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Abstract - Persistent surveillance and reconnaissance 
tasks in mobile cooperative sensor networks are key to 
constructing recognized domain pictures over a variety of 
civilian and military problem instances. However, 
efficient information gathering for a task such as target 
search by a team of autonomous unmanned aerial 
vehicles (UAVs) still remains a major challenge to 
achieve system-wide performance objective. Given 
problem complexity, most proposed distributed target 
search solutions so far consider simplifying assumptions 
such as predetermined path planning coordination 
strategy with implicit communication and ad hoc 
heuristics, and severely constrained resources. In this 
paper, we extend previous work reported on multi-UAV 
target search by learning resource-bounded multi-agent 
coordination, involving explicit action control 
coordination.  The approach first relies on a new 
information-theoretic co-evolutionary algorithm to solve 
cooperative search path planning over receding horizons, 
providing agents with mutually adaptive and self-
organizing behavior. The anytime algorithm is coupled to 
an extended information-sharing policy to periodically 
exchange world-state information and projected agent 
intents. Preliminary results show the value of the 
proposed approach in comparison to existing techniques 
or methods. 

Keywords: Learning, multi-agent, coordination, co-
evolution, heuristics, unmanned aerial vehicles. 

1 Introduction 
Efficient construction of a recognized air picture (RAP) 
for military local area surveillance and reconnaissance 
missions is often critical to ensure and maintain situational 
awareness. In many cases, given the low cost and risk 
associated with resource utilization, the related RAP 
process increasingly relies on a team of mobile sensor 
agents or unmanned aerial vehicles (UAVs) (both terms 
are used interchangeably) to perform cooperative search, 
closing the gap between information need and information 
gathering. Early work on related search problems emerges 
from search theory [1], [2]. Proposing a mathematical 
framework and models leading to analytical solutions for 
simple static formulations, most efforts have progressively 
been devoted to algorithmic contributions to handle more 

complex dynamic problem settings [3], [4]. However, 
reported work for these problems mainly focused on 
centralized search while assuming search effort to be 
infinitely divisible between cells, making it difficult to 
solve realistic path planning problems [4] in cases where 
cell target containment probability is sparsely distributed. 
Search theory solutions mostly relate to the effort 
allocation decision problem rather than to path 
construction. Robot motion planning alternatively 
explored search path planning, primarily providing 
constrained shortest path type solutions for coverage 
problem instances [5]-[7]. Even though cooperation of 
multiple UAVs already proved its value over individual 
vehicles operating independently  [8], [9], this paper further 
focuses on constrained cooperative search path planning 
for multiple UAVs in a dynamic uncertain environment. 
In this setting, teammates must self-organize, 
autonomously manage their own resources, and 
coordinate their behavior to achieve a commonly shared 
system-wide global objective. Typical decision problem 
formulations and solutions are presented in [10]–[15]. 
Recent extensions to this work further address the critical 
information-sharing dimension of the cooperative search 
planning problem [16]–[19]. These problems capture to 
various degrees some simplified decentralized partially 
observable Markov decision process combining 
communication (informed-sharing) and control decisions 
(COM-DEC-POMDP) [20], [21] which has proven to be 
NEXP-complete [22]. Facing the curse of dimensionality, 
exact problem-solving methods to sequential decision 
problem formulations, such as dynamic programming, are 
generally not practical, paving the way to the 
development of efficient heuristic and approximate 
methods. Explicit solutions proposed for multiple-UAV 
cooperative search path planning are numerous. Some 
early approaches simply reduce computational complexity 
by relaxing some hard constraints to keep the problem 
manageable. Presuming continuous full state observability 
by the team while confining search to particular regions of 
the solution space [23] represents such an example. Other 
procedures often assume unlimited computational and 
communication resources. As a result, sub-optimal or 
possibly unsuitable solutions are generated. Methods 
inspired from search theory propose procedures based on 
branch and bound or A* types of techniques, but the 
determination of good heuristics to compute tight bounds 



for long-term solution quality estimation largely remains 
difficult [4]. Liao et al. [16] recently proposed a search 
path planning approach combining a cooperative path 
planning control solution coupled to a specific 
predetermined information-sharing policy. The proposed 
information-sharing policy considers a unicast 
communication scheme and small-world assumption. 
However, the proposed constrained solution and 
alternative approaches reported in [23]–[26] do ignore 
path planning coordination that, though constrained, could 
take place through explicit communication of intents 
(agent path plans). The approach also assumes unbounded 
agent communication bandwidth over a local 
neighborhood to mutually share historic observations or 
beliefs with close neighbors. In that respect, it simply 
assumes sufficient time to exchange the possibly large 
number of observations about world state beliefs, but not 
enough time to engage in a path planning coordination 
process implying explicit communication (e.g. 
negotiation). Current solutions proposed so far for UAV 
teams paid little attention to path planning coordination 
involving explicit communication under stringent spatial 
and temporal constraints, and ultimately focused on the 
construction of single-agent solutions, limiting system 
robustness. 
 This paper presents a co-evolutionary information 
gathering approach in cooperative unmanned aerial 
vehicle teams to carry out target search. It is primarily 
inspired from the information-theoretic framework reported 
in [23]–[26] and the recent contribution presented in [16] to 
address information sharing. It extends previous work 
reported on multi-UAV target search by learning 
resource-bounded multi-agent coordination for a new 
problem, considering an open-loop with feedback 
decision model with a rolling horizon, multiple objectives, 
heterogeneous agents, limited computational resources 
and communication bandwidth, as well as communication 
cost, in a time-constrained uncertain environment. It 
concurrently deals with multiple constraints, departs from 
predetermined control search plan policy based on 
implicit or passive plan coordination [26], and proposes a 
framework to construct joint path plans providing team 
flexibility and adaptation by co-evolving multiple agent 
behaviors simultaneously while mitigating 
communication needs and cost. The main contribution lies 
on a new information-theoretic co-evolutionary algorithm 
to solve cooperative search path planning over receding 
horizons, providing agents with mutually adaptive and 
self-organizing behavior. The anytime algorithm is 
coupled to an extended information-sharing policy to 
exchange world-state information and projected agent 
intents. 
 The remainder of the paper is structured as follows. 
Section 2 first presents the problem definition, describing 
the main characteristics of a new cooperative information-
gathering problem involving multiple UAVs to carry out 
target search. Then the main solution concept for the 

targeted problem is introduced in Section 3. A two-step 
decomposition scheme to sequentially achieve state 
estimation through information-sharing and cooperative 
path planning is outlined. Section 4 reports and discusses 
preliminary computational results comparing the value of 
the proposed method to alternative techniques. Finally, a 
conclusion is given in Section 5. 

2 Problem  
2.1 Description 
 We consider a hierarchical multi-objective problem in 
which a team of heterogeneous UAVs cooperatively 
searches stationary targets in a bounded environment over 
a given time horizon. The first objective is to maximize 
information gain or equivalently to minimize uncertainty 
or entropy about target occupancy over the grid, the 
second consists in minimizing target discovery time, and 
the third aims at minimizing resource utilization, namely, 
energy consumption. The proposed hierarchical objective 
structure refers to lexicographic ordering, ranking 
solution quality along the described objectives, 
respectively in that order. Modeled as a grid, the search 
environment defines a two-dimensional cellular area 
composed of N cells, populated by non-cooperative 
stationary targets and threats, which are assumed to 
occupy a single cell each. Contrarily to threats, the 
number of targets and their respective locations are 
initially unknown. Based on prior domain knowledge, 
individual cells are characterized by an initial probability 
of target occupancy, which defines an agent’s cognitive 
map. The target occupancy probability is assumed to be 
independent between cells. Given an initial team 
configuration, autonomous UAVs synchronously explore 
the environment, acting as stand-off imperfect sensors 
gathering observations while periodically exchanging 
state and plan information with one another through peer-
to-peer (unicast) communication. UAVs perfectly and 
synchronously share information (observations, intents) 
with neighbor agents during each discretized episode or 
time step (visit). Information-sharing is subject to limited 
on-board computational resources and range-constrained 
communication. Vehicles are assumed to fly at a constant 
velocity and at slightly different altitudes to avoid 
colliding with each other. Cooperative search consists in 
jointly constructing agent path plans to minimize team 
uncertainty (entropy) over cell target occupancy. As the 
system is distributed, each agent (vehicle) must 
continuously build and update its own cognitive map by 
making sensor observations and by exchanging 
information with teammates while aligning its behavior 
toward reaching global team objective. A UAV’s 
cognitive map refers to a knowledge base capturing local 
environment state representation, reflecting target 
occupancy belief distribution, positions and orientations 
of neighboring agents, its own direction and position, 
resource level, sensor observations and their sources 



(observing agent), as well as a past communication log 
with other agents. It is also assumed that each agent has 
prior knowledge about its teammates (e.g. sensor 
observation models, maximum communication range and 
other properties). A typical agent cognitive map at a given 
point in time is illustrated in Figure 1. 

 

Figure 1. Agent uncertainty/cognitive map at time step t. 
Local agent beliefs are displayed through multi-level 
shaded cell areas. Projected agent plans are represented as 
possible paths and peer-to-peer communications as 
straight lines. Filled circles refer to discovered targets. 

2.2 Observation model 
The observation model governing a UAV sensor’s 
perception accounts for partial world state observability. 
During each time step, a UAV visits a cell searching for 
target occupancy. A sensor reading zt at time t may be 
positive or negative and is governed by an observation 
model, which accounts for uncertainty through 
conditional probability of detection and false alarm given 
cell target occupancy/vacancy state (X=1/0): 

tz : observation of cell occupancy at the end of period 
t: {positive=1, negative=0} 

)1|1( === Xzpp tc  probability of correct observation 
)0|1( === Xzpp tf  probability of false alarm 

In addition to probabilistic outcomes introduced by 
imperfect sensor readings, vehicles have limited sensing 
ranges within which they can perceive and recognize 
neighboring agents. 

2.3 Bayesian filtering 
Based on the latest observation, local cell target 
occupancy beliefs (p(X=1)) can be modified using 
Bayesian filtering for data fusion: 
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pt-1 and pt  refer to prior and posterior cell target 
occupancy probability (belief) respectively. Sensor 

readings may be shared with neighboring agents after 
each observation episode (cell visit) to further update 
local beliefs and progressively build a more consistent 
cognitive map. 

2.4 Path planning 
A vehicle in a configuration state dictated by a given 
position (cell location), and a specific orientation 
(N,S,E,W,NE,SE,SW,NW) makes a decision at each 
episode about its next visit. Decisions are limited to three 
possible moving directions with respect to its current 
heading, namely, ahead, right, left. The primary goal 
consists in planning base-level control action moves to 
minimize entropy (target occupancy uncertainty) over the 
entire grid. The entropy function E is borrowed from 
information theory [27]: 

∑
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where p refers to the current probability/belief of cell 
target occupancy. A cell entropy of 0 (1) means absolute 
certainty (total uncertainty) about occupancy or vacancy. 
UAVs are subject to resource-bounded reasoning due to 
limited computational resources, constrained 
communication and temporal constraints imposed by 
episode duration. 

2.5 Communication 
The agent team primarily behaves as a particular mobile 
ad hoc network. Vehicles have self-localization capability, 
can recognize neighboring agents, and rely on a unicast or 
peer-to-peer communication scheme based on perfectly 
reliable communication channels. Accordingly, the model 
assumes range-limited communication restricting 
neighborhood interaction, but sufficient bandwidth to 
support neighbor exchanges during a single time step. It 
should be noticed that agent heterogeneity makes the 
neighborhood relationship asymmetric. Agent 
communications with neighbors take place concurrently 
delivering/receiving messages on separate channels in 
parallel. Encoded as messages, communication decisions 
translate into observation streams, beliefs and/or intents to 
be shared. Based on the aforementioned small-world 
assumption, we also assume instantaneous message-
passing (no network latency), ignoring the impact of 
routing considerations. Energy cost supporting 
information exchange is quadratic in terms of the distance 
r connecting two agents ( βα +2r ). 

3 Solution concept 
The proposed solution to cooperative multi-UAV search 
path planning relies on a co-evolutionary information 
gathering approach. It extends previous work reported on 
multi-UAV target search [23]-[25], [16], [26], by learning 
resource-bounded multi-agent coordination considering 
an open-loop with feedback decision model over a 



receding horizon, multiple objectives, heterogeneous 
agents, limited computational and communication 
resources, as well as communication cost, in a time-
constrained uncertain environment. It proposes a 
framework to construct joint path plans providing team 
flexibility and adaptation by co-evolving multiple agent 
behaviors simultaneously while mitigating 
communication need and cost. The new information-
theoretic co-evolutionary algorithm solves cooperative 
search path planning over receding horizons, providing 
agents with mutually adaptive and self-organizing 
behavior. 
 Each time step, an agent‘s decisions rely on a 
sequential two-stage decomposition process, namely, 
information–sharing (past observations) and planning. 
The time interval ttΔ  is divided in two time subintervals, 
accounting for information-sharing and planning 
respectively, as shown in Figure 2.  
 Latest observations are first exchanged between an 
agent and its close neighbors, the remaining time being 
devoted to cooperative planning, which in turn is 
subdivided into cycles, involving multiple planning 
iterations coupled to asynchronous periodic 
communication of intents. In order to reinforce agent 
synchronization, we assume that each process stage has a  
 

Information-sharing 
communication – 
state/observations 

Planning 
planning iterations & 

periodic intent sharing 
     tc

s t ,Δ                  tplt ,Δ           
Action execution: move to the next cell and observe  

Time step t (episode) with duration ttΔ  
Figure 2. A two-stage decision process 

constant predetermined duration, which imposes temporal 
constraints on information state communication and 
planning. Decision-making for the current episode is 
occurring concurrently with the execution of the action 
planned in the previous episode. Therefore, during time 
interval ttΔ , the vehicle executes a previously planned 
action, moves to the next cell, and makes an observation. 
The process can be summarized as follows: 

t=1 
For agent i= 1..n 

Initialize Population(i) 
Repeat  -- agent search path planning behavior 

Control action execution (planned at t-1) 
Information_Sharing ( t( tc

s t ,Δ ) ) – Stage I 
Path_Planning ( t( tplt ,Δ ) ) – Stage II 
Observation and cognitive map update 
End of episode t; t=t+1 

Until (end of search mission horizon: t=L) 
 Section 3.1 gives further details on the internal 
processes associated with path planning as well as 
population initialization. 

3.1 Cooperative search path planning 
An open-loop agent solution to a multi-objective problem 
subject to limited computational resources and 
communication constraints is gradually constructed at 
each episode and progressively extended over a receding 
T-step horizon, while adjusting its path plan based on 
additional feedback. Episodic search path planning relies 
on co-evolution to learn agent coordination. Agents evolve 
their own population of individuals while sharing 
information about neighbor agent intents. Individuals are 
represented as chromosomes encoding for a given time 
step, a feasible path plan expressed as a sequence of 
intended control actions (physical moves at+1 ... at+T) to be 
executed over a specific time horizon T (Figure 3). 

at+1 at+2 at+3 … at+T-1 at+T 
Figure 3. An individual path plan representation 

(genotype) at time step t. 

Agents co-evolve their own path plan individuals 
through natural selection, recombination and mutation 
mechanisms over successive generations while 
periodically (TGA or max_gen generations) exchanging 
their best individual with neighbor agent populations. An 
individual fitness is determined by combining(coalescing) 
its own local path plan along with the latest best-known 
neighbor agents’ plans and evaluating the resulting joint 
plan. Here the fitness evaluation of a plan is based on the 
agent's interaction with other agents. The cycle is then 
repeated until the end of the planning period. As a result, 
the first action of the best computed path plan is executed 
at the next time step. The agent co-evolutionary anytime 
procedure can be summarized as follows: 

Path_Planning(t) 
Adjust/update population individuals to reflect the 
latest agent’s decision (current move) 
Repeat  

gen=0 
Repeat for each new generation 

For all new “best plan” message received  
adjust individual’s fitness value  

Evolve Population - build a new generation  
generate λ new offspring using genetic 
operators (selection, recombination, 
mutation)  
evaluate fitness of new individuals 
eliminate the λ worst individuals of the 
expanded population 

gen=gen+1 
Until (end of a cycle (TGA) or gen = max_gen) 
intent-sharing (send current ‘best plan’ to 
neighbors) 

Until (end planning period) 
Return (best computed path plan from Population)  



The first step consists in adjusting the population 
members emerging from the last episode to account for 
current move execution, conserving feasible (consistent) 
individual path plans only, and generating randomly new 
individuals (path plans with T control actions) to maintain 
population size. Newcomers could be partly created from 
best known heuristic methods as well, guaranteeing 
minimal solution quality. Feasible path plans are simply 
shifted by one step to reflect the current time, and a new 
action for time step T (plan horizon) is drawn randomly 
from the three possible actions, with a probability 
proportional to its related information gain. The outer loop 
captures multi-agent coordination learning and intent-
sharing between neighbor agents. The underlying 
evolutionary approach and its key components are mainly 
outlined in the inner loop. The steady-state evolutionary 
algorithm consists for each generation in expanding the 
population by λ offspring using genetic operations, and 
then removing the worst λ individuals to restore normal 
size. Recombination and mutation operators are 
sequentially applied with probability Xoverp  and 

Mutp ( Xoverp + Mutp =1), respectively, until all λ new 
individuals are generated. Probability parameters are 
generally determined to balance search intensification and 
diversification. The process is repeated until a 
convergence criterion/condition is met (e.g. maximum 
number of generations or a threshold in solution quality 
improvement). Related fitness definition and genetic 
operators are further described below. 

The initial population of path plan individuals is 
generated by selecting control actions randomly. For each 
future time step over the horizon T, probabilistic action 
selection is proportional to the information gain over all 
one-step possible moves. Best known heuristic methods 
can be partly exploited to generate good individuals. 

3.1.1 Fitness: 
Fitness reflects an individual’s propensity to reproduce. The 
individual’s fitness should be determined and ranked 
according to the hierarchical objective structure proposed 
in Section 2.1 and based on lexicographic ordering: 
maximize information gain, minimize target discovery 
time and energy consumption. As dissimilar fitness values 
over population individuals are likely, we approximate the 
global fitness function along entropy minimization (or 
information gain maximization) to more easily rank 
individual scores. This approximation makes sense to the 
extent that target discovery rate is somewhat correlated to 
entropy and that resource utilization is mainly controlled 
by the predetermined information-sharing policy. 
 Fitness is defined in terms of a weighted combination of 
expected information gains (differential entropy 
contributions) capturing shared individual path plan and 
neighboring agents current “best plan” (neighbors’ 
population best-known individual) respective expected 
rewards, while ignoring possible additional benefits that 

could have resulted from intermediate explicit outcome 
communication or exploitation. An agent’s individual 
reward refers to the local information gain or entropy 
reduction expected by executing its path plan over the 
next plan horizon T. Subject to range and temporal 
constraints, communication on respective neighboring 
agents best plan (intents) take place periodically among 
agents after a certain number of generations, to update 
agent individual’s fitness value. That period can be 
initially adjusted to get a lower bound on the number of 
messages to be exchanged with some neighbors during the 
planning phase. It should be mentioned though, that 
mutual information-sharing occurs asynchronously given 
heterogeneous communication constraints and continuous 
plan computation, meaning that individual fitness values 
are progressively updated during the next planning 
algorithm execution cycle between each new population 
generation, on the arrival of new “best plan” messages in 
the agent buffer. The nominal fitness function for an 
individual ind in agent population i characterized by a 
local path plan or sequence of actions }{ ita  (resulting in 
positions/expected information gain value 
pairs )}(),({ it

i
itit ygay ) along with respective neighbors’ 

best-known path plan and information gain 
( )()}(,{ iNeighjjt

j
jt ygy ∈ ) over the next T time steps, is 
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c: cell element of the grid: },...,2,1{ NGc =∈  
T: time horizon 
i: agent team member },...,2,1{ ni∈  

ita : action of agent i executed during time interval t 
},,{ leftrightaheadait ∈  

:}{ ..1 tita path plan of agent i over history 1..t 

ity : position (cell element number) of agent i over time 
interval t as a result of action ita  

ito : orientation of agent i over time interval t as a result of 
action ita  

)(czit : observation outcome of cell c by agent i at the end 
of time interval t, }1,0{)( ∈czit  

:}{ itz sequence of observations by agent i over history 1..T 
))(( czp it : probability to observe outcome )(czit  

)1)(( =cXpt : belief of cell occupancy of cell c at the end 
of time interval t 



))},{)},({1)((( itititTT
i oyczcXpE = : agent i entropy of cell c 

at t=T given the sequence of actions }{ ita  and 
observations }{ itz over history 1..T 

 Given that the global team entropy is unknown, it 
can be noticed from the fitness function that interfering 
agents (planning to visit the same cell) share information 
gain proportionally to their relative contribution to better 
account for the reduced team information gain. For 
example, two agents exploring the same cell with identical 
anticipated benefits will ultimately see their respective 
cell reward reduced by half. The agent’s information gain 
reflects the local entropy reduction expected by executing 
the open-loop agent’s path plans over all possible T-step 
scenarios. Local information gain per cell for agent j 
( )(cgj ) can be expressed as the difference between 
current entropy ( )(0 cEj ) and expected entropy ( )(cET

j ) 
resulting from plan execution. For a given plan, cET

j ( ) 
can be computed more efficiently based on the specific 
planned cells to be visited (O(nT)) rather than explicitly 
enumerating all possible histories or sequence of 
observation/visit outcomes (2nT). 

3.1.2  Selection: 
In order to balance and control selection pressure for 
breeding purposes, fitness values are sorted out and 
normalized using a linear ranking scheme [28], scaling 
respective values based on rank. This turns out to be 
advantageous in avoiding premature solution convergence 
or random exploration. The technique is particularly 
useful for a population of individuals implicitly presenting 
small relative (nominal) fitness variability (or 
alternatively, clustered fitness distribution), emphasizing 
the selection of the fittest individual without neglecting 
other population members. Accordingly, an individual ind 
from population Pop (size) with a fitness value ranking 
rankth is scaled to a new value as follows: 

[ ])1()1(min)(maxmax' −−−−= Poprankfitness ind   (8) 
with max=1.6 and min=0.4 . 

Individual selection for mating purposes is ensured 
following a fitness-proportional scheme [29]. The larger 
the fitness value, the larger the probability to be selected. 
Using the above fitness linear ranking, the selection 
scheme allows to more frequently discriminate the best 
individual over the worst, by a ratio of max/min. 

3.1.3 Recombination: 
This genetic operation recombines chromosomes from two 
selected parents in order to create a child. The proposed 
recombination operator X_path breeds two parent 
individuals sharing a compatible crossover point and 
generates an offspring by connecting together head and 
tail path segments inherited from both parents 
respectively, truncating control actions when the 
chromosome length exceeds the planning horizon T (see 

Figure 4) or appending missing control actions using a 
greedy method (selecting moves with maximum one-step 
information gain) to complete the solution when 
necessary. A second child can be generated in the same 
way by swapping parents. The operator mainly relies on 
the key notion of parent compatibility. In its simplest 
form, two parents are compatible if their paths cross each 
other at least once, while exhibiting dissimilar sub-routes 
 

 
Parent 1 Solution             Parent 2 Solution           Child Solution 

Figure 4. Crossover operator X_path mating Parent 1 and 
2 to generate a new child solution. Parent trajectories are 
shown to intersect at a cross-over point depicted by the 
shaded cell. The last control action inherited from Parent 
2 is deleted to maintain solution consistency. 

prior and posterior to the crossing point (avoiding parent 
duplication). A potential mating point can be computed in 
O(T2) time. Should many and/or redundant mating points 
exist, the earliest crossover point from the first parent 
would be selected for the recombination operation. 

However, unless agent orientations for the crossing 
point are similar for both parents as shown in Figure 4, 
which is a particular case, local repair of the offspring 
path solution is generally necessary to make it feasible. In 
effect, state inconsistency occurs as the child inherits 
agent orientation from the first parent and remaining 
control actions from the second, which may violate 
kinematics constraints and render the move at the 
crossover point impossible or illegal. This problem can be 
circumvented by generalizing the definition of individual 
compatibility introduced earlier in its most restricted form, 
as depicted in Figure 4. Generalizing path crossing 
requirements, compatibility is stated in terms of the 
number of moves required to locally modify a given 
solution path toward concurring and ultimately converging 
to an alternate solution trajectory. This number of moves 
is a distance measure between two solutions. A solution is 
d-compatible with another if it can concur toward the 
other in at most d moves: The smaller the distance, the 
larger the compatibility. Figure 5 illustrates a typical 
recombination operation involving 2-compatible 
individuals. Accordingly, selected candidate individuals 
are examined for 2-compatibility condition until a match 
arises, at which point the recombination operator is 
activated. 

The approach tends to make the child inherit as much as 
possible the original path structure of both parents, 
minimizing path segment distortion due to the crossover 
process. As a special case, Figure 4 pictures an example 
where Parent 1 is 0-compatible with Parent 2, mainly pre-  

+



 
      Parent 1 Solution           Parent 2 Solution           Child Solution 

Figure 5. Crossover operator X_path recombining Parent 
1 and 2. Parent 1 is 2-compatible with Parent 2: it 
requires the insertion of a single move connecting 
inherited parent path segments to generate a feasible 
child. The inserted move is pictured as the additional 
shaded cell in the emerging child solution. 

serving the structure of path segments inherited by the 
child solution. Therefore, by bounding the distance (dmax) 
separating two selected candidate individuals when 
exploring suitable recombination, we reduce the cost 
otherwise associated with unfeasible child solution 
generation and local repair. Candidate individuals are 
sequentially visited for d-compatibility (d=0,...dmax). 

Dissimilar candidate individuals d-compatibility 
computation is in O(T2 log(d) + d4T), which is acceptable 
if d is suitably small (e.g. d<5). Computational complexity 
can be further reduced by pruning the search space, such 
as exploring partial parent path segments only, or parents 
exhibiting path centroid (average path position) proximity. 
Forward move projection span (reachability space) of 
possible trajectories over a horizon d is first generated for 
each move (position-orientation pair) of Parent 1 with 
index t (t<T–d). Reachable cells and possible orientations 
from the original move can then be sorted out to retrieve 
and match any Parent 2 current moves. Projected move 
trajectory construction and specific targeted Parent 2 move 
exploration can be processed in any order. The dual notion 
of “backward” move projection from Parent 2 could be 
exploited as well to match a specific targeted Parent 1 
move, achieving similar results. A hybrid approach might 
even match elements from the forward projection span 
from one parent move to an alternate backward move 
projection element from the other parent to reconstruct a 
child solution. 

3.1.4 Mutation: 
Mutation is a natural evolution process modifying some 
individual’s genes more or less frequently. Two mutation 
operators are proposed, namely, M_path and 
M_path_local_repair. M_path first consists in selecting a 
specific move (index t>2) composing a path solution, 
modifying it randomly with an alternate action and then 
reconstructing a feasible remaining solution from that 
point, as shown in Figure 6. From the altered move (gene 
at index t) on, the last portion of the path (chromosome) is 
generated, by consecutively and randomly adding new 
moves (genes) until a complete solution emerges. Move 

probability selection is proportional or biased toward the 
best expected one-step information gain. 

 
 Solution         Mutated Solution 

Figure 6.  Mutation: a move from an individual solution is 
randomly selected and mutated. A new solution is then 
reconstructed from that point (shaded move). 

 The M_path_local_repair mutation operator 
randomly removes a short path segment (few consecutive 
moves, at least two steps from the path endpoint) from a 
solution and builds an alternate path segment fragment to 
locally repair or bridge the disconnected components. d-
compatibility between disconnected segments 
(disconnected component end points) is exploited to 
reconstruct a slightly different path solution, by 
minimizing changes required to preserve as much as 
possible the structure of the parent. 

4 Preliminary results  
A preliminary computational experiment has been 
conducted to illustrate the proposed framework. From a 
limited simulation sample for a given limited scenario 
involving a team of three UAVs, it shows the value of 
explicit team coordination comparing the co-evolutionary 
approach to an alternative method derived from a well-
known heuristic [16] involving self-interested agent 
behavior in which there is no coordination. In the self-
interested scheme, agents are planning their search path 
independently using a greedy method, which consists in 
selecting the next move based on maximum information 
gain expected over a one-step time horizon. A typical 
result for a 3-UAV team with limited communication 
range is shown in Figure 7 presenting post-processed  
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Figure 7.  Differential entropy displaying the value of 
coordination. The lower the entropy, the better the solution. 
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team entropy over time. The differential entropy in the 
graph clearly shows the advantage of co-evolutionary 
team behavior over a self-interested greedy attitude. 

5 Conclusion 
A new cooperative search path planning problem for 
multiple heterogeneous UAVs subject to computational 
and communication resource constraints, has been 
addressed. Towards solving this problem and closing the 
gap between information need and information gathering, 
an information-theoretic co-evolutionary framework has 
been proposed. The approach extends previous work 
reported on multi-UAV target search by learning resource-
bounded multi-agent coordination, considering an open-
loop with feedback decision model and multiple 
objectives. It solves cooperative search path planning over 
rolling horizons, computes multiple solutions/options, and 
exhibits adaptive and self-organizing team behavior. The 
anytime algorithm is combined with an information-
sharing policy to communicate world-state information 
and intents on a periodic basis. Early results show the 
value of explicit team coordination.  

Future work will investigate strengths and weaknesses 
of the proposed approach through a comparative 
performance analysis for a variety of heuristic methods 
and conditions. Then, the approach will be further 
extended to explicitly address cooperative information-
sharing under limited communication bandwidth. 

 
References 
[1] Benkoski, S., Monticino, M., and Weisinger, J., 1991. A 

survey of the search Theory Literature, Naval Research 
Logistics, 38. 

[2] Stone, L. 1989. What’s happened in search theory since the 
1975 Lanchester Prize? Operations Research, 37 (3). 

[3] Hohzaki, R., Iida, K. 1995. Optimal search plan for a 
moving target when a search path is given. Math. Japonica, 
41(1). 

[4] Lau  H. 2007. Optimal Search in Structured Environments, 
PhD Thesis, University of Technology, Sydney 2007. 

[5] Rekleitis, I. et al., 2008.  Efficient Boustrophedon Multi-
Robot Coverage: an algorithmic approach, Ann Math Artif. 
Intell. 52:109–142. 

[6] Agmon, N. et al., 2008. The giving tree: constructing trees 
for efficient offline and online multi-robot coverage, Ann 
Math Artif. Intell. 52:109–142. 

[7] Wagner, W. et al., 1999. M. Distributed covering by ant-
robots using evaporating traces, IEEE Trans. Robot. 
Autom., vol. 15, no. 5. 

[8] Chandler P., Rasmussen, S., Pachter M., 2000. UAV 
Cooperative Path Planning , Proc AIAA Guidance, 
Navigation, and Control.  

[9] Chandler P., Pachter M., 2001. Hierarchical control for 
autonomous teams, Proc AIAA Guidance, Navigation, and 
Control.  

[10] Mathews, G.,  Durrant-Whyte H. 2006.  Scalable 
Decentralised Control for Multi-Platform Reconnaissance 

and Information Gathering Tasks. In 9th International 
Conference on Information Fusion. 

[11] Jin, Y., Liao, Y., Minai, A., Polycarpou, M. 2006. 
Balancing search and target response in cooperative 
unmanned aerial vehicle (UAV) Teams IEEE  Trans on Sys 
Man and Cybern. Part B, 36(3). 

[12] Flint, F., E. Fernandez-Gaucherand, E., and M. Polycarpou, 
M., 2004. Efficient Bayesian Methods for Updating and 
Storing Uncertain Search Information for UAV’s. Proc 
43rd IEEE Conf on Decision and Control. 

[13] Beard, R.,. McLain, T., 2003. Multiple UAV cooperative 
search under collision avoidance and limited range 
communication constraints,” Proceedings of the IEEE 
Conference on Decision and Control. 

[14] Vincent, P., Rubin, I. , 2004. A Framework and Analysis for 
Cooperative Search Using UAV Swarms. ACM Symposium 
on Applied Computing. 

[15] Finn, A. et al., 2007. Design Challenges for an Autonomous 
Cooperative of UAVs, In Proceedings of the International 
Conference on Information, Decision and Control. 

[16] Liao, Y.,  Jin, Y.,  Minai, A. and Polycarpou, M. 2005.  
Information Sharing in Cooperative Unmanned Aerial 
Vehicle Teams, Decision and Control. 

[17] Velagapudi, Prokopiev, Sycara, Scerri. Maintaining Shared 
Belief in a Large Mutiagent Team, Fusion 2007. (see Scerri: 
http://www.cs.cmu.edu/~pscerri/Publications.html) 

[18] Sycara, K. et al.2007. An Analysis and Design 
Methodology for Belief Sharing in Large Groups, Fusion 
2007, Quebec. 

[19] Intanagonwiwat, C. et al. 2003. Directed diffusion for 
wireless sensor networking. IEEE/ACM Trans. on 
Networking, 11(1):2–16.  

[20] Xuan, P., Lesser, V., Zilberstein, S., 2001. Communication 
decisions in multi-agent cooperation: Model and 
experiments. In Proceedings of the Fifth International 
Conference on Autonomous Agents, Montreal, Canada. 

[21] Brooks, A., Makarenko, A., Williams, S.,  Durrant-Whyte,   
H. 2006. Parametric POMDPs for Planning in Continuous 
State Spaces In Robotics and Autonomous Systems, 54(11). 

[22] Bernstein, D., Givan, R., Immerman, N.,  Zilberstein, S. 
2002. The complexity of decentralized control of Markov 
decision processes. Mathematics of Operations Research, 
27 (4), 819-840.  

[23] Polycarpou, M., Yang, Y., and Passino, K., 2001. A 
cooperative search framework for distributed agents,” IEEE 
Int. Symp. Intelligent Control, Mexico City, Mexico. 

[24] Yang, Y., Minai, A., Polycarpou, M. 2005. Evidential Map 
Building Approaches for Multi-UAV Cooperative Search. 
Proceedings of the American Control Conference. 

[25] Yang, Y., Minai, A., and Polycarpou, M. 2004. 
Decentralized Cooperative Search by Networked UAVs in 
an Uncertain Environment, American Control Conference. 

[26] Yang, Y., Polycarpou, M., Minai, A. 2007. Multi-UAV 
Cooperative Search Using an Opportunistic Learning 
Method. Journal of Dynamic Systems, Measurement, and 
Control, 129(5). 

[27] Cover, T. and Thomas, J., 2006. Elements of Information-
Theory, 2nd edition, Wiley. 

[28] Potvin, J.-Y. and  Bengio, S., 1996. The Vehicle Routing 
Problem with Time Windows Part II: Genetic Search, 
INFORMS Journal on Computing 8, 165–172. 

[29] Goldberg, D., 1989. Genetic Algorithms in Search, 
Optimization, and Machine Learning. New York: Addison-
Wesley. 


