
Thompson Sampling for Combinatorial Bandits and
its Application to Online Feature Selection

Audrey Durand and Christian Gagné
Laboratoire de vision et systèmes numériques, Université Laval, Québec (QC), Canada

audrey.durand.2@ulaval.ca, christian.gagne@gel.ulaval.ca

Abstract

In this work, we address the combinatorial optimization prob-
lem in the stochastic bandit setting with bandit feedback. We
propose to use the seminal Thompson Sampling algorithm
under an assumption on rewards expectations. More specif-
ically, we tackle the online feature selection problem where
results show that Thompson Sampling performs well. Addi-
tionnally, we discuss the challenges associated with online
feature selection and highlight relevant future work direc-
tions.

Introduction
The standard Multi-Armed Bandit (MAB) setting assumes
that a reward is directly associated with an arm. In many
real-world applications, the problem has a combinatorial na-
ture, where observed rewards correspond to a function of
multiple arms. However, if it is possible to consider every set
as a regular arm and apply classical MAB algorithms, this
naive approach may lead to a combinatorial explosion of the
possible sets. Moreover, by considering each set indepen-
dently, it does not share information among sets even when
they share several single arms. The Combinatorial Multi-
Armed Bandit (CMAB) problem recently introduced (Chen,
Wang, and Yuan 2013) addresses these issues and covers a
large class of combinatorial online learning problems. How-
ever, it assumes that the outcome associated with each arm
in a set is observable after a play, that is semi-bandit feed-
back. In this work, we address the combinatorial optimiza-
tion problem in the bandit setting with full bandit feedback,
that is a feedback for the whole set of arms played.

Combinatorial Bandits
The general combinatorial optimization problem in the ban-
dit setting consists of a set of arms K associated with a
set of variables {xk,t|t ≥ 1}, for all k in K. Variable
xk,t ∈ R indicates the outcome of the k-th arm at episode
t. The problem relies on a constraint set of arm subsets
S ⊆ P(K), where P(K) is the powerset of K, associated
with a set of variables {yM,t|t ≥ 1}, for allM in S. Vari-
able yM,t ∈ R indicates the outcome of subsetM at episode
t, where yM,t = f({xk,t|k ∈ M}). The problem can be
formulated as a game where a player sequentially selects
subsets in S and observes rewards according to the played

subsets. Let M(t) denote the subset played at episode t
and the reward r(t) = yM(t),t. The reward function f(·)
used to compute yM(t),t might be as simple as a summa-
tion of the outcomes of the arms in a subset M such that
yM,t =

∑
k∈M xk,t. However, more sophisticated non-

linear rewards are allowed. The goal is to maximize the re-
ward over time. LetM∗ = argmaxM∈S E[yM] be the opti-
mal subset. The expected cumulative regret after T episodes
is denoted

E[R(T)] = T · E [yM∗]−
T∑
t=1

E
[
yM(t)

]
.

We consider the stochastic model, where the outcomes
xk,t obtained for an arm k are random variables indepen-
dent and identically distributed according to some unknown
distribution with unknown expectation µk. The outcomes
distribution can be different for each arm. The global re-
wards yM,t are therefore random variables independent and
identically distributed according to some unknown distribu-
tion with unknown expectation µM. We also consider the
full bandit feedback setting, where only the global reward is
observed. Note that the classical bandit problem is a special
case of this setting with the constraint S = {{k}|k ∈ K}
such that each subset contains a different single arm and
the reward function corresponds to its outcome such that
yM,t = xk,t, where k ∈ M. Let µ̂k = E[yM|k ∈
M,∀M ∈ S] denote the outcome expectation of playing
arm k in any subset. It corresponds to the arithmetic mean
of µMs for allM containing k. We assume that the optimal
arms k∗ inM∗ have the highest µ̂k∗ such that

argmax
M∈S

E[yM] = argmax
M′∈S

∑
k∈M′

µ̂k.

Under this assumption, it is possible to identify the optimal
arms independently of one another and ofM∗.

Thompson Sampling
Also known as probability matching, Thompson Sampling
has led to promising results on the standard MAB (Grae-
pel et al. 2010; Granmo 2010; Scott 2010). Consider the
history D = {(M(1), r(1)), . . . , (M(T), r(T))} modelled
using a parametric likelihood function P (r|k ∈ M, θ) de-
pending on some parameters θ. Given some prior distribu-
tion P (θ) on the parameters, their posterior distribution is

Algorithm 1 Thompson Sampling with Bernoulli likelihood
for combinatorial optimization problem

1: assume α0 and β0 the priors of the Beta distribution
2: for each arm k, maintain nk(t) as the number of times

arm k has been played so far and rk(t) as the cumulative
reward associated with arm k

3: t = 0
4: loop
5: t = t+ 1
6: for all arms k in K do
7: αk(t) = α0 + rk(t)
8: βk(t) = β0 + nk(t)− rk(t)
9: sample θk ∼ Beta(αk(t), βk(t))

10: end for
11: playM(t) = argmaxM∈S

∑
k∈M θk

12: observe r(t)
13: update nk(t+ 1) and rk(t+ 1) for k ∈M(t)
14: end loop

given by P (θ|D) ∝
∏T
t=1 P (r(t)|k ∈ M(t), θ)P (θ). The

Thompson Sampling heuristic selects the arms of the next
subset according to their probability of being optimal. That
is, arm k is chosen with probability∫

I
[
E(r|k, θ) = max

k′
E(r|k′, θ)

]
P (θ|D)P (θ)dθ,

where I is the indicator function. A standard approach is
to model the expected outcome µ̂k of each arm using θ pa-
rameters. Instead of computing the integral, a θk is sampled
for each arm k. In the combinatorial optimization problem,
Thompson Sampling selects the M arms maximizing θk.

Suppose that the rewards follow a Bernoulli distribution.
Let nk(T) denote the number of times that arm k has been
pulled up to episode T and

rk(T) =

T∑
t=1

I[k ∈M(t)]r(t)

represent the cumulative reward associated with arm k up
to episode T . The conjugate prior distribution is therefore a
Beta with priors α0 and β0 such that

θk ∼ Beta(αk, βk),

where αk(t) = α0 + rk(t) and βk(t) = β0 + nk(t)− rk(t).
The corresponding Thompson Sampling with Bernoulli like-
lihood for the combinatorial optimization problem is de-
scribed by Algorithm 1.

Online Feature Selection
It is often desirable to select a subset of the original fea-
tures in order to reduce processing complexity and noise,
to remove irrelevant data, or because observing every fea-
ture might be too expensive. Most existing studies of fea-
ture selection are restricted to batch learning, where the fea-
ture selection task is conducted in an offline learning fashion
and all the features of training instances are given a priori.

Algorithm 2 Online feature selection as a combinatorial op-
timization problem in the bandit setting

1: let M denote the subset size
2: t = 0
3: loop
4: t = t+ 1
5: select the subsetM(t) of features
6: receive data vt, perceiving only the features inM(t)
7: make prediction p using vt
8: receive real class c
9: r(t) = H(p · c)

10: update classifier using vt
11: update feature selection heuristic using r(t)
12: end loop

Such assumptions may not always hold for real-world appli-
cations in which data arrive sequentially and collecting full
information data is expensive, which are particularly com-
mon in the context of learning with Big Data.

The current work considers the online feature selection
problem using partial inputs (Wang et al. 2014). In this
challenging scenario, the learner is only allowed to access
a fixed small number of features for each training instance.
The problem is therefore to decide which subset of features
to observe in order to maximize the classification rate. The
online feature selection problem must be distinguished from
the online streaming feature selection problem (Wu et al.
2013), where all the training instances are available at the
beginning of the learning process and their features arrive
one at a time. This differs significantly from our online
learning setting where instances arrive sequentially. More-
over, the partial inputs constraint prevents using budget on-
line learning and online PCA algorithms as they require full
inputs.

We model the online feature selection problem as a com-
binatorial optimization problem in the bandit setting, where
each feature corresponds to an arm. On each episode t, the
algorithm selects a subset M(t) of features to observe on
the arriving data. The data is classified using its observ-
able features and a reward is obtained according to success
(r(t) = 1) or failure (r(t) = 0). The whole process is de-
scribed by Algorithm 2, where H(·) is the Heaviside step
function, that is H(x) = 1 iff x ≥ 0, and H(x) = 0 other-
wise.

Wang et al. (2014) introduced the OFS approach to tackle
the online feature selection problem. Given by Algorithm 3,
OFS for partial inputs uses a perceptron classifier with
sparse weights along with an ε-greedy heuristic for fea-
ture subset selection, where the truncation process consists
in keeping only the M (absolute) largest weights. In this
work, we consider the general online feature selection prob-
lem where one is not limited to sparse classifiers. The ε-
greedy heuristic considered in OFS for partial inputs cannot
be used directly with other classifiers as it is tightly coupled
with the weights of OFS. Algorithm 4 describes ε-greedy
with a non-sparse classic perceptron, where the greedy sub-
set now corresponds to the features maximizing the absolute

Algorithm 3 OFS for partial inputs (Wang et al. 2014)
1: let K denote the total number of features; M the sub-

set size; λ the maximum L2 norm; ε the exploration-
exploitation trade-off; and η the step size

2: w1 = 0K

3: t = 0
4: loop
5: t = t+ 1
6: sample z ∼ Bernoulli(ε)
7: if z = 1 then
8: randomly select a subsetM(t) of features
9: else

10: select features associated with non-null weights in
wt such thatM(t) = {k : [wt]k 6= 0}

11: end if
12: receive data vt, perceiving only the features inM(t)
13: make prediction p = w>t vt
14: receive real class c
15: if p · c ≤ 0 then
16: compute v′t where [v′t]k = [vt]k

M
K ε+I([wt]k 6=0)(1−ε)

17: w′t+1 = w′t + ηcv′t

18: w′t+1 = min
(
1, λ
||w′t+1||2

)
w′t+1

19: wt+1 = truncate(w′t+1,M)
20: else
21: wt+1 = wt

22: end if
23: end loop

weights in the perceptron.
The performance of algorithms corresponds to their on-

line rate of mistakes given by

ORM(T) =
number of mistakes

T
,

where T corresponds to the number of episodes, that is the
total number of data received up to that point. As explained
previously, data samples are processed sequentially. For
each sample, the heuristic selects the feature subset to per-
ceive. The classifier then predicts the class of the sample
using only these features, before receiving the label and up-
dating its weights. As there is no training/testing phase, the
performance is computed on the entire datasets. Note that
the ORM cannot be compared with the offline classification
error rate commonly used for offline algorithms as it cumu-
lates errors along the whole learning process.

Experimental Setting
Experiments are conducted on the benchmark datasets de-
scribed in Table 1, which have been standardized relatively
to their mean and standard deviation. These datasets are all
available either on the UCI machine learning repository1 or
the LIBSVM website2.

1http://archive.ics.uci.edu/ml/index.html
2http://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/

Algorithm 4 Perceptron with ε-greedy
1: let K denote the total number of features; M the subset

size; ε the exploration-exploitation trade-off; and η the
step size

2: w1 = 0K

3: t = 0
4: loop
5: t = t+ 1
6: sample z ∼ Bernoulli(ε)
7: if z = 1 then
8: randomly select a subsetM(t) of features
9: else

10: select features maximizing the absolute weights in
wt such thatM(t) = argmaxM∈S

∑
k∈M |[wt]k|

11: end if
12: receive data vt, perceiving only the features inM(t)
13: make prediction p = w>t vt
14: p = 2H(p)− 1
15: receive real class c
16: if p · c < 0 then
17: w′t+1 = wt + ηcvt
18: wt+1 = truncate(w′t+1,M)
19: else
20: wt+1 = wt

21: end if
22: end loop

Table 1: Datasets characteristics
Dataset # samples # features
Covertype (binary) 581 012 54
Spambase 4601 57
Adult (a8a) 32 561 123
Web Linear (w8a) 64 700 300

We compare the online feature selection as a combina-
torial optimization problem in bandit setting described by
Algorithm 2, using:

• a multilayer perceptron (MLP) (K inputs and one hid-
den layer of 2 neurons) using Thompson Sampling for
Bernoulli likelihood, as given by Algorithm 1, for subset
feature selection;

• OFS for partial inputs, as given by Algorithm 3;

• a perceptron using ε-greedy for subset feature selection,
as given by Algorithm 4.

The MLP with full feature observation (no subset selection)
is used as baseline for comparison.

We configure the experimental setting as in Wang et al.
and select M = b0.1 × dimensionality + 0.5c features for
making the subsets for every dataset. All classifiers share the
same parameter η = 0.2. For the OFS algorithm, λ = 0.1.
Prior parameters α0 = 1 and β0 = 1 are used for Thompson
Sampling. For ε-greedy feature selection, experiments were
conducted with ε ∈ {0.05, 0.2, 0.5}, but only the best results
are reported. The experiments were repeated 20 times, each
with a random permutation of the dataset, and the results

reported are averaged over these runs.

Results
Figure 1 shows the evolution of the average rate of classifi-
cation errors on the different datasets. We observe that using
Thompson Sampling for feature subset selection combined
with a MLP either minimizes the cumulative error rate or
leads to a faster convergence. It even outperforms the MLP
that observes all features on Adult and Web Linear datasets.

Challenges and Future Work
In the online setting, data arrive sequentially and are only
partially observable. A first challenge consists in design-
ing classifiers that are robust to this situation. Moreover,
since the whole dataset is not available for data normal-
ization or standardization, preprocessing techniques should
rely on prior knowledge or assumptions on the data. Online
preprocessing techniques as in Zliobaite and Gabrys (2014)
should therefore be considered to provide a realistic setup
for a real-world application.

Measuring the long-term performance in the online set-
ting is another challenge. Unlike offline algorithms, online
heuristics carry out the tradeoff between exploration and ex-
ploitation forever. It is difficult to compare the online fea-
ture selection algorithms with their offline counterparts, for
which performance is measured in exploitation only.

Acknowledgements This work was supported through
funding from FRQNT (Québec) and NSERC (Canada).

References
Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial
multi-armed bandit: General framework and applications.
In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), 151–159.
Graepel, T.; Candela, J. Q.; Borchert, T.; and Herbrich, R.
2010. Web-scale Bayesian click-through rate prediction for
sponsored search advertising in Microsoft’s Bing search en-
gine. In Proceedings of the 27th International Conference
on Machine Learning (ICML), 13–20.
Granmo, O.-C. 2010. Solving two-armed Bernoulli ban-
dit problems using a Bayesian learning automaton. Inter-
national Journal of Intelligent Computing and Cybernetics
3(2):207–234.
Scott, S. L. 2010. A modern bayesian look at the multi-
armed bandit. Applied Stochastic Models in Business and
Industry 26(6):639–658.
Wang, J.; Zhao, P.; Hoi, S. C. H.; and Jin, R. 2014. Online
feature selection and its applications. IEEE Transactions on
Knowledge and Data Engineering 26(3):698–710.
Wu, X.; Yu, K.; Ding, W.; Wang, H.; and Zhu, X. 2013.
Online feature selection with streaming features. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 35(5):1178–1192.
Zliobaite, I., and Gabrys, B. 2014. Adaptive preprocessing
for streaming data. IEEE Transactions on Knowledge and
Data Engineering 26(2):309–321.

101 102 103 104 105 106

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

av
er

ag
e

ra
te

of
m

is
ta

ke
s

OFS + ε-greedy (ε : 0.2)
Perceptron + ε-greedy (ε : 0.2)
MLP + Thompson Sampling
MLP All features

(a) Covertype

101 102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

av
er

ag
e

ra
te

of
m

is
ta

ke
s

OFS + ε-greedy (ε : 0.2)
Perceptron + ε-greedy (ε : 0.2)
MLP + Thompson Sampling
MLP All features

(b) Spambase

101 102 103 104 105

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

av
er

ag
e

ra
te

of
m

is
ta

ke
s

OFS + ε-greedy (ε : 0.2)
Perceptron + ε-greedy (ε : 0.2)
MLP + Thompson Sampling
MLP All features

(c) Adult

101 102 103 104 105

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

av
er

ag
e

ra
te

of
m

is
ta

ke
s

OFS + ε-greedy (ε : 0.5)
Perceptron + ε-greedy (ε : 0.05)
MLP + Thompson Sampling
MLP All features

(d) Web Linear

Figure 1: ORM on different datasets

