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Anne-Laure Terrettaz-Zufferey c Mikhail Kanevski a

Pierre Esseiva c Olivier Ribaux c

aInstitute of Geomatics and Risk Analysis - Faculty of Earth and Environmental

Sciences - University of Lausanne, Amphipôle, CH-1015 - Switzerland

bInformation Systems Institute - HEC - University of Lausanne, Internef,

CH-1015 - Switzerland

cSchool of Criminal Sciences - Faculty of Law - University of Lausanne,

Batochime, CH-1015 - Switzerland

Abstract

Heroin and cocaine gas chromatography data are analyzed using several clustering
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chemical drug profiling and show that conventional approaches miss the inherent
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in order to tune the affinity matrix of the spectral clustering algorithm. Results
indicate that all algorithms show a quite different behavior on the two datasets, but
in both cases, the data exhibits a level of clustering, since there is at least one type
of clustering algorithm that performs significantly better than chance. This confirms
the relevancy of using chemical drugs databases in the process of understanding the
illicit drugs market, as information regarding drug trafficking networks can likely
be extracted from the chemical composition of drugs.
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1 Introduction

While modern spectroscopy and chromatography provide experimental tools
that allow collecting large amounts of data related to forensic science, such as
illicit drugs samples composition, machine learning and pattern analysis are
now a matter of excitement in the forensic science community, in order for
experts to analyze and understand the collected data. Indeed, classical data
analysis methods often fail in this context given the high number of variables,
the noise (coming from both the phenomenon itself and the experimental
analysis) that corrupts the data, and the potentially nonlinear relationships
between the different variables.

This work places itself at the border of chemometrics, machine learning and
forensic science in order to highlight possibly useful patterns in the chemical
composition of illicit drug seizures that may guide the investigation process.
Also, since a database with drug samples corresponding to known investiga-
tions is available, it is possible to determine if geometrical structures that
correspond to real production or distribution clusters exist in the space of
the input variables (i.e., chemical constituents). Finally, since drug profiling
is usually done by using samples intercorrelation measurement, this data will
allow us to evaluate this method and to compare it with modern clustering
techniques.

Preliminary studies were made by the same authors in [1] and [2], where
heroin and cocaine data were studied using conventional machine learning ap-
proaches. First, Principal Component Analysis (PCA), k-means clustering and
classification algorithms (MLP, PNN, RBF networks and k -nearest neighbors)
were applied. Also, cocaine data was studied with nonlinear feature extraction
techniques such as kernel PCA [3], isomap [4] and locally linear embedding [5].
Kernel PCA shown to be an efficient and robust method for dimensionality
reduction in this context.

A comprehensive review of the field of chemical drug profiling can be found in
Guéniat and Esseiva [6]. In this book, authors have tested several statistical
methods for heroin and cocaine profiling. Among other methods, they have
mainly used similarity measures between samples to determine the main data
classes. A methodology based on the cosine function as an intercorrelation
measurement is explained in further details in Esseiva et al. [7]. Two drug
samples are considered as being linked if their correlation is smaller than a
given threshold. Also, PCA and Soft Independent Modelling of Class Analo-
gies (SIMCA) have been applied for dimensionality reduction and supervised
classification by these authors. A radial basis function neural network has

ships from the ERCIM-SARIT (Europe), the Swiss National Science Foundation,
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been trained on the processed data and showed good results. The classes used
for classification were based solely on statistical correlations in the chemical
composition of the different samples. The profiling methodology was further
developed in [8] for heroin and [9] for cocaine.

Madden and Ryder [10] have studied similar data: Raman spectra obtained
from solid mixtures containing cocaine. The goal was to predict, based on the
Raman spectrum, the cocaine concentration in a solid using k-nearest neigh-
bors (KNN), neural networks and partial least squares. They have also used a
genetic algorithm to perform feature selection. However, their study has been
constrained by a limited number of experimental samples, even though results
were good. Also, the experimental method of sample analysis is fundamentally
different from the one used in this study (gas chromatography). Similarly, Ra-
man spectroscopy data was studied in [11] using support vector machines with
Gaussian and polynomial kernels, KNN, the C4.5 decision tree and a naive
Bayes classifier. The goal of the classification algorithm was to discriminate
samples containing acetaminophen (used as a cutting agent) from those that
do not. The Gaussian kernel SVM outperformed all the other algorithms on a
dataset of 217 samples using 22-fold cross-validation.

2 Method

Spectral clustering and kernel principal component analysis (kernel PCA) are
two classes of machine learning algorithms based on the eigenvalue decom-
position of a problem-dependent similarity (or dissimilarity) matrix. These
methods can both be cast in the general framework of kernel methods. Read-
ers unfamiliar with kernel methods can find an excellent review of this field in
[12]. Kernel methods allow to apply mathematically sound linear methods for
data analysis to nonlinear datasets, by implicitly projecting the input data in
a high-dimensional Hilbert space, called the feature space, induced by some
distance measure between data points.

2.1 Spectral clustering

Classical clustering algorithms, such as k-means, usually search for ball-shaped
clusters by minimizing criteria such as intra-cluster variance. K-means can be
summarized as follows, where i is an index over the whole dataset:

1: Initialize randomly K cluster centers mk.
2: Compute the cluster assignment vector C (i) = argmin

1≤k≤K ‖xi − mk‖

3
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Fig. 1. Clustering the spirals dataset with k-means (left) and spectral clustering
(right). The example is taken from [13].

3: Compute the new cluster centers m
′

k = 1

Nk

∑

xi∈ck
xi, where Nk is the

number of points included in ck, the kth cluster.
4: Repeat 2 and 3 until the cluster assignment vector does not change.

These methods cannot perform well on arbitrary-shaped clusters. Spectral
clustering aims at finding clusters that exhibit a specific geometry, albeit not
easily found by maximizing cluster compactness. Very often, the mathematical
objects formed by the data points mostly lie in a space of inferior dimension-
ality than that of the input space. For instance, Fig. 1 illustrates clearly the
usefulness of such a method. The spirals dataset is two-dimensional, but has
an intrinsic dimensionality of one. Rather than working directly with data
points, spectral clustering uses an affinity matrix, which is a possibly nonlin-
ear measure of similarity between points.

Many formulations of spectral clustering exist. One of the most popular is the
algorithm of Ng, Jordan and Weiss [14], which can be stated as:

1: Form affinity matrix A.
2: Compute L = D−1/2AD−1/2, where D is a diagonal matrix whose (i, i)-

element is the sum of A’s i-th row.
3: Find the k largest eigenvectors of L and stack them in columns to form

X.
4: Normalize each row of X.
5: Perform ordinary k-means on the columns of X.

Given an appropriate distance measure, it is assumed that we can find an
eigenvector basis on which the data can be projected and clustered with a
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simple algorithm such as k-means. This basis is found by computing L, the
Laplacian of the weighted graph induced by the affinity matrix, and by ex-
tracting its eigenvectors, on which the input data is projected. Most often, the
affinity measured that is used is a Gaussian (or RBF) distance:

A (i, j) = exp

(

−
‖xi − xj‖

2

2σ2

)

. (1)

As it can be seen from Eq. 1, the parameter σ has to be tuned given a particular
dataset.

Apart from this now “classical” method, many improvements have been pro-
posed in order to make spectral clustering more efficient. In [15] and [16],
authors propose numerous possible improvements to the standard method:

(1) Introduction of the conductivity matrix;
(2) Context-dependent similarity (“asymmetric” spectral clustering);
(3) Clustering of spectral images with k-lines.

First, the conductivity matrix is an affinity measure which, rather than con-
sidering only the direct edge (the path on the graph) from one point to the
other, takes into account all the paths that lead from one point to another.
Authors compare figuratively this method to the sum of currents between two
nodes in an electrical circuit.

Second, the context-dependent similarity considers the neighborhood of a
point in order to estimate σ. Indeed, when dealing with datasets involving
various scales in the data, it is unlikely that only one value of σ will suit the
whole data. Authors propose here a method to weight the distances by tak-
ing into account the density of the neighborhood of each point. There is thus
one value of σ per point in the dataset. This is very similar to the approach
studied in [17], where authors estimate one value of σ per point by using also
the neighborhood density.

Finally, rather than using k-means to cluster the spectral images, k-lines is
used. As its name states, k-lines clusters the points around lines rather than
points. The k-lines algorithm can be summarized as follows (see [15] for more
details):

1: Initialize K lines mk randomly or as the first eigenvectors of the spectral
data y.

2: for i = 1 to K do

3: Create the matrix Mi = [yi]i∈Ni
whose columns are the points yi closest

to line mi, forming the neighborhood Ni.
4: Compute the new line m′

i as the first eigenvector of MiM
T
i .

5: end for

5



6: Repeat 2 until the mi’s do not change.

It can be argued that performing spectral clustering is somehow equivalent to
applying k-means on data reduced with kernel PCA, which is described in the
next section. In both cases, the problem is to find an appropriate kernel (or
affinity matrix in the case of spectral clustering). As a kernel represents a dot
product (in other words, a distance) in some high-dimensional space, finding
a “good” kernel is equivalent to finding a space in which the data can be
processed with linear methods. This yields a nonlinear metric in input space
to perform clustering.

2.2 Kernel PCA

Classical principal component analysis aims at finding a linear low-dimensional
representation of the data using the top eigenvectors of the covariance matrix
of the input data. The new data is obtained by projecting the input data
on these top eigenvectors. However, very often, the data cannot be linearly
reduced, but a nonlinear representation can be found. For example, the appli-
cation of kernel PCA on the spirals dataset (Fig. 1) would, given an appropri-
ate distance measure, perform implicitly a linear PCA in the space induced
by this distance measure, in which the spirals would form two distinct linear
structures.

More technically, kernel PCA, introduced in [3], stems from the fact that the
centered covariance matrix of the data can be expressed as

C =
1

M

M
∑

j=1

xjx
T
j , (2)

where M is the number of samples. Following this, the eigenvectors v of the
covariance matrix have to be computed:

λv = Cv. (3)

The new data is obtained by multiplying the original data by the eigenvectors
of the covariance matrix. It is reasonable to assume that if we map the data
into a higher-dimensional space, the nonlinear structure can be linearized. We
thus replace x by its projection Φ (x) in a high dimensional space. Eq. (2) can
be re-written as:

C̄ =
1

M

M
∑

j=1

Φ (xj) Φ (xj)
T
. (4)

6



The interesting thing about this formulation is that the projection Φ (x) need
not be computed. Indeed, it can be shown that the product on the right hand
side of Eq. 4 corresponds to a dot product in the feature space. All that is
needed is a kernel function k which represents this dot product. It is shown
in [3] (the demonstration is not shown here for brevity reasons) that solving
the modified eigenvalue problem of PCA using the new covariance matrix C̄

of eigenvectors V:

λV = C̄V, (5)

is equivalent to solving the following eigenvalue problem

Mλα = Kα, (6)

where K (xi,xj) = Φ (xi) Φ (xj) is called the Gram matrix (of eigenvectors α)
corresponding to a kernel function. Very often, K is abbreviately called the
kernel matrix.

The projection on the nonlinear manifold of a data point can simply be ex-
pressed as

(

Vk · Φ (x)
)

=
M
∑

i=1

αk
i (Φ (xi) · Φ (x)) =

M
∑

i=1

αk
i K (xi,x) . (7)

To sum up, kernel PCA requires about the same operations as performing
classical PCA, but instead of extracting the eigenvalues and eigenvectors of
the covariance matrix of the input data, these steps are performed on a Gram
matrix generated by some user-specified kernel.

There is a formal equivalence between spectral clustering and kernel PCA,
which has been shown, for instance, in [18]. It is thus possible to optimize a
measure of clustering on data projected on a basis of eigenvectors found with
kernel PCA, corresponding to a “good” distance measure. Similarly, a distance
measure that performs well for clustering is likely to work well as a kernel for
feature extraction.

2.3 Kernel selection for clustering

Kernel selection is a task often neglected by practitioners. Indeed, a Gaussian
kernel is usually used, with an isotropic variance σ chosen at best with line
search.

7



When dealing with regression or classification tasks (using support vector
machines, for example), kernel selection is a reasonably feasible task. Several
methods can be used to asses the kernel “performance”:

• The error on a test set (data not used for training);
• The cross-validation error;
• The number of support vectors (a measure of complexity; the fewer the

better);
• The kernel alignment with the target, i.e., the classes or response variable

(a measure of kernel-target correlation introduced in [19]).

Clustering is a much more ill-defined problem. Indeed, the notion of a “good”
clustering, especially for arbitrary-shaped clusters, is problem-dependent. Also,
in a clustering context, we do not have access to the true class labels, so these
obviously cannot be used in order to optimize any clustering algorithm (even
though the true class labels, when available, are usually used to evaluate a
clustering method a posteriori).

In this paper, we test standard approach to clustering, such as k-means, along-
side the methods mentioned earlier to determine the best affinity matrix,
namely:

(1) K-lines
(2) Asymmetric spectral clustering
(3) Spectral clustering with conductivity matrix
(4) Spectral clustering with Laplacian matrix (equivalent to Ng et al. [14])
(5) K-means with the cosine function as a distance measure

Both k-means and k-lines are used to cluster the spectral images, where ap-
plicable.

Last, a method based on Genetic Programming (GP) [20] is assessed as a
kernel selection method. GP is a class of evolutionary algorithms (see [21]
for an introduction) that aims at learning rules from data. Evolutionary al-
gorithms are a broad class of search and optimization algorithms mimicking
an evolutionary process, i.e., potential solutions are randomly initialized, and
then mutated and recombined over a number of “generations”. This process is
illustrated in Fig. 2. Unlike genetic algorithms or evolution strategies, which
work with bit strings or real numbers, GP performs a symbolic optimization
of combinations of mathematical and logical operators.

In GP, every individual, or potential solution (in this case, a kernel), is repre-
sented by a tree. Each node of the tree is an operator (+, ×, ÷, exp (), min (),
max (), etc.). Fig. 3 shows an example of a GP individual.

A population of trees is first initialized, each of them corresponding to a ten-

8
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Fig. 2. General scheme of an evolutionary algorithm.

x

x

xx

ADDMULT

ADD

1.618

MULT

x
2
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Fig. 3. Example of GP individual.

tative kernel. This population is then evaluated, i.e., each tree is given a per-
formance measure - called the fitness in the context of GP - proportional to
its ability to render the data suitable for clustering. A recombination step is
then performed: pairs of trees are drawn with a probability proportional to
their fitness and recombined, i.e., they exchange tree segments, in order to
form new trees that hopefully combine good characteristics of their “parents”.
Following this, the trees are mutated with small probability (adjunction or
removal of random tree segments). The mutation step is carried on in order to
prevent the optimization process to fall into a local minimum. The new trees,
forming the new generation, are fed into the next loop of the algorithm until
a stopping criterion has been reached (maximum number of generations or a
certain number of generations without improvement).

The method is similar to that used for classification by Gagné et al. [22] and
Howley and Madden [23,24]. However, the fitness measure has been customized
in order to deal with unsupervised learning problems. The approach we have
devised is based on the preservation of local neighborhood after reduction of
dimensionality, i.e., after the projection in the space of nonlinear principal
components. The method can be summarized as follows:

9



1

2

3

4

5

6

7
8

9

Input space

Nonlinear projection

fitness = 16

1

2

3

4

6

Fig. 4. Fitness measure of the genetic programming algorithm. The aim is to mini-
mize the sum of the ranks of the nearest neighbors of the data points after projection
on the nonlinear principal components induced by the kernel to assess. The 5 near-
est neighbors in the input space become the 1st, 2nd, 3rd, 4th and 6th nearest
neighbors. The fitness value is thus 16.

Given D a dataset and k a kernel function.

1: Compute the n-nearest neighbors of each data point.
2: Compute K, the Gram matrix corresponding to k.
3: Perform kernel PCA using K and compute the reduced coordinates of

each point in D.
4: sum=0
5: for i = 1 to n do

6: Compute the new rank of the i-th nearest neighbor from input space,
ranki.

7: sum = sum + ranki

8: end for

Figure 4 illustrates the performance measure of the method.

3 Experimental

3.1 Data description and statistics

The two studied datasets consist of the major chemical constituents of heroin
and cocaine in powdered form, coming from street seizures. These constituents
are listed in Table 1 and 2. In these tables, the mean and standard deviation of
the raw data are given. The proportions of these variables have been estimated

10



−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

4

1st principal component

2
n
d

 p
ri
n
c
ip

a
l 
c
o
m

p
o
n

e
n
e

t

1

2

3

4

5

6

7

8

9

10

−6 −5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

1st principal component

2
n

d
 p

ri
n
c
ip

a
l 
c
o

m
p

o
n

e
n

t

1

2

3

Fig. 5. Projection on the two first principal components of heroin (left) and cocaine
(right). The shape of the clusters in the space spanned by the two components is
not regular. In the case of heroin, the data exhibit different cluster scales.

by using the area under the peak of the chromatogram corresponding to each
of the substances, after removal of the background noise. Note that the large
standard deviations for cocaine are due to the fact that for several constituents,
the value is zero for a large part of the samples.

A unique characteristic of these datasets is the fact that for many of the
samples corresponding to known investigations, the police has confirmed links
between them. In other words, two samples are part of the same class within
the datasets if the police investigation has linked those two samples to the
same case. These “true” class labels being available, it is thus possible to
evaluate the performance of various clustering methods. Our aim is to assess
whether or not it is possible, to a certain extent, to trace back the links (as
confirmed by the police) between seizures on the basis on the samples’ chemical
composition. Since no links are usually known a priori, clustering methods are
more useful from a practical point of view than classification methods.

Fig. 5 shows the datasets projected on their two first principal components, in
order to give an indication of the type of clusters that might be encountered.
These figures show that the clusters vary in shape, which makes the problem
very difficult. This could be expected, since the cluster labelling corresponds
to networks of people involved in drug trafficking, while the data corresponds
to chemical constituents. It is thus of no surprise that the correlation between
chemical profiles may not always matches the links found by investigation,
since two persons linked within a trafficking network do not necessarily share
products that have the same chemical profile. Finding methods that would
highlight chemical clusters within those networks is therefore of great inter-
est. Finally, Fig. 6 shows boxplots of the data. Reduced variables (divided
by their standard deviation, but not centered) are used for visualization rea-
sons. Indeed, the difference of scales between variable makes raw data hard to
visualize altogether.
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Fig. 6. Boxplots of reduced data for heroin (left) and cocaine (right) samples.

The main purpose of this methodology is to assess and possibly improve the
current profiling techniques used in chemical drug profiling. As said previously,
profiling is often made using the cosine function, i.e., the correlation between
samples, which is formally equivalent to a linear kernel applied on normalized
data:

cos (xi, xj) =
xi · xj

‖xi‖ ‖xj‖
= k (xi, xj) . (8)

The links confirmed by the police allows to validate if the profiling using a
linear kernel between the samples has any meaning at all from a drug intelli-
gence perspective. If not, we will try to pinpoint methods that yield clusters
corresponding to actual drug trafficking clusters. This would mean that the
chemical signature of the sample can reveal something about the network it
comes from.

Major constituents of heroin samples µ × 104 σ × 104

Meconin 1.6 1.4

Acetylcodein 17 11

Acetylthebaol 4.4 2.7

Monoacetylmorphine 43 24

Diacetylmorphine 155 120

Papaverine 11.3 6.6

Noscapine 40 29

Table 1
The seven major constituents of heroin samples, along with their mean µ and stan-
dard deviation σ.
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Major constituents of cocaine samples µ × 104 σ × 104

Benzoic acid 0.4 0.7

Anhydroecgonine methyl ester 0.1 0.4

Trans-cinnamic acid 0.0 0.0

Anhydroecgonine 0.0 0.0

Ecgonine 0.6 0.9

Ecgonine methyl ester 0.5 1.3

Tropacocaine 2.9 4.3

Cocaine 493 182

Benzoylecgonine 3.2 1.7

Norcocaine 0.9 1.1

Cis-cinnamoylecgonine methyl ester 15 17

Trans-cinnamoylecgonine methyl ester 12 14

N-formylcocaine 0.3 2.0

Table 2
The thirteen major constituents of cocaine samples (11 actually measured in the
studied dataset), along with their mean µ and standard deviation σ. The large
standard deviations are due to the fact that for several constituents, the value is
zero for a large part of the samples. Trans-cinnamic acid and anhydroecgonine being
present only in the form of traces, they will not be considered for the remainder of
the study.

The data with available true class labels consists of 323 heroin samples (7 vari-
ables, 3 classes) and 300 cocaine samples (11 variables, 10 classes). Each of the
methods described earlier has been tested, including the GP spectral cluster-
ing. In every case, both k -means and k -lines are applied on the standardized
coordinates.

3.2 Sample preparation and gas chromatographic analysis

The analyses were performed on a Perkin-Elmer Autosystem gas chromato-
graph with flame ionisation detection (FID) and equipped with a split/splitless
injection system. The procedures for sample preparation and gas chromato-
graphic analysis are described in more details in [7] and [9] for heroin and
cocaine, respectively.

The homogeneity was verified by sampling three times each seizure. Repro-
ducibilities of results (expressed as a standard error with a confidence thresh-
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old of 99%) were within 1% for all measured compounds (three replicates twice
analysed, corresponding to two injections per replicates, i.e., six analyses per
sample, with blanks between concentrations to establish that carryover had
not occurred). Detection limits did not exceed 0.024 mg (i.e., 0.3% of the
sample weight).

3.3 Software

All experiments have been performed in Matlab. The GP code relies on the
C++ framework Open BEAGLE [25] and has been customized by the authors
to suit the clustering problem. The Matlab code for asymmetric and symmetric
spectral clustering has been kindly provided by Prof. Igor Fischer.

3.4 Parameter settings and clustering error

For the methods requiring a scaling parameter σ, an “optimal” value has been
assigned using line search. The range of possible values of σ has been sampled
at regular intervals and, given that we know the true class labels, the cluster
assignment error has been calculated for each σ value and the one yielding
the minimum error has been retained. The cluster assignment error E can be
expressed as

E
(

C,Ctrue
)

=
1

N

N
∑

i=1

δ (i) (9)

where

δ (i) =











0 if C (i) = Ctrue (i)

1 if C (i) 6= Ctrue (i)
(10)

C and Ctrue are respectively the obtained and the true assignment vectors and
N is the number of data points. The error thus corresponds to the proportion
of points that are assigned to the wrong cluster. Of course, as the cluster num-
bering is arbitrary (each cluster can be renumbered arbitrarily by a particular
algorithm from 1 to K, where K is the number of clusters), the error is evalu-
ated for every possible renumbering of the cluster assignment vector, and the
minimum error is retained. For example, in a two-class clustering problem,
cluster 1 may be renumbered cluster 2 by the method being used. A method
achieving a perfect clustering might then lead to an error of 100%, while the
error is in fact 0%.
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4 Results and discussion

Table 3 summarizes the results obtained for both datasets. Each experiment
has been repeated ten times, with the same σ values. The average error is
given, along with the corresponding standard deviation.

As it could be expected, the cluster assignment error is far from zero. Indeed,
the databases are small and, for the cocaine dataset, the number of clusters is
high with respect to this size. Nonetheless, some very interesting conclusions
can be drawn from these results. Moreover, it is worth noting that the results
for cocaine are more than acceptable, since an error of 26% (the smallest error
attained) on a 10 clusters problem is fair for a problem of this difficulty, as the
“random guess error rate” grows with the number of clusters. For the heroin
dataset, the smallest error obtained is 15%, which is also largely acceptable.
These results indicate that it is very likely that the chemical composition of
street drug seizures contains information about the drug trafficking networks,
since we can find clusters in chemical composition data that are similar to
some extent to clusters corresponding to police links.

Method Heroin σH Cocaine σC

3 clusters 10 clusters

K-means 0.50 ± 0.03 - 0.28 ± 0.06 -

K-lines 0.62 ± 0.00 - 0.26 ± 0.00 -

Laplac. k-means 0.31 ± 0.14 0.71 0.44 ± 0.06 0.64

Laplac. k-lines 0.16 ± 0.00 0.71 0.37 ± 0.00 0.64

Conduct. k-means 0.16 ± 0.00 0.005 0.48 ± 0.06 0.63

Conduct. k-lines 0.15 ± 0.00 0.005 0.38 ± 0.00 0.63

Asymm. k-means 0.35 ± 0.00 - 0.44 ± 0.05 -

Asymm. k-lines 0.36 ± 0.00 - 0.36 ± 0.00 -

GP k-means 0.49 ± 0.00 - 0.32 ± 0.03 -

GP k-lines 0.41 ± 0.00 - 0.40 ± 0.00 -

Lin. kern. k-means 0.59 ± 0.00 - 0.46 ± 0.01 -

Lin. kern. k-lines 0.51 ± 0.00 - 0.48 ± 0.00

Table 3
Results for the two datasets. Experiments have been repeated ten times. Simple
methods seem efficient on cocaine data, while heroin data requires more sophisti-
cated methods, such as the spectral clustering with conductivity matrix.

From Table 3, we see that using a linear kernel as an affinity measure induces a
very large clustering error, especially for heroin, which had very oddly-shaped
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clusters. For this dataset, the best algorithms were without any doubt the
spectral clustering with conductivity matrix (both with k-means and k-lines),
and the “Laplacian” spectral clustering with k-lines. Contrarily to what was
expected, asymmetric k-means and GP - the two “adaptive” methods - did not
perform very well. The worst methods have been k-lines and k-means alone,
and the spectral clustering with a linear kernel.

Regarding the cocaine dataset, results are significantly different. The two best
methods have been k-lines and k-means alone, with GP with k-means following
not far behind. The methods based on the conductivity or Laplacian matrix
have not performed well on this dataset. These results suggest that the clusters
in cocaine data are much more closer to a simple shape than those of heroin.

Even though further field expertise is necessary to interpret correctly these
results, common hypotheses in drug intelligence seem to be confirmed. Indeed,
it has been suggested [6] that the heroin market is highly structured, while
cocaine comes from numerous independent sources, which makes the market
appear less structured. In the latter case we would expect to observe clusters
that approach a Gaussian shape, as a consequence of the central limit theorem,
and results tend to go in that direction. A highly structured market such as
heroin would tend to make the data move away from a Gaussian distribution,
and indeed, results show that Gaussian-based methods do not work well for
heroin, as opposed to cocaine.

These experiments show that, when using the major chemical constituents
as features, spectral methods have a great potential in heroin data, while
methods working directly in the input space provide better results in the case
of cocaine. These hypothesis will have to be confirmed with larger databases,
when those will be available. GP-based clustering showed average results, but
may provide more interesting results with larger datasets. Indeed, since it is a
highly data-dependent method, if more data is available, its performance can
be expected to increase accordingly.

5 Conclusion

In this paper, numerous clustering methods have been compared on labeled
heroin and cocaine data. It has been shown that the methods behave very dif-
ferently on the two datasets. Heroin data has been efficiently clustered using
spectral clustering methods based on the Laplacian and conductivity matrix.
Spectral clustering with local scaling and GP-based clustering provided inter-
mediate results between the latter and simple methods such as k-means or
cosine similarity. Regarding the cocaine dataset, k-means and k-lines outper-
formed more sophisticated algorithms, with the GP-based algorithm following.
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This suggests that even though the data comprises 10 clusters, these are more
easily identifiable to compact structures. These facts seem to confirm common
hypotheses in the field of drug intelligence. In each case, the results obtained
with cosine distance (linear kernel) have been improved and we have shown
that information about trafficking networks may be found in the chemical
composition of drug seizures.

An interesting extension of this research work is to approach this problem
with semi-supervised learning, which uses both labeled and unlabeled data
for training classifiers. Indeed, a large database of unlabeled data is available
(around 10000 samples). In the context of a classification task, it is possible
to use the unlabeled data in order to model the underlying data distribution
and improve the classification boundaries provided by the labeled (and usually
small) dataset. As for the genetic programming method, other fitness functions
could be considered, which might improve the clustering accuracy.

Finally, our current research includes the problem of novelty detection, i.e.,
detecting inputs that come from a new class rather than an existing one. This
would allow determining whether a seizure is likely to be linked to a previously
analyzed seizure or not.
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