. Thus, the representation of each individual
(candidate solution) is a permutation of a set of 800 inte-
gers. However, only the first 48 alleles (string positions)
represent the solutions to be tested. The other 752 alleles
are reserved for the application of the variation operators
presented in Table 1.

Moreover, with the goal of comparing NSGA-II with the
other two selections schemes, a representative solution of
the Pareto-front is necessary, in which case we orient this



30-member
HEPS

800-member HEPS
HMP

HM
weight(%)subset

HM
#i

Members interval
[50i− 49, 50i]

10, 12, 23, 25, 34,
42, 45, 55, 63, 70,
245, 247, 345, 350,
654, 680, 690, 700,
701, 710, 751, 753,
755, 757, 759, 760,
778, 780, 785, 800

1 1 – 50 7 23.3
2 51 – 100 3 10.0
5 201 – 250 2 6.7
7 301 – 350 2 6.7

14 651 – 700 4 13.3
15 701 – 750 2 6.7
16 751 – 800 10 33.3

Table 2: Hypothetical example to show the HMP.

selection with the post-Pareto front analysis proposed by
Chaudhari et al. [6]. Therefore, the procedure consists in
the following steps:

• Obtain a subset of solutions that represent the Pareto-
optimal front.
• Apply k-means clustering on that Pareto front. For that

purpose a normalization space is needed to avoid problems
arising from the scale of the scores. Here we normalize
each variable so that they will have zero mean and unit
standard deviation. To find the “optimal” number of clus-
ters, we evaluate the number of clusters that maximizes
the mean silhouette value. The silhouette is a measure of
how close each point forming a cluster is to others in the
neighbouring clusters.
• For each cluster, select a representative solution. To do

this, the solution that is closest to its respective cluster
centroid is chosen as a good representative solution.
• Analyze the “knee” cluster or the k representative solu-

tions. In this study the “knee” cluster is considered as the
most interesting solution because we do not propose an
operational scenario in which one could decide which of
the two functions to minimize is more relevant at a given
time.

5.3 Inference
Following the assumptions made in Sec. 4, the simplifica-

tion of the 800-member HEPS is based on the direct sys-
tematic selection of certain hydrological members, which in-
directly leads us to determine the hydrological models par-
ticipation (HMP) as the base criterion of the simplification
task.

Consider the example given in Table 2 for a simplified
HEPS of 30 members presented in the first column. Assu-
ming that this simplified scheme provides at least equal per-
formance than the 800-member HEPS, Table 2 shows that
the evaluation and posterior combination of Hydrological
Models (HM) can be reduced substantially (7 instead of 16).
Note that the last two columns show the apparent higher
relevance of models 1 and 16; however, other models of less
weight can be important to describe the uncertainty of the
process with opposing views to those of the most relevant
models.

5.4 Test
To assess hydrological models with representative precip-

itation members (RM), as proposed by several authors [17,
22] and following the trend of recent clustering products
produced directly at ECMWF EPS [10], the HMP directly
orients the evaluation of representative precipitation mem-
bers at each time step to subsequently propagate them into
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Figure 5: Representative members for simplification
testing.

its respective hydrological model. For this, we rely on the k-
means technique configured with the Euclidean distance as
the similarity measure, and the HMP to define the number
of clusters, so the EPS member closest to its cluster centroid
will define the representative member.

Consider the following example to clarify the previous con-
cepts: we have a HMP, of 16 elements that represent the
16 hydrological models, after applying a particular selection
technique and evaluating the final number of members cor-
responding to each HM.

HMP = {
HM01︷︸︸︷

2 , 0, 0, 0, 0,

HM06︷︸︸︷
5 , 0, 0,

HM09︷︸︸︷
16 , 0, 0,

HM12︷︸︸︷
20 , 0,

HM14︷︸︸︷
5 , 0, 0}

So, for test purposes, at each time step we evaluate the two
precipitation members closest to two cluster centroids and
we propagate them into the hydrological model HM01. We
continue so on to evaluate the five representative precipi-
tation members into the HM14. Fig. 5 presents a visual
exploration of Representative precipitation Members (RM).

Finally, we compare the HMP results based on the NSGA-
II, the 48MR and the 48UP schemes. For comparison pur-
poses, each score in the selected ensemble of hydrological
members (se subscript) is normalized by dividing it with
the corresponding score in the initial 800-member ensemble
(ie subscript), therefore using a similar scale for each com-
ponent. Also we estimated a normalization threshold for the
IGNS equal to -3 to manipulate the negative values of this
score:

normalized IGNS =
−3 − IGNSse

−3 − IGNSie

, (4)

normalized RDMSE =
RDMSEse

RDMSEie

. (5)

6. RESULTS AND ANALYSIS
Table 3 compares results of the initial 800-member HEPS

and the two reference schemes: a naive model of a Uniform
HMP (48UP) and the Median of 200 Random member se-
lections (48MR). Hereafter, RDMSE values are expressed on
a 10−3 basis.

With reference to 48-member schemes, it is noteworthy
that in all cases the IGNS of reference is improved, at the
expense of reliability. Specifically the uniform HMP scheme
is the most efficient in minimizing IGNS, while the median
of random evaluations is a little less inefficient in terms of
reliability (RDMSE), but not yet matching the performance
of reference (800 members). Consequently, simplification
stands out as an optimization task involving hydrological
models in a weight assignment problem.

In an effort to visualize explicitly the trade-off between the
scores, Fig. 6 presents such a Pareto-type analysis of results



Training
catchments

HEPS
members

Scores Testing
catchments

HEPS
members

Scores

RDMSE IGNS RDMSE IGNS

H24
800 7.08 0.41

H36
800 3.50 −0.09

48UP 8.20 −0.49 48UP 5.00 −0.75
48MR 7.82 −0.46 48MR 4.67 −0.74

H93
800 2.59 −0.27

M04
800 1.74 −0.03

48UP 4.47 −0.98 48UP 4.31 −0.72
48MR 3.84 −0.95 48MR 3.50 −0.70

M06
800 1.42 −0.14

M15
800 1.61 0.28

48UP 4.25 −0.77 48UP 3.37 −0.64
48MR 3.19 −0.74 48MR 2.62 −0.61

P70
800 4.14 3.29

P72
800 4.39 0.89

48UP 5.22 −0.06 48UP 5.28 −0.39
48MR 4.51 0.06 48MR 4.51 −0.33

Table 3: Performance for a 9-day FTH in different schemes.
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Figure 6: Evaluations of different selections with
NSGA-II.

obtained with NSGA-II. Each panel illustrates the behaviour
of different selections for each basin. The inset figure in the
upper right corner of each panel shows the 30 000 tested se-
lections in the optimization process. In these figures, we can
see that the reliability of the system is the principal compo-
nent of the variability of the results. Similarly, from the den-
sity of points outside the bounding rectangle, limited by unit
normalized scores, we have evidence that the optimization
process converges rapidly in the initial performance of the
reference HEPS. Thus, the simplification process is shown
primarily as a process of scores optimization, hence it may
be referred to as a post-processing step.

The Pareto front obtained in the optimization is drawn in
each panel, along with their respective clusters and centroids
identification (symbols in bold). The scale of normalized
scores of each panel is similar, except for basin P70 where the
IGNS and the RDMSE exhibit larger Pareto ranges, between
0.39 and 0.48, and between 0 and 0.6, respectively. This
difference could be related to two factors specific to this
basin: its lower drainage area and its higher relative flow.
However, it is necessary to perform more experiments to
identify the relationship of these factors.

Importantly, the Pareto front or simplification based on
the centroid of each cluster offers a descriptive version of

the optimization process, which allows the development of
a decision process based on the characteristics of each score
and the properties we want to prioritize in a particular case.
In other words, NSGA-II offers more flexibility to the op-
erational hydrologists than a single subset of predictors ob-
tained with a priori multiobjective optimization methods.

However, a rigorous test requires evaluating the simpli-
fication model against new information. Thus, the above
results are really optimistic indicators. Accordingly, Fig. 7
shows the results of different selection techniques in a frame-
work of extrapolation in both time and space – executed on
a nearby catchment at different forecast time horizons. bp-
rand corresponds to box-plots of the 200 random selections
executed.

As for the reliability of the system (left panels in Fig. 7),
these results demonstrate again that the main difficulty lies
in the preservation of this property. Furthermore, random
selections show that the situation is more dramatic in FTH
over 6 days, except in the basin P72 where the median of
the random selections is around one. This behaviour is es-
pecially important if one considers that the benefits of the
800-member HEPS is focused primarily on these lead times.
Also note that the interquartile range (length of the box-
plots) exhibits an important dispersion in relation to the re-
sults observed with respect to IGNS (right panels in Fig. 7).
Concerning the 48UP scheme, it is important to note that
the tendency is similar than for the random selections. How-
ever, it is remarkable that in the initial FTHs (1 to 6 days)
uniform selection is generally better than the first quartile
of the 200 random selections tested. The high performances
achieved with NSGA-II are obvious.

7. CONCLUSION
Given the singularity of HEPS in evaluation, where its

800 hydrological members come from the propagation of
50 interchangeable meteorological members, simplification
scheme and/or scores optimization of the system based on
the Hydrological Models Participation (HMP) has proven
to be highly efficient. Clearly, the methodology presented
here combines the HMP and the meteorological clustering
stage as additional filters that facilitate the interpretation of
the hydrological member selection. However, in the case of
a HEPS conceived from non-interchangeable meteorological
members (in Canada, for example), the selection task would
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Figure 7: Test of different HEPS simplification
schemes of 48 members.

then directly identify the importance of certain members in
the propagation of uncertainty in flow prediction.

With respect to the reliability of the system, this property
is notoriously the most difficult to maintain in the simplifi-
cation scheme. The results of a uniform HMP and random
selections show such difficulty. In this work, without loss
of reference bias, it is important to note the high efficiency
of the NSGA-II, which we consider to be the best choice
among the techniques evaluated. At this point, operational
hydrologists can highlight the following aspects:

• Computational complexity Although the Backward
selection suggested in [3] is more intuitive, its complex-
ity is the order of O

(
d2
)

= O
(
8002

)
while the NSGA-II

has a computational complexity of O
(
s · p2

)
, where s is

the number of scores and p is the population size. More-
over, there are several open source user-friendly frame-
works that include an efficient implementation of NSGA-
II [11].
• Trade-off between bias and reliability Local opti-

mization methods with a global criterion, as suggested
in [3], do not allow a direct visualization of the relation-
ship between multiple objectives. Although in the litera-
ture has proposed the manipulation of objectives weight
to build a Pareto Front, the NSGA-II shows directly the

different simplification schemes that highlight the trade-
off among the evaluated objectives.
• Optimization of the number of members to retain

Because the objective of our methodology is focused on a
comparison of techniques with the same number of mem-
bers, solution representation (genotype) with NSGA-II
was established by permutations. However, a binary en-
coding would be more intuitive in order to optimize at the
same time the number of members to hold out.
• Search procedure Finding the optimal subset is not

guaranteed with a local search procedure [21]. For exam-
ple, yi and yj by themselves may not be good, but taken
together, they may decrease significantly the error. But
because these algorithms are local or greedy and remove
members one by one, they may not be able to detect this.
In contrast, the NSGA-II has the capability to find the
global optimum in its evolutionary search process in such
a deceptive setting, although there is no absolute guaran-
tee that it will find it.

Finally, we propose various directions for future research:

• Explore more probabilistic features through other scores
as the δ ratio or the CRPS.
• Further research with longer databases is needed in order

to identify the HEPS value in several type of events, e.g.
peak events.
• Explore using an even larger number of basins in order to

evaluate the relation between the selection performance
and physiographic and hydro-climatological properties.
• Furthermore the diversity, evaluated from deterministic

performance of each model, should be considered as an
approximation to the true structural diversity of hydro-
logical models, in this sense an explicit analysis of the
relationship between the structural diversity of a group of
hydrological models and their relevance in a probabilistic
scheme should be studied in more detail.
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