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Warning: outdated manual

Open BEAGLE has been significantly improved since version 1.0.0. I tried the best I can to keep
the manual up to date, although it is now lagging behind the source code. This is not to say that
the information is incorrect, the explanations given here are still exact, or at least pretty close
to reality. The problem is more than there is a lot of things missing and several parts should
be revised in order to keep the manual a precise and helpful reference on Open BEAGLE. Time
is now cruelly missing and can’t overextend myself anymore by trying to rewrite it a the short
term.

This is why I am looking for help to update and improve the manual. It would also be
very beneficial to the community to get contributions from different kind of users (beginners
as well as experimented developers), in order to make this manual valuable for everyone. If
you are interested to improve this manual, please contact me so I can supervise the global
operation. The LATEX sources are also publicly available in the Open BEAGLE CVS repository
on sourceforge.net1. In the meanwhile, I annotated this manual in order to spot parts of the
manual that should be updated and new elements that should be added.

Christian Gagné, October 6, 2005

1See page http://sourceforge.net/cvs/?group_id=91196.
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Chapter 1

Introduction

This document introduces the Open BEAGLE framework for Evolutionary Computations (EC).
It contains a tutorial, an overview of the object oriented software architecture, and a complete
user manual. It is aimed at both the novice and expert user of EC techniques. For more
implementation details, the reader is referred to the Open BEAGLE Reference Manual which
was distiled from the source code, using the doxygen [26] documentation generator. The detailed
installation and compilation instructions are given in the Open BEAGLE Compilation HOWTO,
available on-line on the project’s Web page1.

1.1 What is Evolutionary Computations

Evolutionary computations is a discipline that involves simulating the natural evolution process
on computers [1]. This can be seen as an optimization process in which a population evolves
over time, to fit a given environment. The EC principles have been successfully applied to
numerous situations where classical methods of optimization, classification and automatic de-
sign were not able to produce adequate solutions. Generally, EC is presented in four major
flavors: Genetic Algorithms (GA), Genetic Programming (GP), Evolution Strategy (ES), and
Evolutionary Programming (EP).

Genetic Algorithms (GA) [13] involve the evolution of a population of individuals represent-
ing possible solutions to a problem. An individual is usually a string of symbols defined over a
given alphabet, most often bits (individual = string of bits). The idea is inspired from genetic
DNA that composes every living creature. The search process is made by an iterative applica-
tion of genetic operators, such as crossover, mutation, and Darwinian selection operators biased
toward the fittest individuals. Using this Darwinian paradigm, a population of solutions evolves
until some stopping criterion is reached. GA has been widely used as a numerical method to
optimize parameters of systems without having any a priori knowledge about the search space.

1http://www.gel.ulaval.ca/~beagle
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Only a feedback criterion is needed to give an objective value that guides the search.

Genetic Programming (GP) [15, 2] is a paradigm that allows automatic programming of
computers by heuristics inspired from the same evolution principles as GA: genetic operations
of crossover and mutation, and natural selection operation. The difference between GA and
GP lies mainly in the representation used, for which GP is similar to a computer program
structure. Canonical GP was first formally expressed by Koza in the beginning of the 1990s
[15, 16]. Koza’s GP represents programs as trees, that is acyclic and undirected graphs, where
each node is associated to an elementary operation specific to the problem domain. Others have
experimented with different representations, such as linear programs [2] or cyclic graphs [25].
GP is particularly adapted to the evolution of variable length structures.

The Evolution Strategy (ES) paradigm was developed by I. Rechenberg and H.-P. Schwefel
at the Berlin Technical University in the 1960s [1, 24]. In ES, each individual is a set of
characteristics of a potential solution. This set is generally represented as floating-point vectors
of fixed length. ES is applied to a parent population (of size µ) from which individuals are
randomly selected to generate an offspring population (of size λ � µ). Offsprings are modified by
mutation, which consists in adding a randomly generated value that follows some parametrized
probability density function. The parameters of this probability density function, called the
strategy parameters, themselves evolve over time following the same principles. To engender
a new population of size µ, the best µ individuals are chosen within either the λ offsprings
(approach (µ, λ)), or the µ parents and λ offsprings (approach (µ + λ)). Modern ES can also be
nested.

Evolutionary Programming (EP) has been developed by L.J. Fogel in the 1960s and later by
D.B. Fogel et al. in the 1990s [8, 1]. EP was initially designed to evolve finite state machines
and has been later extended to parameter optimization problems. The approach is more focused
on the relation between parents and offsprings than on the simulation of nature-inspired genetic
operators. Contrary to the three first EC flavors, EP doesn’t involve the use of a particular
representation, but rather a high-level evolutionary model and a representation appropriate for
the problem to solve. Only a mutation operator specific to the representation is needed. To
do EP, a population of µ solutions is randomly generated. Each individual of the population
produces λ offsprings resulting from mutation. Then, a natural selection operation is applied to
produce a new population of µ individuals. The mutation - selection process is applied iteratively
until a good solution is found.

1.2 What is Open BEAGLE

Since 1999, we have developed Open BEAGLE, a versatile C++ environment primarily designed
to do GP, but general enough to do other kinds of Evolutionary Computations (EC). The
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name BEAGLE stands for the acronym the Beagle Engine is an Advanced Genetic Learning

Environment2. Beagle is also the name of an English vessel, the HMS Beagle, in which Charles
Darwin engaged himself as a naturalist for a circumnavigation of the earth. The name Beagle

was previously used in a very old (in term of technological advancements) software that does
pattern recognition using EC principles [9, 17]. Although, the adjective Open was added to the
current BEAGLE framework to distinguish the two designations, it also puts the emphasis on
the open source aspect of the project. In this document, the term BEAGLE always designates
the actual framework, Open BEAGLE.

The Open BEAGLE architecture follows the principles of Object Oriented (OO) program-
ming, where some abstractions are represented by loosely coupled objects and where it is common
and easy to reuse code. Open BEAGLE is built on a generic OO foundation, independent for
the different EC flavors. Over this foundation, both GP and GA (vector-based) frameworks are
currently implemented. Open BEAGLE is made to be extensible, to allow the user to implement
his own algorithm, with little efforts and minimal code writing.

Open BEAGLE was designed with the objectives of providing an EC framework that is
generic, user friendly, portable, efficient, robust, elegant, and free.

Genericity With Open BEAGLE, the user can execute any kind of EC, as far as it fulfills some
minimum requirements. The only necessary condition is to have a population of individuals to
which a sequence of evolving operations is iteratively applied. So far, Open BEAGLE supports
most mainstream EC flavors such genetic programming; bit string, integer-valued vectors, and
real-valued vectors genetic algorithms; and evolution strategy. It also includes support for
advanced EC techniques such multiobjective optimization and co-evolution. The user can take
any of these specialized frameworks and modify them further to create his own specialized flavor
of evolutionary algorithms.

User Friendliness Considerable efforts were deployed to make the use of Open BEAGLE as
easy and pleasant as possible. Open BEAGLE possesses several mechanisms that offer a user
friendly programming interface. For example, the memory management of dynamically allocated
objects is greatly simplified by the use of reference counting and automatic garbage collection.
The programming style promoted is high-level and allows rapid prototyping of applications.

Portability The Open BEAGLE code is compliant with the C++ ANSI/ISO 3 standard. It
requires the Standard Template Library (STL) [23]. The framework also includes a subset of the
Portable Agile C++ Classes (PACC) collection, which encapsulates calls made to the operating
system in a portable fashion.

2In French, BEAGLE stands for Beagle est un Environnement d’Apprentissage Génétique Logiciel Évolué.
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Efficiency To insure efficient execution, particular attention was given to optimization of
critical code sections. Detailed execution profiles of these sections were done. Also, the fact that
Open BEAGLE is written in C++ contributes to its overall good performance.

Robustness Many verification and validation statements are embedded into the code to ensure
correct operation and to inform the user when there is a problem. Robust mechanisms for
periodically saving the current evolution state have also been implemented in order to enable
automatic restart of interrupted evolutions.

Elegance The interface of Open BEAGLE was developed with care. Great energy was in-
vested in designing a coherent software package that follows good OO and generic programming
principles. Moreover, strict programming rules were enforced to make the C++ code easy to
read, understand and, eventually, modify. The use of XML as file format is also a central as-
pect of Open BEAGLE, which provide a common ground for tools development to analyze and
generate files, and to integrate the framework with other systems.

Free Sourceness The source code of Open BEAGLE is free, available under the GNU Lesser
General Public License (LGPL) [14]. It can thus be distributed and modified without any fee.
Open BEAGLE is available on the Web at http://www.gel.ulaval.ca/~beagle.

1.3 Survey of Existing Frameworks

NOTE: This section can be reviewed taking the survey of existing frameworks available in the
IJAIT paper.

Open BEAGLE shares a lot of features with other GP and EC systems3 available on the
Web. We have identified four of them for comparison with Open BEAGLE: lil-gp [27], gpc++

[10], EO [21] and ECJ [19].

lil-gp is a C implementation of the original little-lisp code described in Genetic Programming I

[15]. It provides the majors features of a complete GP environment. It is coded in the widely used
C language, providing a fast and efficient implementation. However, it has several drawbacks,
essentially from the functional structure of the code. Indeed, it is harder to extend this kind
of GP implementation, compared to an object oriented one. There is a numbers of patches for
lil-gp currently available4 that are more or less compatible. It might be a long work to adapt
and make them work together and add new functionalities.

3Because there are currently few generic EC systems that do GP, it is natural to compare Open BEAGLE to
both GP and EC packages.

4We know the existence of four of them: a multi-threads safe implementation (mtlilgp), a constrained GP
version (cgp-lilgp), a Windows 95 port, and mix of these patches (patched lil-gp).

http://www.gel.ulaval.ca/~beagle
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gpc++ is one of the first known C++ framework for tree-based GP. Although gpc++ and
Open BEAGLE share some philosophic and implementation aspects, gpc++ contains C-like
constructs which do not promote good OO practices. For example, the GP tree is structured
as a prefix list of the function and terminal names (a list of char*). To evaluate the trees, the
user needs to define a complex switch case that is very hard to recycle. Also, gpc++ does not
profit from design pattern [18].

EO, which stands for Evolving Objects, is a C++ framework for EC. Open BEAGLE and
EO share some design concepts, essentially by separating the algorithms (like genetic opera-
tors) from the data structure (the populations for instance). But their implementations are
somewhat different: EO uses generic programming extensively (sometimes called static poly-
morphism), as opposed to Open BEAGLE which uses some generic programming concepts to
enhance the user experience, but mostly uses polymorphism by inheritance (sometimes called
dynamic polymorphism). We are thus convince that dynamic polymorphism is necessary for a
programmer-friendly EC environment and for rapid application developments.

Finally, ECJ is a complete, Java-based environment for EC. We chose ECJ among all avail-
able Java-based EC systems because it is a full featured, well-made OO system. Like Open
BEAGLE, it is designed following an OO methodology, and uses polymorphism by inheritance
extensively. However, although Java is a nice coherent language, it suffers from relatively poor
execution speed5, and big memory footprints, which is indeed a serious limitation for resource-
intensive tasks like EC.

1.4 Document Content

The document is divided into three parts. First is presented a tutorial on how to implement
a GP application with Open BEAGLE. This section presents an overview on how to use the
framework, and is targeted not only for the GP users, but also for any other EC users. Second,
the object oriented architecture is specified. It presents the important entities and mechanisms
deployed in Open BEAGLE, and gives a comprehensive description of the framework. Finally,
the document ends with a detailed user manual where all essential details needed to rapidly
implement an EC application with Open BEAGLE are given.

Users familiar with the C++ programming language can read the present document from the
first page to the last. For those less familiar with C++ and object oriented concepts, the first
reading should focus on chapter 2, and sections 3.5, 4.1, 4.2, and 4.5. Thereafter, with a good
C++ reference manual on their side, they can read the entire document to better understand
the general organization of the framework.

5In principle, using an optimizing compiler that produce machine code, Java and C++ programs should be
able to achieve comparable speeds. However, at the time of writing, several benchmarks on the Web report that
this is not true in practice.



Chapter 2

Open BEAGLE Tutorial

This section is a tutorial on Open BEAGLE as a genetic programming framework. It first
summarizes GP basics, and then proceeds with a simple example in order to illustrate both the
power and ease of use of the framework.

2.1 Genetic Programming

This sub-section is not a tutorial about tree-based GP. It is rather a summary of what needs to
be defined to resolve a problem with tree-based GP. If you are not familiar with GP, references
[2, 15] are good introduction books on the topic. To genetically program a computer for an
application, three issues of the problem domain must be addressed:

• What type of data elements are handled by the genetic programs?

• What is the set of computation primitives?

• How does one measures the fitness of individual programs?

To address the first issue, one needs to define the data type that will be manipulated by
the genetic programs. In Open BEAGLE, these data types are called datums. The datums are
application specific. For example, if the goal of an evolution is to discover the mathematical
expression of a hidden physical phenomenon, the datum could simply be floating-point numbers.

Once the datum type is defined, the primitives (more usually called functions and terminals
in GP) that will compose the GP individuals must be specified. This step is important because
these primitives are the building blocks of the genetic programs. A primitive is an application-
specific operation to which the nodes of the GP trees are associated.

All primitives must process and return data of the specified datum type. A primitive is
defined by three properties: its (unique) name, its number of arguments, and its characteristic
function. These properties must be carefully established for all Open BEAGLE primitives.

12
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Each primitives used are inserted into the set of usable primitives. This is a kind of instruction
set for the genetic programs. A valid set of primitives must be made of at least one function
primitive and one terminal primitive.

Finally, once the datum type and the set of primitives are established, the fitness func-
tion must be specified, that is the objective criteria that allow quality discrimination between
solutions.

2.2 Simple GP Example

This section provides an implementation of a well known symbolic regression problem geneti-
cally programmed with Open BEAGLE. The discussion follows a top-down approach, starting
with the main routine, followed by a description of the different implemented modules. Note
that in this document, all C++ code is intentionally written in a compact format without sep-
aration between interface (class definition) and implementation (method definition). This is
not a recommended practice for good C++ programming, nor for Open BEAGLE. Note also
that header file beagle/GP.hpp must be included in the application code to get the declarations
of the framework classes for GP. All generic Open BEAGLE classes are defined in the C++
namespace Beagle, while the GP specific classes are in namespace GP, which is in the global
namespace Beagle.

2.2.1 Symbolic Regression

A classical GP problem is the symbolic regression of a set of data points where the computer
searches for an analytical function that fits these data points. The problem is fully described in
[15], pages 162 to 169. Table 2.1 also summarizes this problem.

2.2.2 Function main

To define the main routine of a Open BEAGLE GP application, the following five steps are
needed:

1. Build primitives (GP::Primitive) and insert them into one or more primitive sets
(GP::PrimitiveSet);

2. Build an evolutionary system (GP::System) using primitive sets;

3. Build evaluation (GP::EvaluationOp);

4. Build an evolver (GP::Evolver);

5. Build a vivarium (GP::Vivarium).
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Objective Find a function f(x) of an independent variable x, in its symbolic form,
that corresponds to a set of sampled points (xi, f(xi)). For the present
case, the function to extrapolate is f(x) = x4 + x3 + x2 + x.

Datum Floating-point numbers.
Terminals set x (the independent variable).
Functions set +, −, ∗ and /. / is a protected division returning 1.0 when the de-

nominator is near to 0 (0± 0.001).
Fitness cases A random sample of 20 points (xi, f(xi)), with xi ∈ [−1, 1].
Raw fitness Sum of the square error for all the fitness cases: Fraw =∑19

i=0(fobtained(xi)− fdesired(xi))2.
Standardized fitness Mean square error (MSE) for all the fitness cases: Fstandard = Fraw/20.
Adjusted fitness Root mean square error (RMSE) for all the fitness cases:

Fadjusted =
√

Fstandard.
Normalized fitness Fnormalized = 1.0/(1.0 + Fadjusted).
Hits Number of fitness cases for which the difference between the desired

and obtained value is less than 0.01.
Stop criterions Whether the evolution reached the maximum number of generations

allowed, or that an individual with 20 hits is found.

Table 2.1: Symbolic regression problem

Afterward, the genetic system is ready to evolve. Figure 2.1 presents the C++ code for the main
function of the symbolic regression.

Step 1 (lines 7 to 12) defines the set of usable primitives. The GP::PrimitiveSet object is
a container for our primitives. The GP package of Open BEAGLE predefines several common
primitives (see Section 3.5.8). Here we use only basic arithmetic operators: add, subtract,
multiply and divide. The generic primitive GP::TokenT<Double> is used to contain a floating
point number that represents the independent variable of the regression. It is of type Double

which is a simple Open BEAGLE wrapper for atomic type double. All GP primitives must
be allocated on the heap (with a call to operator new), as shown in the example. Henceforth,
they will be memory-managed by the primitives set (see Section 3.3.2 for more details). The
primitives themselves are defined through inheritance from abstract class GP::Primitive (see
Section 3.5.7).

Step 2 (line 14) builds the system, that is an object that centralize references to the important
entities of the Open BEAGLE framework: the context, the register, the logger, the randomizer
and, for GP, the set of usable primitives. These entities are described in more details in the
architecture section (Section 3). In most cases, the Open BEAGLE user doesn’t need to interact
with these entities. They need to be used explicitly only for advanced applications, or for
developing new evolutionary algorithms.
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1 #include <beagle/GP.hpp>
2 #include "SymbRegEvalOp.hpp"
3 using namespace Beagle;
4 int main(int argc, char *argv[]) {
5 try {
6 // 1: Build primitive set
7 GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;
8 lSet->insert(new GP::Add);
9 lSet->insert(new GP::Subtract);

10 lSet->insert(new GP::Multiply);
11 lSet->insert(new GP::Divide);
12 lSet->insert(new GP::TokenT<Double>("x"));
13 // 2: Build a system
14 GP::System::Handle lSystem = new GP::System(lSet);
15 // 3: Build evaluation operator
16 SymbRegEvalOp::Handle lEvalOp = new SymbRegEvalOp;
17 // 4: Build evolver
18 GP::Evolver::Handle lEvolver = new GP::Evolver(lEvalOp);
19 // 5: Build vivarium
20 GP::Vivarium::Handle lVivarium = new GP::Vivarium;
21 // 6: Initialize and evolve the vivarium
22 lEvolver->initialize(lSystem,argc,argv);
23 lEvolver->evolve(lVivarium);
24 }
25 catch(Exception& inException) {
26 inException.terminate();
27 }
28 return 0;
29 }

Figure 2.1: C++ main routine of the symbolic regression example.

Step 3 (lines 16) concerns the creation of evaluation operator. The evaluation operator is an
object that implements the fitness evaluation method. The user needs to subclass abstract class
GP::EvaluationOp and define an evaluate method. In this case, we use class SymbRegEvalOp
to evaluate the fitness of an individual (i.e. a regressed function). This class is detailed in
Section 2.2.4.

Step 4 (line 18) builds an evolver that encapsulates the operators of the evolutionary al-
gorithm. These operators refer to all processes that evolve populations in a given paradigm.
In the current example, we use the default GP evolver, class GP::Evolver. This includes the
ramped half-and-half initialization, a tournament selection mechanism, standard crossover and
three different mutation operators, and miscellaneous operations like saving populations mile-
stone and computing generational statistics. The user can change the operations of predefined
evolver from either a configuration file or some programming. This generic approach, which is
one of the most powerful features of Open BEAGLE, when combined with generic population
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allocators, enables the construction of any evolutionary paradigm.

Step 5 (line 20) builds the vivarium that contains the population. A vivarium is composed of
a set of demes, which are composed of individuals that are themselves composed of genotypes.
A deme, Open BEAGLE class Deme, is simply a set of individuals that evolve together in a
closed circuit. An individual is composed by one or some genotypes and a fitness value. It can
in fact contain more than one genotype. For instance, Automatically Defined Functions (ADF)
[16] are coded using a set of genotypes (i.e. forest of trees). The genotype is the basic data
structure used for coding individuals. For GP, this data structure is a rooted tree, defined by
class GP::Tree. Using the GP::Vivarium, the vivarium is initialized using the default allocators
of demes/individuals/genotypes for GP. However it is possible for the user to override the default
setting of the vivarium and used allocators to desired population elements. More details about
allocators can be found in Section 3.3.3.

At line 22, the evolver is initialized using both command-line arguments and the Open
BEAGLE system. Through the command-line, it is possible to change the value any of the
evolution parameters (how to do this is explained in section 2.2.5). A XML configuration file is
also parsed by the initialize method (see Section 4.3 for more details). Line 23 then makes the
vivarium evolving until the stopping criterion is reached.

Notice the fact that all instructions in function main are within a try-catch block. Open
BEAGLE defines many standard exceptions for dealing with abnormal situations. See Section
3.3.7 for more details. The users are encouraged to proceed this way. Note also that every Open
BEAGLE object is dynamically allocated (by a call to the C++ new operator) and its pointer
is wrapped using a Handle object. The Handle type is a smart pointer that manages objects
allocated on the heap. The use of smart pointers prevents some common memory leaks and
facilitate the work of Open BEAGLE users. These handlers are fully described in Section 2.2.4.

2.2.3 Datum and Primitives

In the Open BEAGLE framework, every class inherits from an abstract base class named
Object1. This class includes many virtual methods that makes the framework very power-
ful, based on strong abstractions and sophisticated OO mechanisms. But because of this, the
GP primitives cannot directly use atomic C++ types like int or double. They must use an
object wrapper that adapts the desired type to the Object class. Thus, GP primitives must be
designed to manipulate object derived from type GP::Datum which is a simple typedef:

namespace GP {

typedef Object Datum;

}

1There are some exceptions to this rule, but these will be covered later.
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1 #include "beagle/GP.hpp"
2 using namespace Beagle;
3 class Add : public GP::Primitive {
4 public:
5 Add() : GP::Primitive(2, "+") { }
6 virtual void execute(GP::Datum& outResult,GP::Context& ioContext) {
7 Double lArg1;
8 get1stArgument(lArg1,ioContext);
9 Double lArg2;

10 get2ndArgument(lArg2,ioContext);
11 Double& lResult = castObjectT<Double&>(outResult);
12 lResult = lArg1 + lArg2;
13 }
14 };

Figure 2.2: Definition of an Add primitive.

To simplify the wrapping of external types, Open BEAGLE defines a class template, named
WrapperT, that implements the virtual methods of class Object. The methods of WrapperT are
implemented as calls to the usual C++ operators (i.e. constructor, destructor, copy-constructor,
assignment operator, operators == and <, etc). Moreover, casting operators are also defined in
order to enable conversion between wrapper and wrapped types.

For the example of the symbolic regression, standard Open BEAGLE wrapper type Double

(note the capital letter) is used to encapsulate floating point numbers:

typedef WrapperT<double> Double;

If unsigned integers were needed, a corresponding wrapper type would be used. For instance,
Open BEAGLE type UInt is defined as:

typedef WrapperT<unsigned int> UInt;

Other wrapper types such as Float and Bool are also defined in Open BEAGLE (see Table 3.1
for a complete listing).

After defining a common datum type for an application, the primitives themselves need to
be defined. For the symbolic regression problem, we have chosen to use four of the predefined
arithmetic operators: +, −, ∗, and /. Figure 2.2 gives the C++ code for class GP::Add that im-
plements the + primitive between two Double data. The definitions of the other three primitives
are almost identical. Any primitive must inherit from abstract class GP::Primitive (line 3) and
define method execute (line 6). It is this method that defines the characteristic function of the
primitive. A primitive is usually constructed with a call to the constructor of its superclass, as
in line 5. The first argument of this call specifies the number of arguments for the corresponding
primitive, while the second argument assigns a string label (a name) to it.
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Method execute (line 6) receives two arguments: a reference to a GP::Datum for returning
its result, and a reference to the current context that holds the state of the whole evolutionary
process, class GP::Context. The later is needed for evaluating the operands of the primitive.
Although the Open BEAGLE context is a relatively complex object, the end user need not know
anything about its internal working. He is only required to pass on this reference to method
get1stArgument and get2ndArgument implemented in GP::Primitive, in order to retrieve the
primitive’s operands. This is done at lines 8 and 10 for the two operands of our primitive. The
two arguments of methods get1stArgument and get2ndArgument are respectively: the datum
for returning the value, and the current context. In order to return its own result, method
execute also needs to cast the GP::Datum reference that it received at line 6, into an adequate
reference for assigning the result of it computation, in this case a Double. This is done at line
11 using the Open BEAGLE castObjectT method that implements a dynamic cast.

In the listing of Figure 2.1, at line 12, a special primitive of type GP::TokenT<Double>

was also inserted into the primitive set. This standard primitive is for encapsulating an input
variable of the problem at hand. In this case, the datum is of type Double, and the variable is
named x (for more details, the reader is referred to Section 3.5.7).

2.2.4 Fitness Evaluation

NOTE: The code of the symbolic regression example is now slighlty different from this one. It
would be more consistent to update it here.

In this section, we examine the C++ code of class SymbRegEvalOp which implements the
fitness evaluation function for our symbolic regression application (see Figure 2.3). This class is
not a standard Open BEAGLE class, it is derived from abstract class GP::EvaluationOp, and
especially designed for our application. The method evaluate is declared as pure virtual in the
class GP::EvaluationOp. This mean that the method must be overridden in a concrete subclass.
The method receives as argument a reference to an individual to evaluate, and a reference to the
context to use. In the evaluation method, an individual is parsed by a call to the method run of
GP::Individual. The result of the interpretation is put into the datum given as argument. The
value of the input value of the individuals, can be modified for each evaluation case with a call
to the method setValue of GP::EvaluationOp. The first argument of the call to the method
is the name of the GP primitive to modify. The second argument is a reference to the datum
that will contain the result of the evaluation. And finally, the third argument is the context to
be used. The method evaluate terminates by returning a dynamically allocated fitness value
object. The default fitness object type to use is FitnessSimple, which define a single fitness
measure to maximize.

The method postInit (line 26 to 32) is a hook called one time by Open BEAGLE, just
after the system has been initialized, but before fitness evaluation are done. In the actual case,
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1 #include <cmath>
2 #include <vector>
3 #include "beagle/GP.hpp"
4 using namespace Beagle;
5 class SymbRegEvalOp : public GP::EvaluationOp {
6 private:
7 std::vector<Double> mX; // Sampled x-axis values
8 std::vector<Double> mY; // Sampled y-axis values
9 public:

10 SymbRegEvalOp() { }
11 virtual Fitness::Handle evaluate(GP::Individual& inIndividual,
12 GP::Context& ioContext) {
13 double lQErr = 0.; // square error
14 for(unsigned int i=0; i<mX.size(); i++) {
15 setValue("x",mX[i],ioContext);
16 Double lResult;
17 inIndividual.run(lResult,ioContext);
18 double lError = mY[i]-lResult;
19 lQErr += (lError*lError);
20 }
21 double lMSE = lSquareError / mX.size();
22 double lRMSE = std::sqrt(lMSE);
23 double lFitness = (1.0 / (lRMSE + 1.0));
24 return new FitnessSimple(lFitness);
25 }
26 virtual void postInit(System& ioSystem) {
27 GP::EvaluationOp::postInit(ioSystem);
28 for(unsigned int i=0; i<20; i++) {
29 mX.push_back(ioSystem.getRandomizer().rollUniform(-1.,1.));
30 mY.push_back(mX[i]*(mX[i]*(mX[i]*(mX[i]+1.)+1.)+1.));
31 }
32 }
33 };

Figure 2.3: Evaluation operator definition for the symbolic regression example.

the method is implemented to sample the equation to regress. This could not have been done
before, as the random number generator is not valid until the system is completely initialized.
But this also cannot be done after, as the equation to regress must be sampled before any fitness
evaluation. This method postInit is originally defined in the class Operator, which is a parent
of EvaluationOp.

Three nested data types are defined for all object-derived Open BEAGLE classes: Handle,
Alloc, and Bag. The handle type (Handle) defines a smart pointer of the Open BEAGLE object
to which it belong. It allows the emulation of a garbage collection mechanism similar to the one
of the Java language. The use of a smart pointer (or handle if you prefer) is equivalent to the use
of a standard C/C++ pointer. The difference is that a smart pointers increments/decrements
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the reference counter when a Open BEAGLE object is referred/unreferred. An handled object
is self-destructed when its reference counter is equal to 0.

There is some rules to follow when using smart pointers in conjunction of Open BEAGLE
objects:

1. An handled object must always be allocated on the heap, with a call to the new operator;

2. Programmers must never delete a smart pointed object. The deallocation of the instance
is the responsibility of the handles;

3. The access to a pointed object, using a referring handle, is made with the same operators
than the standard C/C++ pointers, the operators * and ->.

The second nested data type is the allocator (the type Alloc). It defines a Open BEAGLE
type able to allocate, clone and copy object of the associated type. For example an instance
of Double::Alloc is an object that allocate, clone (on the heap) and copy Double. This data
type is a central aspect of Open BEAGLE design and allows some sophisticated mechanism with
little effort for the application developer. It is explained in more details in section 3.3.3.

Finally, the last nested data type is the container (the type Bag). It correspond to the Open
BEAGLE basic structure containing data of a given type. A container of a given type is simply
an array of smart pointers to the given type. It can contain instances of the associated type,
and/or instances of types derived from the associated type. More details are given in Section
3.3.4.

2.2.5 Experimenting with the Example

The code of the symbolic regression example can be found in the folder examples/GP/symbreg
of the Open BEAGLE distribution. Once the Open BEAGLE libraries built, you can compile
the example symbreg by following the instructions given in the INSTALL file. Then, it can be
very interesting to experiment with the example.

To do so, open a shell (or a DOS terminal under Windows) and cd to the symbreg directory
of the example directory. If your built is successful, you should find here the binary symbreg.
Execute the program with the following command.

./symbreg

At the console output, you get XML logs on the running evolution. Here is the typical vivarium
statistics given by the logs.

<Log>
<Stats id="vivarium" generation="21" popsize="100">
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<Item key="processed">96</Item>
<Item key="total-processed">2031</Item>
<Measure id="fitness">
<Avg>0.583894</Avg>
<Std>0.104593</Std>
<Max>0.867907</Max>
<Min>0.287821</Min>

</Measure>
<Measure id="treedepth">
<Avg>4.74</Avg>
<Std>2.39368</Std>
<Max>11</Max>
<Min>1</Min>

</Measure>
<Measure id="treesize">
<Avg>10.4</Avg>
<Std>6.98339</Std>
<Max>33</Max>
<Min>1</Min>

</Measure>
</Stats>

</Log>

The values in the XML tags Log indicate a log entry. The values in tags Stats are statistics
of a population (a deme or a vivarium). The value of the statistics item named processed

tags is the number of individuals processed (evaluated) during the actual generation, while the
value associated to the item total-processed is the cumulative number of individuals processed
since the beginning of the evolution. The values between each Measure tags are statistics of the
given measure: the first is the simple fitness value and the two last are tree grow measure (i.e.
maximum tree depth and total tree size). The values in the tags are respectively: Avg for the
average, Std for the standard deviation, Max for the maximum value, and Min for the minimum
value.

Once the evolution finished, a milestone is written on disk. By default, the milestone is
written as the file beagle.obm2 in the current directory. A milestone file contains a bunch of
useful informations on the evolution: the evolver structure, the value of the parameters, some
statistics, the best individuals of the evolution, and the population at the last generation. It is
also useful to restart evolutions that were interrupted prematurely. Take a look on the milestone
file and try to find the best-of-run individuals (it is between two HallOfFame XML tags).

Now, it can be interesting to change some evolution parameters. This can be done in two
ways: on the command-line, or using a configuration file. To get the command-line usage of the
example, type the following command.

2If an installation of zlib is detected on your system at the compilation time, which is usually the case with
most modern Unix/Linux, the milestone might be written as compressed file beagle.obm.gz. If you want to take
a look to it, you only need to uncompress it with the command gunzip (i.e. gunzip beagle.obm.gz).
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./symbreg -OBusage

All the Open BEAGLE specific arguments start with the prefix -OB, followed by the tag, an
equal sign and the values of the parameter (except for special arguments usage and help). For
example, if you want to set the crossover probability to 0.75, the command-line would be the
following.

./symbreg -OBgp.cx.indpb=0.75

You can specify several parameters on the command-line by separating them by a comma.

./symbreg -OBgp.cx.indpb=0.75,ec.term.maxgen=100

To get detailed about the different parameters available, use the argument -OBhelp.

./symbreg -OBhelp

The second way to set parameters is to use a parameter file. You can generate a default
configuration file by using the command-line argument -OBec.conf.dump with the filename of
your configuration file.

./symbreg -OBec.conf.dump=mysymbreg.conf

The generated configuration file, named here mysymbreg.conf, comprises all the available pa-
rameters set to their default values, and the evolver algorithm used. You can edit the file if
you want to change the value of the parameters. Once you have a customized configuration
file, you can start an evolution using this file by setting the ec.conf.file parameter on the
command-line.

./symbreg -OBec.conf.file=mysymbreg.conf

The configuration file can also describe the form of the evolutionary algorithm used. For some
examples distributed with the Open BEAGLE, there is two configuration files containing pre-
configured evolvers: name-generational.conf, and name-steadystate.conf, where name is
the name of the example. You can change the evolver structure in the configuration file, which
mean changing the operation used in the evolutionary algorithm. This is explained later in the
document, at section 4.4.1.

NOTE: It would be great to add some other tutorials on other representations such GA
bitstring, GA floatvector and ES.
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Open BEAGLE Class Architecture

This section presents the global class architecture of Open BEAGLE. The framework has a three
levels architecture, as illustrated in Figure 3.1. The foundations are located at the bottom,
as an OO extension of the C++ language and STL. The EC generic framework is built on
these foundations and is composed of features that are common to all Evolutionary Algorithms
(EA). Finally, different independent modules specialize this generic framework, each module
implementing a specific EA.

NOTE: Some general explanations on PACC and its introduction in Open BEAGLE is
necessary here.

The discussion is divided in four parts: the naming convention, the generic object oriented
framework, the generic EC framework, and the specialized frameworks.

GA GP Other EC

Generic EC framework

Object oriented foundations

C++ Standard Template Library (STL)

Figure 3.1: Software architecture diagram

23
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3.1 Open BEAGLE C++ Naming Convention

All the Open BEAGLE framework has been implemented following a simple, but precise, naming
convention. This naming convention is stated by the following rules.

1. An identifier is typically constituted of several concatenated words which all begins with
a capital letter:

MyIdentifier

2. As well are formed namespace, class, struct and typedef identifiers:

namespace MyNamespace;
class MyClass;
struct MyStruct;
typedef int MyInt;

3. As well are formed template identifiers, with an additional capital T at the end of the
identifiers:

template<class T> MyTemplateT;

4. The enumerate types follow the basic rule, but the identifiers of the enum values start with
a small e:

enum MyEnum {eValue1, eValue2};

5. The methods identifiers are exceptions to the first rule by the fact that the first word of
their name is entirely in small letters, including the first letter. Generally, the first word
of a method is an action word.

void MyClass::setValue(...);

6. The variable identifiers, class attributes or local variables are also exceptions to the first
rule by the fact that they must start with a key word all in small letters. These key words
specify the functionality of the variable.

(a) Class, struct or templates attributes starts with a small m:
class MyClass {
int mAttribute;

};

If the attribute is also a static member, the identifier starts with a small sm:
class MyClass {
static int smStaticAttribute;

};
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(b) A local variable in a list of formal parameters of a method starts with the prefix in

if it’s an input parameter, out if it’s an output parameter or io if it’s a bidirectional
parameter.

void simpleMethod(int inParam1, double &ioParam2, char *outParam3);

(c) A local variable that is not a member of a list of formal parameters starts with the
letter l:

void MyClass::simpleMethod2(...) {
...
int lLocalVariable;
...

}

(d) A constant (that is typed with the const qualifier) starts with the c letter. A constant
class attribute starts with a cm attribute.

7. A macros identifier follows the first rule of the identifier and ends with a capital M:

#define MyMacroM(X) (...)

A macro specific to a namespace start with the namespace identifier, followed by an un-
derscore ( ):

namespace MyNamespace {
#define MyNamespace_MyMacroM(X) (...)
}

3.2 Portable Agile C++ Classes

NOTE: A detailed section on PACC is necessary here.

3.3 Generic OO Foundation

This section presents the generic object oriented (OO) mechanisms used in Open BEAGLE.
Although these mechanisms were designed to be the foundation of Open BEAGLE, they could
have been implemented in most OO frameworks. Some of our design choices are inspired from
design patterns [11, 18]. Some concepts are also took from well-known OO environments such
the C++ Standard Template Library (STL) [23], the Java Library [4], and CORBA [12].

3.3.1 Objects

In Open BEAGLE, most classes are derived from an abstract class called Object. An Open
BEAGLE object comprises some general methods that are characteristic of a complete C++
object.
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namespace Beagle {
class Object {
public:
unsigned int getRefCounter() const;
virtual bool isEqual(const Object&) const;
virtual bool isLess(const Object&) const;
virtual void read(XMLNode::Handle&);
Object* refer();
void unrefer();
virtual void write(XMLStreamer&) const;

private:
unsigned int mRefCounter;

};
}

The usual C++ objects comparison operators are defined, receiving arguments of the Object

type and calling the appropriate comparison method (isEqual or isLess). The method read

and write are used to read and write objects in the XML format. Section 3.3.5 gives more
details about the Open BEAGLE I/O in XML.

NOTE: We are now using XML reading/writing facilities from PACC
(PACC::XML::Document and PACC:XML::Streamer), which are in fact a more recent ver-
sion of Open BEAGLE XML facilities. Readind/writing fonctions signatures are now slightly
different and explanations on them should be updated.

An Open BEAGLE object also implements a reference counter that remembers the number
of references that point to it. The C++ language defines two ways of allocating an object
instance. First, the instance can be allocated on the stack, it will then be destructed at the end
of the scope. Second, the instance can be allocated on the heap with a call to the new operator,
which means that it is necessary to apply a symmetrical delete at the end of the instance
lifetime. With Open BEAGLE, there is a variation on the second way to allocate objects: an
Open BEAGLE object can be allocated on the heap and affected to Open BEAGLE smart
pointers that interact with the object reference counter. The destruction of the object is then
the responsibility of the smart pointers. This is the topic of the following section.

3.3.2 Smart Pointers

An Open BEAGLE smart pointer acts like a standard C++ pointer that manage the memory
used by the pointed objects. It is implemented in class Pointer, which is tightly linked to the
reference counter of class Object. The implementation of the Pointer class guarantees that
the pointed object exists since there is a smart pointer that refer to it. It also guarantees that
the object will be destroyed when its last reference will vanish. This emulates the appreciated
garbage collection mechanism of some programming languages. In fact, the Open BEAGLE
smart pointers are coherent with the creation and the garbage collecting of objects of the Java
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Figure 3.2: Relation between objects and smart pointers.

language. The two things that the user should remember are to allocate objects on the heap
(with a new) and never interfere with object destruction after assigning them to smart pointers.
Once an object is referred by smart pointer, the memory management responsibility is held by
the smart pointer.

Exceptionally, the Pointer class and its subclasses do not inherit from superclass Object.
Like a C++ pointer, an Open BEAGLE pointer can be assigned to a null pointer. The class
also provides the two usual dereferencing operators, operator* and operator->, which return
a reference to the pointed object. There is also two comparison operators (operator== and
operator!=) between two Pointer, between a Pointer and an Object* and the null pointer
testing operator (operator!). The relation between the objects and the smart pointers is
presented in Figure 3.2.

Since any instance are concrete objects and smart pointers give references to the abstract
Object type, each access to methods or attributes that are not declared in the object interface
needs a cast of the reference given by the smart pointer to the desired derived type. This could
lead to inelegant code, or even type inconsistencies if old C-style casts were used. To avoid these
problems, there is a templated class, PointerT, that defines the pointer unreferencing operators
to the desired type.

template <class T, class BaseType>
class PointerT : public BaseType {
public:
inline T& operator*();
inline T* operator->();

};

The PointerT template also emulates the mechanism of automatic pointer type binding for
inheritance-related classes. This allows a compile-time binding of T-type smart pointers that
inherit from the BaseType, when a BaseType object is needed. For example, suppose a method
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taking an argument of the type Base::Handle, which is a smart pointer to an object instance
of the class Base. With the automatic type binding of smart pointer, the method can get
as argument a smart pointer to the type Derived::Handle, supposing that the class Derived

inherits from the class Base. This can be done without any explicit cast of the smart pointers.
PointerT has two templated parameters: the type of object handled, the T-type, and the parent
type of the smart pointer, the BaseType. The BaseType is useful for the automatic type binding
emulation by inheritance.

For each class of Open BEAGLE, the nested type Handle is declared. This is the type of
handle to the class, that is, a smart pointer that gives exact reference type. Usually, this type
is simply declared as a synonym of a parametrized PointerT.

class AnyClass : public SuperClass {
public:
typedef PointerT<AnyClass,SuperClass::Handle> Handle;
...

};

Doing so, a smart pointer can be used to return reference to the right type, the type AnyClass,
simply by working with the right handle type, AnyClass::Handle. It is a good practice to define
the nested Handle type for every class that inherits directly or indirectly from an Object.

3.3.3 Allocators

Open BEAGLE is characterized by great versatility. This is achieved by different features and
design choices, the first being an abstract object superclass that gives some essential generic
mechanisms and from which almost every other Open BEAGLE class is derived. Another
important design choice that gives flexibility to Open BEAGLE is the allocators, a kind of
object factory that generates objects in an abstract fashion. An abstract allocator class named
Allocator is implemented to define the methods to create objects on the heap.

class Allocator : public Object {
public:
virtual Object* allocate() const =0;
virtual Object* clone(const Object&) const =0;
virtual void copy(Object&, const Object&) const =0;

};

The purpose of the allocators is to provide factory methods to create and clone new types of
objects derived from Open BEAGLE constituents. With such mechanism, any user could create
new type of objects that redefine the default one and use associated allocators that return
pointers to this new type of objects. This mechanism is similar and coherent with the Factory

Method design pattern [11].
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Usually, an allocator is used to allocate objects through their default constructor and clones
the objects by calling their copy constructor. An allocator can also copy an existing object of a
given type into an other. To simplify the task, a simple standard parametrized allocator named
AllocatorT is defined to override the virtual method of the abstract class Allocator. Like
the smart pointers Handle type, each component of Open BEAGLE has a nested allocator type
called Alloc. The users are encouraged to define it in their classes.

class AnyClass : public SuperClass {
public:
typedef PointerT<AnyClass,SuperClass::Handle> Handle;
typedef AllocatorT<AnyClass,SuperClass::Alloc> Alloc;

};

However, the template AllocatorT cannot be used to define an Alloc type for an abstract
type. The reason is that the method allocate and clone cannot be implemented to instantiate
object of the abstract allocated type. To solve this problem, another templated allocator type
is implemented, AbstractAllocT. This allocator does not define the methods allocate and
clone, but is usable in the same way than AllocatorT as an allocator type for abstract types.

3.3.4 Data Structures

It is natural to design data structures that take advantage of all the mechanisms exposed in
the current section. Working with the new features of the C++, it is essential to exploit the
Standard Template Library (STL) [23] which provides common, well known and portable data
structures and algorithms. An Open BEAGLE specific, but STL compliant, data structures is
extensively used: the container.

The Open BEAGLE container is a random access table of heterogeneous objects. It is
implemented as a dynamic array of specified smart pointers. Any objects that is a specialization
of the contained type could be put in a container. The constraints are the same as those of
the smart pointers: the objects must be allocated on the heap (via the new operator) and these
objects must not be unallocated explicitly (i.e. delete of the objects are forbidden). Our
container is implemented as a Beagle object that is also a STL vector of object handles.

class Container : public Object, public std::vector<Object::Handle> { ... };

Built this way, our container could be manipulated by the STL generic algorithms. It is also
possible to make container of containers, since a container is an object that can be smart pointed.

A drawback of this data structure is that every contained objects must have been allocated
(on the heap) and thereafter inserted into the container. Knowing so, we add an allocator
handle member attribute to the class Container. This member automatically allocates instance
of objects when resizing. If no allocator are given to a container (the member value of the
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allocator handle is null), resizing will simply resizes the vector of smart pointer and the newly
added pointers are initialized to the null value. It is then possible to dynamically type containers
by giving them allocator instances of the desired type.

As with the smart pointers and allocators, every Open BEAGLE type has a nested type
that define a container of the specified type, the nested type named Bag. For example, the
type that is a container of floating-point values, Float, is the type Float::Bag. The nested
type is declared in classes as usual for the nested types Handle and Alloc, using a typedef to a
template, in this case to template class ContainerT.

class MyClass : public SuperClass {
public:
typedef AllocatorT<MyClass,SuperClass::Alloc> Alloc;
typedef PointerT<MyClass,SuperClass::Handle> Handle;
typedef ContainerT<MyClass,SuperClass::Bag> Bag;

};

The use of dynamically typed containers raises a problem when it is necessary to allocate
containers of objects not from the basic usual associated type. Supposing a container of genotype,
namely a Genotype::Bag. It may be possible for the container to contain a different type of
genotype, for example genotypes of the type SpecializedGenotype, which is derived from the
type Genotype. Then, the type allocator member of Genotype::Bag should be an instance
of the type SpecializedGenotype::Alloc. This can be easily done by giving as argument
an SpecializedGenotype::Alloc to the constructor of Genotype::Bag. But supposing now
that a Genotype::Bag::Bag is created and that it should contain these containers dynamically
typed, it is necessary to defined a new allocator of Genotype::Bag that instantiate the allocator
of Genotype as instances of allocator of SpecializedGenotype. This can be very tricky to
implement for a novice user.

This issue is solved by designing a new template of allocators specific to the Open BEA-
GLE containers. This specialized allocator has an attribute that is an object allocator handle
compatible with the type contained in the associated bag. This allocator is implemented in the
basic class ContainerAllocator.

class ContainerAllocator : public Object::Alloc {
public:
ContainerAllocator(Object::Alloc::Handle);

protected:
Object::Alloc::Handle mContainerTypeAlloc;

};

The type Alloc of ContainerT is declared as typedef of a templated allocator of container
(ContainerAllocatorT). This template takes a third type, the type of the member allocator
type of the container, in addition to the two first usual types.
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template <class T, class BaseType>
class ContainerT : public BaseType {
public:
typedef ContainerAllocatorT<ContainerT<T,BaseType>,BaseType,T::Alloc> Alloc;
...

};

Doing so, allocators of bags that are dynamically typed can be instantiated. A second template
for the case of abstract bag type has also been declared, AbstractContainerAllocT. This is
coherent with the discussion about the type AbstractAllocT, which is presented in section 3.3.3.

3.3.5 XML Input/Output

NOTE: As explained before, XML facilities are now provided by PACC. The way we use it is
now fundamentally different from what is explained here, although the whole subsection should
be completly revised.

Reading and writing files containing evolutionary data, such the population, the parameters,
the algorithm, the results of the evolution, is an important aspect of an EC framework. The
C++ already provides an interesting streaming mechanism to read and write objects into a file,
the memory or the standard input/output. Although, there is also a very interesting technology
that is more and more used as a file format, the eXtensible Markup Language (XML) [3]. Mixing
these two concepts together lead us to an important mechanism of this framework: the Open
BEAGLE input XML parser and output object streamer.

The XML format was first intended to be an improved generic replacement to HTML, but it
appears to be so generic, and so well accepted by the industry, that it’s now a central technology
for domains such data modeling (as in the modern word processors), lightweight distributed
computing (SOAP and XML-RPC), databases interactions and Web integration in general.
Although the XML is a human understandable format, it is also a flexible and powerful file
format, ideal for a to be used in conjunction of a framework such Open BEAGLE. A XML
document can also be interpreted to screen by most modern Web browsers such Mozilla and
Microsoft Internet Explorer.

The new Open BEAGLE XML input / output classes (since version 2.0.0) consists into a
DOM-like XML parser and a XML streamer. The XML parser read file by constructing a tree
with the XML files it reads, using object of the class XMLNode to build the tree. The XML parser
uses a standard C++ input stream as input devices. The XML output streamer is a simple API
class that can generate XML output into a standard C++ output stream.

For every Open BEAGLE objects that can read and written, the methods read and write

must be over-defined consequently. For the read, this is done by a exploring the tree build by
the XML parser. For the write method, the object must be serialized using the XML streamer
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API.

To illustrate this, the following example presents the listing of the method read and write

of the hypothetical class DataValue.

class DataValue : public Beagle::Object {
private:
std::string mName;
double mValue;

public:
virtual void read(Beagle::XMLNode::Handle& inNode) {
if(inNode->getTagName() != "Data")
throw Beagle_IOExceptionNodeM(*inNode, "tag <Data> expected");

mName = inNode()->getTagAttribute("name");
if(inNode->getFirstChild() == NULL)
throw Beagle_IOExceptionNodeM(*inNode, "no value for tag <Data> found");

mValue = uint2str(inNode->getFirstChild()->getValue());
}
virtual void write(Beagle::XMLStreamer& ioStreamer) const {
ioStreamer.openTag("Data");
if(mName != "") ioStreamer.insertAttribute("name", mName);
ioStreamer.insertFloat(mValue);
ioStreamer.closeTag();

}
};

The XML output produced of an instance of a DataValue object that have as name mydata and
as value 1.5 would be the following.

<Data name="mydata">1.5</Data>

In conjunction of the XML file format used in Open BEAGLE, it is planed to develop
an infrastructure to analyze the files containing the populations or evolution statistics, into a
standard Web browser, using modern Web technologies. This will eventually allows distant
evolution management with simple Web interfaces and utility scripts to do some sophisticated
analysis of the evolutions.

NOTE: A short overview (1-2 sentences) of Open BEAGLE file format is necessary here.

3.3.6 Object Wrappers

Given all this functionalities, the predominance of the object abstraction in Open BEAGLE’s
design is evident. But, if a user has some elaborated classes, or if a user wants to use other
libraries in conjunction of Open BEAGLE, it might be restrictive that everything must inherit
from the superclass Object. The user might not want to redefine everything or to use multiple
inheritance to created hybrid classes. To enhance the user experience, a class template that
would keep the use of Open BEAGLE simple is defined: the object wrapper. The wrapper is
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a simple adapter of any type to the Open BEAGLE Object interface. The concept of object
wrapper is based upon the Adapter design pattern [11].

The wrapper is defined in the C++ template WrapperT. The template maps the Object

interface to the usual methods of the wrapped type. The template got some casting operators to
indifferently use the wrapper as the wrapped type. Furthermore, some types that are wrappers
of the C++ fundamental types are defined as standard types of Open BEAGLE. Table 3.1
presents all the standard wrapped type defined in Open BEAGLE.

C++ name Wrapper name

bool Bool
char Char
double Double
float Float
int Int
long Long
short Short
std::string String
unsigned char UChar
unsigned int UInt
unsigned long ULong
unsigned short UShort

Table 3.1: Predefined wrapper types

NOTE: Some explanations on the ArrayT template is also necessary here.

3.3.7 Exceptions

Open BEAGLE integrates the C++ exceptions mechanism. Keeping it OO, an hierarchy of
exceptions are defined. At the top there is the abstract exception superclass, Exception,
from which every other Open BEAGLE exception classes inherit. This class inherit from the
standard std::exception class, which allow catch of Open BEAGLE exceptions in a simple
catch(std::exception&) expression.

class Exception : public Object, public std::exception {
public:
explicit Exception(std::string inMessage="");
void terminate(std::ostream& ioES=std::cerr) throw();
virtual const char* what() const throw();

protected:
std::string mMessage;

};
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Some other exceptions classes are defined into Open BEAGLE for different type of problem
encountered. For most concrete standard Open BEAGLE exceptions, there is an associated
macro that simplify the throwing of an exception. Table 3.2 presents the list of exceptions
defined in Open BEAGLE, with a short description of the context they are used.

Exception class Parent class Description

Exception std::exception Base exception class
TargetedException Exception Family of exceptions relative to a specific

piece of code. A targeted exception includes
the file name and line number where the ex-
ception is thrown.

ValidationException Exception Generally related to the detection of invalid
parameter values.

AssertException TargetedException Thrown when an Open BEAGLE as-
sertion test fail. Several macros such
Beagle AssertM are also defined to do C-
like assertion tests.

BadCastException TargetedException Thrown when a castObjectT or
castHandleT operation fail.

InternalException TargetedException Thrown when unexpected situation denoting
internal problems are detected.

IOException TargetedException Thrown when problems with the XML
parser or streamer, or in the read or write
methods, are detected.

ObjectException TargetedException Exception associated to a specific object.
The error message usually display the serial
representation of the associated object.

RunTimeException TargetedException Generic exception denoting a problem de-
tected at the run-time that doesn’t fall into
the previous categories.

Table 3.2: Standard exception classes defined in Open BEAGLE

NOTE: New exceptions have been added to the GP framework, to interrupt the interpre-
tation of an individual. They should be added to the table.

3.3.8 Summary

Figure 3.3 summarizes the Open BEAGLE OO foundation with a UML1 diagram. It presents
the different entities that compose the generic part of the framework. The most important of
them is the class Object, the basic class from which most others Open BEAGLE class inherits.

1Unified Modeling Language. See [7] for further explanation about UML.
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Any object subtype could be smart pointed by a Open BEAGLE pointer, which managed the
deallocation of the object when it is appropriate. The allocators are objects that allocate,
clone, and copy Open BEAGLE objects. The container is a flexible data structures tightly
related with the objects, smart pointers and allocators. The Open BEAGLE XML parser and
output streamer are objects to insert and extract objects into/from C++ streams. They allow a
transparent reading and writing of Open BEAGLE object the powerful XML file format. There is
some templates related to these entities that exploit great concepts of generic programming and
make the programmer’s life easier. Finally, a short discussion of the error handling mechanism
deployed in Open BEAGLE terminates the section.

3.4 Generic EC Framework

The generic EC framework is the extension of OO foundations. It offers a solid basis for imple-
menting Evolutionary Algorithms (EA). It is composed of a generic structure for populations, an
evolution system and a set of operators packed in an evolver. All components of the generic EC
framework are integrated together as modules that can be replaced or specialized independently.
This modular design gives much versatility to the framework and simplifies the implementation
of any EA. See Figure 3.4 for the generic EC framework. The following discussion explains this
generic framework and is divided into three sections: the populations and statistics, the internal
system, and the operators and evolvers.

3.4.1 Populations and Statistics

The statistics of the fitness measurements of a population is held in the following structure.

struct Measure {
std::string mId;
float mAvg;
float mStd;
float mMax;
float mMin;

};

class Stats : public Object, public std::vector<Measure> {
public:
void addItem(std::string inTag, double inValue);
void clearItems();
double deleteItem(std::string inTag);
double& getItem(std::string inTag);
const double& getItem(std::string inTag) const;

...
protected:
std::map<std::string,double> mItemMap;
std::string mId;
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Figure 3.3: Generic object oriented foundation of Open BEAGLE
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Figure 3.4: Generic EC framework architecture

unsigned int mGeneration;
unsigned int mPopSize;

};

For the usual EC algorithm, statistics for a population are calculated every generation. Two
important elements compose the statistics: the measures and the items. A measure provides the
statistical analysis of the distribution (average, standard deviation, maximum, and minimum)
of a given value of interest taken on the population. On the other hand, an item is a single
value represented by a floating-point number associated to a tag name. Items and measures
are dynamically added to the statistics, and are generally computed by a statistics computation
operators. These operators are specific to the fitness object and inherit from the abstract class
StatsCalculationOp.

class StatsCalculateOp : public Operator {
public:
virtual void calculateStatsDeme(Stats& outStats, Deme& ioDeme,

Context& ioContext) const =0;
};

When a non-standard fitness object is used, a companion statistics computation operator must
defined by inheriting from StatsCalculationOp class and over-defining the pure virtual method
calculateStatsDeme.

The fitness holder of an individual is represented in an object derived of the type Fitness.
When the user implements a concrete evaluation class, the method evaluate must returns a
fitness object appropriate to the application. There is some of the predefined standard fitness
measures, such FitnessSimple, FitnessSimpleMin, FitnessMultiObj, FitnessMultiObjMin



CHAPTER 3. OPEN BEAGLE CLASS ARCHITECTURE 38

Vivarium

Deme

Individual

Genotype

Genotype::Bag

Individual::Bag

Deme::Bag

File: V:\Usagers\cgagne\rose\popstruct.mdl    16:31:57 24 juillet, 2002    Class Diagram: Logical View / Main  Page 1

Figure 3.5: Structure of the population in Open BEAGLE

or GP::FitnessKoza, which defined respectively a fitness made of a single float, the mini-
mization equivalent of single float, multiobjective maximization fitness measures, multiobjective
minimization fitness measures or a more elaborated fitness taken from [15, 16]. A specialized
fitness type could also be defined for more sophisticated evolution.

In Open BEAGLE, the population is structured into four layers: a vivarium, the demes, the
individuals and the genotypes. The first layer, the vivarium, comprises the whole population of
a specific evolution, that is, an aggregate of one or more demes. A deme [17] is a population
that evolves in an independent environment. Generally, at each generation, there are some
individuals that migrate between the demes that compose a vivarium. A deme is implemented
in class Deme. The class provides and implements an interface of standard methods necessary to
evolve its own population. The class Vivarium describes a bag of demes, which is itself a bag
of individuals. Every single vivarium and deme also has an hall-of-fame (a HallOfFame object),
where the best-of-run individuals are conserved, and its statistics (a Stats object).

The next underlying layer, the individual, is defined in class Individual. It is a bag of geno-
types, the parts that compose a genome. The genotypes are tightly related to the representation
of the individuals for a given EC algorithm. The genotype interface is declared in the abstract
class Genotype. This hierarchical organization of the population is illustrated in Figure 3.5.

3.4.2 Internal System

This section presents the internal system of Open BEAGLE, which is the structure that holds
and gives access to the state of the genetic engine. These structures are fundamental, because
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Log Level Value Description

Nothing 0 Log nothing
Basic 1 Log essential informations
Stats 2 Log evolution statistics
Info 3 Log general informations (default)
Detailed 4 Log details on operations
Trace 5 Log trace of the algorithms
Verbose 6 Log details on everything (disabled in optimization mode)
Debug 7 Debug (enabled only in full debug mode)

Table 3.3: Log levels available in Open BEAGLE

they are used as entry points to the data of the evolution.

During the evolutionary processes, a context gives the current state of the evolution. A
basic, general context is implemented in class Context. It provides some essential contextual
informations such as the current deme, individual, genotype and generation. For a specific EC
algorithm, a specific context could be used. For example, a GP specific context is defined,
GP::Context, which contains the call stack with some other GP specific informations. An Open
BEAGLE context is similar to the execution context of a computer that contains the different
registers, counters and pointers to the actual state of the machine.

Given that the parameters of Open BEAGLE are distributed in the appropriate objects, an
agent is implemented to take into account these parameter: the register. All the variables that
are considered as parameters should be registered by giving the reference (object handle) of the
parameter with the associated namespace and tag. The class Register can be seen as a central-
ized database from which any entity could dynamically add, delete, access or modify parameters.
The register is also responsible of interpreting the parameters part of the configuration file2.

All the output messages given to the user pass by the logger. It consists of an interface
with the user, that receives all messages, associated with a type, a class name, and an output
level, and output them in a given device if the used log level allow it. This is very interesting
if a user want, for example, to use Open BEAGLE into a broader system using a graphical
user interface. In such case, the user only need to define his own specialized logger that will
intercept the messages and log them into the desired device, for example a specific graphical
windows. There is actually one specialized logger, LoggerXML, that log messages to a file and/or
the console (the STDOUT device) in a XML format. The other very interesting aspect of the
logger is the possibility to choose the log level desired. The messages outputted are classified into
eight categories, as depicted in Table 3.3. The registered parameters lg.console.level and
lg.file.level allows the user to select the desired log level. For example, if the user choose

2See section 4.3 for further details.
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Figure 3.6: Internal Open BEAGLE system

the log level info (3), all messages classified in categories basic (1), stats (2), and info (3) will
be outputted. Log levels basic (1) to detailed (4) are appropriate for monitoring evolutions, log
levels detailed (4) and trace (5) are good to get familiar with the internal functioning of Open
BEAGLE, while log levels trace (5) to debug (7) may be useful to debug an user application, or
the framework.

Class Randomizer provides a common pseudo-random numbers generator. The randomizer
comprises two parameters that are registered (in the register): the internal state and the seed.
The internal state is an integer that give the actual state of the randomizer. This value change
at every generation of a random number. This value is useful mainly to restart an evolution from
a milestone. The seed is the value of the first state of the randomizer. By default, the seed is
initiated to the timer value. The seed can be set by the user to reproduce an evolution. Starting
with version 2.0.0, the default random number generator used in the framework is based on the
Mersenne Twister of Matsumoto and Nishimura [20].

NOTE: There have been several changes in the organisation of the randomizer, although it
is still the Mersenne twister. All the previous paragraph should be updated accordingly.

The entry point to these resources is given by an extensible central repository: the system.
This is simply an entry point that possessed some vital resources of the EC engine: a context
allocator, a reference to the register, a reference to the logger, and a reference to the randomizer.
This general system is implemented in the class System. The system is accessible by any context
of a given evolution. The relations between the different constituents of the internal system is
presented in Figure 3.6.

NOTE: A paragraph is necessary here in the concept of system components, new with
version 3.0.0.
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3.4.3 Operators and Evolver

The operator is a central concept of Open BEAGLE as an EC framework. The main-loop
of operations executed on populations is dynamically defined. The operators are specified at
runtime and the user is free to define them for his evolution. This give the opportunity to easily
and rapidly experiment numerous variants of EC. The operator and evolver model is based on
the Strategy design pattern [11], which is applied to the evolutionary algorithms. The operator
interface is declared in the abstract class Operator.

class Operator : public Object {
public:
Operator() { }
virtual void initialize(System& ioSystem) { }
virtual void postInit(System& ioSystem) { }
virtual void operate(Deme& ioDeme,Context& ioContext) =0;

};

Before the characteristic method is applied to demes, method initialize is invocated. In this
method, the operator usually registers its own parameters, probabilities or anything else, used
by the characteristic operation. The characteristic operation is defined in the virtual method
operate. There is a bunch of predefined operators in Open BEAGLE. To name a few of them,
the tournament selection operator [17] (SelectTournamentOp), the GP tree crossover operator
[15] (GP::CrossoverOp) and the milestone writing operator (MilestoneWriteOp).

The user that define his own operators must be aware that the system is not fully set-up
when the initialize method is called. For example, the random number generator must not
be used, as the seed can be modified thereafter on the command-line or in the configuration file.
The rule is that the initialize method must be used only to add elements to the evolution
system. There is also a second hook called postInit, which is also called once, just after the
whole system is set-up. The postInit method can be use, for example, to configure some data
using the random number generator, which is now fully configured.

The operators of a specific evolution are inserted into the evolver that supervises the evolu-
tion process. This object, implemented in class Evolver, comprises two major attributes: the
bootstrap operator set and the main-loop operator set. The bootstrap operators set contains
an ordered list of operators to apply on each deme, for the initial generation. The main-loop
operators set is an ordered list of operators to apply iteratively, at each generation, on each
deme. The user could launch an evolution, by calling the method evolve with the vivarium to
evolve as argument.

class Evolver : public Object {
public:
virtual void initialize(System::Handle ioSystem,int& ioArgc,char** ioArgv);
virtual void evolve(Vivarium::Handle ioVivarium);
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protected:
Operator::Bag mBootStrapSet;
Operator::Bag mMainLoopSet;

};

For common EC algorithms, the user usually needs not to create custom sequences of operators.
In fact, some classes inheriting of Evolver can be used to create evolvers with predefined operator
sets. If a special EC algorithm is needed, a custom building method can be invocated and the
evolver should be configured properly. Section 3.5.5 presents the standard operator library with
the methods that can be used to build standard EC algorithm.

3.4.4 Breeder Model

NOTE: The explanations on the breeder model are somewhat fuzzy. It is not easy to understand
this thing, although this is an central mechanism of Open BEAGLE. More explanations are
necessary in order to make it clear.

A conceptual layer is added over the operator/evolver model: the breeder model. This allow
the manipulation of the population at the individual level, in comparison to manipulations at
the deme level by the standard operators. Note that the use of the breeder model over the
standard operator/evolver model is optional; users don’t have to use it if they don’t need it.

The breeder model includes a set of operators structured into a tree: the breeder tree. At
the root of the breeder tree, there is a replacement strategy, which act as an interface between
the operator/evolver mechanism and the breeder model. The function of a replacement strategy
is to generate, by applying the breeder tree on a deme, the next generation deme. The direct
children in the breeder tree to the replacement strategy are called alternatively following their
respective breeding probability. The operators that compose the nodes of the breeding tree
process the bred individual, while the leaves of the breeder tree are generally used to select
individuals. The following snippet presents the XML configuration of a breeder tree for the
maxfct example, using a steady-state replacement strategy [1].

...
<SteadyStateOp>
<MaxFctEvalOp>
<GA-CrossoverOp>
<SelectTournamentOp/>
<SelectTournamentOp/>

</GA-CrossoverOp>
</MaxFctEvalOp>
<MaxFctEvalOp>
<GA-MutationOp>
<SelectTournamentOp/>

</GA-MutationOp>
</MaxFctEvalOp>
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<SelectTournamentOp/>
</SteadyStateOp>
...

Three new classes are added to the framework to support the new breeder model: BreederOp,
BreederNode, and ReplacementStrategyOp. Class BreederOp designates operators that can,
in addition to the facilities of the operators, process a pool of individuals to return one bred
individual. The interface of the class BreederOp is the following.

class BreederOp : public Operator {
public:
virtual Individual::Handle breed(Individual::Bag& inBreedingPool,

BreederNode::Handle inChild,
Context& ioContext) = 0;

virtual float getBreedingProba(BreederNode::Handle inChild) = 0;
};

The pure virtual method breed is used to apply the characteristic breeder operation. It takes
as first argument a pool of individual from which the breeding operation is done, as second
argument a breeder node giving the position of the first child to the actual operator in the
breeder tree, and as last argument the evolutionary context. The method getBreedingProba

returns the breeding probability, which is used by the replacement strategy to decide which of its
subtrees is called to generate a bred individual. The BreederNode class defines the breeder tree
structure. It is made of three smart pointers, one to its first child, another to its next sibling,
and one last to the associated breeder operator. Finally, the class ReplacementStrategyOp

defines an item of the evolver’s operator set that can be used as the root of the breeding tree,
to generate a new generation of individuals. Five replacement strategies operator are actually
implemented in Open BEAGLE: GenerationalOp, which defines a generational replacement
operator using a breeder tree3, SteadyStateOp, which defines a steady-state replacement oper-
ator, NSGA2Op, which defines the NSGA-II multiobjective evolutionary algorithm [5], and finally
the MuCommaLambdaOp and MuPlusLambdaOp replacement operators, which define the (µ, λ) and
(µ + λ) approaches commonly used with the evolution strategy EC paradigm.

3.4.5 Summary

This section had presented three important components of the EC architecture of Open BEA-
GLE. The first component is the structure of the population of the framework, that includes
elements such the vivarium, the demes, the individuals, and the genotypes. The following is the
internal system, where the parameters and some other entities are held. The third component is
a central aspect of Open BEAGLE as EC framework, the operators and the evolver. An operator
is simple operation, such writing a population to the disk or GP tree crossover operation, which

3Note that the standard evolver/operator model (not using the breeder model) is implicitly generational.
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is applied sequentially and iteratively in conjunction of others operators to evolve a population.
An evolver is an agglomerate of operators to apply on the population. An applications devel-
opers can use an evolver pre-packed with usual operators or instantiate his own custom evolver
composed of more exotic operators. And finally, the breeder model represents a set of specific
operators that allow the manipulation of population with a finer granularity.

3.5 Miscellaneous Architecture Elements

This section presents of different miscellaneous architecture elements more specific certain EC
flavors or applications. It presents of some common application-specific elements such the eval-
uation and termination operators, and some other more EC flavor-specific elements such the
GP primitives. It also discuss of a more general elements such the different standard operators
defined in the Open BEAGLE framework.

3.5.1 Evaluation Operator

In most EC algorithms, modified individuals are evaluated at each generation. To do so, there is a
common operator to evaluate individuals, the evaluation operator. This operator is implemented
in class EvaluationOp, which is a standard abstract interface for the evaluation of an individual.

class EvaluationOp : public Operator {
public:
virtual Fitness::Handle evaluate(Individual& inIndividual,

Context& ioContext) =0;
virtual void operate(Deme& ioDeme,Context& ioContext);

};

Usually, for a specific problem, the user must implements a concrete class that specialize
EvaluationOp. In this concrete class, he must declare a definition of the method evaluate.
This method provides the way an individual is evaluated.

3.5.2 Termination Operator

As explained in previous sections, the basic Open BEAGLE algorithm is an infinite loop over the
main operator set. But, there is a standard Open BEAGLE operator, the termination criterion,
that determine whether to stop or not the evolution process. In Open BEAGLE, the termination
criterion is implemented in operator TerminationOp.

class TerminationOp : public Operator {
public:
virtual bool terminate(const Deme& inDeme,const Context& inContext) = 0;
virtual void operate(Deme& ioDeme,Context& ioContext);

};
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The default termination criteria is the number of generations the algorithm iterates for
an evolution. This criterion is defined in the operator class TermMaxGenOp. There is
also several other termination operators such TermMaxFitnessOp (maximum fitness value),
TermMinFitnessOp (minimum fitness value), TermMaxEvalsOp (maximum number of fitness
evaluations), and GP::TermMaxHitsOp (maximum number of hits for GP Koza’s fitness mea-
sure). The user could change or add termination criteria for his evolutionary application by
redefining the method terminate.

3.5.3 Multiobjective Evolutionary Algorithms

Since version 2.1.0, Open BEAGLE includes support for Multiobjective Evolutionary Algo-
rithms (MOEA). For this purpose, two fitness measure types have been defined in the frame-
work, that is a maximization one named FitnessMultiObj, and its minimization equivalent
FitnessMultiObjMin. In both these two fitness measures, a Pareto domination test has been
added in method isDominated. If the user want to use a different multiobjective measure,
for example a fitness measure comprising a mix of minimizing and maximizing objectives, the
method isDominated of the new fitness measure class must be over-defined accordingly.

The other element of MOEA support in Open BEAGLE is the multiobjective selection op-
erator. There is currently two of these implemented, that is NSGA-II [5], implemented as a
replacement strategy of a breeder model, and the NPGA 2 [6], implemented as a classical selec-
tion operator. There is also a multiobjective-specific hall-of-fame class called ParetoFrontHOF,
that contains the population’s Pareto front.

3.5.4 Co-evolution

NOTE: This subsection on co-evolution is far to short. It should be rewritten with more
explanations and use examples. Maybe a complete section in next chapter would be necessary.

Co-evolution framework is based on multi-threading programming, where each thread is
associated to a population. The execution sequence of each thread is the same than what usu-
ally done in the main function of standard evolutions, as described in section 4.2 (i.e. build
system, evaluation operator, vivarium, evolver, initialize evolver, and start evolution). The
population in each thread evolves independently, with inter-thread synchronization only in co-
evolutionary fitness evaluation operator. This operator behaves quite differently than usual
mono-population evaluation operator. The co-evolution evaluation procedure starts by calling
Coev::EvaluationOp::makeSets, which makes evaluation sets of the evolving population and
add them into shared storage structure, using method Coev::EvaluationOp::addSet. When
the desired number of evaluation sets is added (the trigger value) the co-evolutionary fitness eval-
uation method defined in Coev::EvaluationOp::evaluateSets is called. Pure virtual meth-
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Operator Superclass

RegisterReadOp Operator
IfThenElseOp Operator
MilestoneReadOp Operator
MilestoneWriteOp Operator
StatsCalculateOp Operator
StatsCalcFitnessSimpleOp StatsCalculateOp
GP::StatsCalcFitnessSimpleOp StatsCalcFitnessSimpleOp
GP::StatsCalcFitnessKozaOp StatsCalculateOp
ParetoFrontCalculateOp Operator

Table 3.4: Open BEAGLE functional operators

ods Coev::EvaluationOp::makeSets and Coev::EvaluationOp::evaluateSets are problem-
specific and must be defined by the user in its co-evolutionary fitness evaluation operators.

A trigger value is used to specify the number of evaluation sets needed to start a co-
evolutionary evaluation. This value is usually equal to the number of threads/populations
used, as usually each thread/population add one evaluation set before doing the co-evolutionary
evaluation operation. But different trigger value can be used depending on the context.

Marc Parizeau’s portable C++ classes for multi-threading (defined in namespace Threading)
are also provided with co-evolutionary framework. These are used internally by the co-evolution
framework. Users are advised to use them for their co-evolutionary applications.

3.5.5 Standard Open BEAGLE Operators Library

NOTE: Lot of new operators has been added to Open BEAGLE. They should be added to the
different Tables of the actual subsection.

An important advantage of OO programming is the reuse of standard components with few
or no modifications. Up to now, a bunch of generic and specific (to GP and GA) operators
are integrated to Open BEAGLE. There is plans to integrate some more for doing other EC
algorithms.

Tables 3.4 to 3.12 present the standard operators of Open BEAGLE. The Tables 3.13 to 3.16
present the bootstrap and main loops of the bit string GA, float vector GA, ES, and GP default
evolvers.

3.5.6 GP Genotypes

For the GP specific individual implementation, the abstract interface Individual is sub-classed
in the concrete class GP::Individual. An standard GP genotype, GP::Tree, is also defined.
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Operator Superclass

MigrationOp Operator
MigrationRandomRingOp MigrationOp
DecimateOp Operator

Table 3.5: Open BEAGLE population manipulation operators

Operator Superclass

BreederOp Operator
ReplacementStrategyOp Operator
GenerationalOp ReplacementStrategyOp
SteadyStateOp ReplacementStrategyOp
MuCommaLambdaOp ReplacementStrategyOp
MuPlusLambdaOp ReplacementStrategyOp
NSGA2Op ReplacementStrategyOp
OversizeOp ReplacementStrategyOp

Table 3.6: Open BEAGLE breeder and replacement strategy operators

Operator Superclass

InitializationOp Operator
GA::InitBitStrOp InitializationOp
GA::InitFltVecOp InitializationOp
GA::InitESVecOp InitializationOp
GP::InitFullOp InitializationOp
GP::InitGrowOp InitializationOp
GP::InitHalfOp InitializationOp
GP::InitFullConstrainedOp GP::InitFullOp
GP::InitGrowConstrainedOp GP::InitGrowOp
GP::InitHalfConstrainedOp GP::InitializationOp

Table 3.7: Open BEAGLE initialization operators

Operator Superclass

SelectionOp BreederOp
SelectRandomOp SelectionOp
SelectRouletteOp SelectionOp
SelectTournamentOp SelectionOp
NPGA2Op SelectionOp

Table 3.8: Open BEAGLE selection operators
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Operator Superclass

EvaluationOp BreederOp
GP::EvaluationOp EvaluationOp
Coev::EvaluationOp EvaluationOp
Coev::GP::EvaluationOp Coev::EvaluationOp

Table 3.9: Open BEAGLE fitness evaluation operators

Operator Superclass

TerminationOp Operator
TermMaxGenOp TerminationOp
TermMaxFitnessOp TerminationOp
TermMinFitnessOp TerminationOp
TermMaxEvalsOp TerminationOp
GP::TermMaxHitsOp TerminationOp

Table 3.10: Open BEAGLE termination operators

Operator Superclass

CrossoverOp BreederOp
GA::CrossoverBlendFltVecOp CrossoverOp
GA::CrossoverBlendESVecOp CrossoverOp
GA::CrossoverOnePointOpT<T> CrossoverOp
GA::CrossoverOnePointBitStrOp GA::CrossoverOnePointOpT<GA::BitString>
GA::CrossoverOnePointFltVecOp GA::CrossoverOnePointOpT<GA::FloatVector>
GA::CrossoverOnePointESVecOp GA::CrossoverOnePointOpT<GA::ESVector>
GA::CrossoverTwoPointsOpT<T> CrossoverOp
GA::CrossoverTwoPointsBitStrOp GA::CrossoverTwoPointsOpT<GA::BitString>
GA::CrossoverTwoPointsFltVecOp GA::CrossoverTwoPointsOpT<GA::FloatVector>
GA::CrossoverTwoPointsESVecOp GA::CrossoverTwoPointsOpT<GA::ESVector>
GA::CrossoverUniformOpT<T> CrossoverOp
GA::CrossoverUniformBitStrOp GA::CrossoverUniformOpT<GA::BitString>
GA::CrossoverUniformFltVecOp GA::CrossoverUniformOpT<GA::FloatVector>
GA::CrossoverUniformESVecOp GA::CrossoverUniformOpT<GA::ESVector>
GP::CrossoverOp CrossoverOp
GP::CrossoverConstrainedOp GP::CrossoverOp

Table 3.11: Open BEAGLE crossover operators
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Operator Superclass

MutationOp BreederOp
GA::MutationESVecOp MutationOp
GA::MutationFlipBitStrOp MutationOp
GA::MutationGaussianFltVecOp MutationOp
GP::MutationSwapOp MutationOp
GP::MutationShrinkOp MutationOp
GP::MutationStandardOp MutationOp
GP::MutationSwapSubtreeOp MutationOp
GP::MutationSwapConstrainedOp GP::MutationSwapOp
GP::MutationShrinkConstrainedOp GP::MutationShrinkOp
GP::MutationStandardConstrainedOp GP::MutationStandardOp
GP::MutationSwapSubtreeConstrainedOp GP::MutationSwapSubtreeOp

Table 3.12: Open BEAGLE mutation operators

Bootstrap Operators Main-loop Operators
IfThenElseOp("ms.restart.filename") SelectTournamentOp
MilestoneReadOp GA::CrossoverOnePointBitStrOp
else GA::MutationFlipBitStrOp
GA::InitBitStrOp EvaluationOp
EvaluationOp MigrationRandomRingOp
StatsCalculateFitnessSimpleOp StatsCalculateFitnessSimpleOp
end if TermMaxGenOp
TermMaxGenOp MilestoneWriteOp
MilestoneWriteOp

Table 3.13: GA::EvolverBitString default operator sets

Bootstrap Operators Main-loop Operators
IfThenElseOp("ms.restart.filename") SelectTournamentOp
MilestoneReadOp GA::CrossoverBlendFltVecOp
else GA::MutationGaussianFltVecOp
GA::InitFltVecOp EvaluationOp
EvaluationOp MigrationRandomRingOp
StatsCalculateFitnessSimpleOp StatsCalculateFitnessSimpleOp
end if TermMaxGenOp
TermMaxGenOp MilestoneWriteOp
MilestoneWriteOp

Table 3.14: GA::EvolverFloatVector default operator sets
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Bootstrap Operators Main-loop Operators
IfThenElseOp("ms.restart.filename") MuCommaLambdaOp
MilestoneReadOp EvaluationOp
else GA::MutationGaussianFltVecOp
GA::InitESVecOp end replacement strategy
EvaluationOp MigrationRandomRingOp
StatsCalculateFitnessSimpleOp StatsCalculateFitnessSimpleOp
end if TermMaxGenOp
TermMaxGenOp MilestoneWriteOp
MilestoneWriteOp

Table 3.15: GA::EvolverES default operator sets

Bootstrap Operators Main-loop Operators
IfThenElseOp("ms.restart.filename") SelectTournamentOp
MilestoneReadOp GP::CrossoverOp
else GP::MutationStandardOp
GP::InitHalfOp GP::MutationShrinkOp
GP::EvaluationOp GP::MutationSwapOp
GP::StatsCalculateFitnessSimpleOp GP::MutationSwapSubtreeOp
end if GP::EvaluationOp
TermMaxGenOp MigrationRandomRingOp
MilestoneWriteOp GP::StatsCalculateFitnessSimpleOp

TermMaxGenOp
MilestoneWriteOp

Table 3.16: GP::Evolver default operator sets

This class is declared as genotype and a vector of nodes. The nodes are declared by the struct
GP::Node, that comprises a smart pointer to a GP primitive and the size of the sub-tree.

namespace GP {
struct Node {
Primitive::Handle mPrimitive;
unsigned int mSubTreeSize;

};
class Tree : public Genotype, public std::vector<Node> { ... };
}

One of the most notable points with Open BEAGLE is the possibility to redefine and modify
almost everything. This is easily done by giving the appropriate allocator of a subclass to the
upper layer class constructor. As example, when a GP::Vivarium is created, it creates by default
GP::Individual by passing to its constructor an allocator of GP::FitnessKoza for the fitness
value and an allocator of GP::Tree to allocate its genotypes.
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namespace GP {
class Individual : public Beagle::Individual {
public:
Individual(Fitness::Alloc::Handle inFitnessAlloc,

GP::Tree::Alloc::Handle inTreeAlloc);
...

};
}

But, if the user want to use a different genotype, suppose a user defined custom genotype
implemented in the class MyGenotype, he only needs to pass an allocator of his custom genotype
to the allocator of GP::Individual:

Fitness::Alloc::Handle lFitsAlloc = new GP::FitnessKoza::Alloc;
MyGenotype::Alloc::Handle lGenotypeAlloc = new MyGenotype::Alloc;
GP::Individual::Alloc::Handle lIndivAlloc =
new GP::Individual::Alloc(lFitsAlloc,lGenotypeAlloc);

The allocator of individual will then create individuals that are bags of MyGenotype. Fur-
thermore, if the GP::Individual is copied into another GP::Individual, the reference to the
allocator of custom genotype is copied and the genotypes of the bag are cloned.

3.5.7 GP Primitives and Sets

Open BEAGLE uses a real OO approach to implement the primitives that compose GP geno-
types. The genotypes are composed of nodes that have one attribute, that is a smart pointer
to an abstract primitive. Using this abstract interface, it is easy to implement primitives that
have specific behavior without loosing any generality.

To make a concrete primitive that is usable to compose GP trees, the user needs to de-
clare a concrete class derived from the abstract superclass GP::Primitive. Given that, existing
primitives can be reused or specialized. These are some fundamental principles of OO program-
ming. These also give us powerful mechanisms to defined atypical primitives without tweaking
the internal structure. The section 4.6.1 at page 68 is a deep discussion on how to define GP
primitives.

NOTE: The following explanations on association between the number of primitive sets in
the super set and the number of trees in the GP individuals is no more true. This implicit
link is broken and it is now possible to have GP individuals with several trees while having one
primitive set. An index to the associated primitive set has been added to the GP trees. The
following paragraph should be rewritten.

Once the primitives used for a genetic evolution of programs are determined, they must be
packed into sets that are given to the GP system. In Open BEAGLE, the process is straightfor-
ward: the user directly creates the set of primitives by inserting references to primitives. The
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Figure 3.7: Relation between the GP sets, primitives and trees.

primitives set is implemented in the class GP::PrimitiveSet, a bag of GP::Primitive. When
the primitives sets are made, they are put into the super set of primitives, implemented in the
class GP::PrimitiveSuperSet. A GP::PrimitiveSuperSet is a bag of GP::PrimitiveSet. Fi-
nally, this super set of primitives is given to the system of GP. When only one set of primitives
is used, which is usual when there is no use of automatically defined structures, the user could
directly pass the simple primitive set as reference to the system. Then, the system build a super
set of primitives that wraps the simple set. Each set is associated with corresponding trees of
each individual, as presented in Figure 3.7 at page 52.

NOTE: Lot of improvements have been made to the GP framework concerning the indi-
viduals. For example, primitives with variable number of arguments, variable selection weight
of primitives in primitive set, dynamic ADFs, and evolutionary module acquisition should be
detailed.

3.5.8 GP Primitives Library

NOTE: The ADFs mechanisms has been completely changed.

Some common primitives are defined from the abstract interface GP::Primitive. As with
the operators, there is some common GP primitives into Open BEAGLE. At this moment, there
is three different series of standard primitives: the generic, the arithmetics and the Boolean
functions. The generic series comprise a simple terminal containing a token, TokenT, a primi-
tives to program automatically subroutines [16], AdfT, and a primitive for randomly generated
constants, EphemeralT. The second bunch comprises usual arithmetics operators. The third
bunch comprises some common logical operators that work on the Open BEAGLE Bool type.
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Primitive Datum Description

TokenT Any Terminal that contain a value, the token.
AdfT Any Call to an associated ADF.
EphemeralT Any Generate and represents randomly generated constants.
EphemeralDouble Double Generate and represents randomly generated floating-point

constants in [−1, 1].
AddTa Anyb Adds two floating-point numbers. (x1 + x2)
SubtractTc Anyd Subtract two floating-point numbers. (x1 − x2)
MultiplyTe Anyf Multiply two floating-point numbers. (x1 × x2)
DivideTg Anyh Protected division [15] of two floating-point numbers. (x1/x2)
Sin Double Sinus of a floating-point number in radians. (sin(x1))
Cos Double Cosine of a floating-point number in radians. (cos(x1))
Log Double Natural logarithm of a floating-point number. (ln(x1))
Exp Double Exponentiation of a floating-point number. (ex1)
And Bool And logical operator.
Or Bool Or logical operator.
Not Bool Not logical operator.
Nand Bool Nand logical operator.
Nor Bool Nor logical operator.
Xor Bool Xor logical operator.

Table 3.17: List of standard GP primitives
aType Add is a synonym of AddT<Double>.
bThe datum type must have an operator+.
cType Subtract is a synonym of SubtractT<Double>.
dThe datum type must have an operator-.
eType Multiply is a synonym of MultiplyT<Double>.
fThe datum type must have an operator*.
gType Divide is a synonym of DivideT<Double>.
hThe datum type must be comparable to the float type and have an operator/.

The Table 3.17 at page 53 presents and describe of all these Primitives.
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Open BEAGLE User Manual

This section is a extensive presentation of what an application programmer, which is called the
user from now, needs to know to develop EC process with Open BEAGLE. Some important
aspects of C++ programming using Open BEAGLE are presented here. The discussion starts
with what the user should and should not do (the guidelines). Following this is presented a
simple pattern of what is needed to build a system for an evolution. Thereafter the different
ways to modify the parameters of the system are exposed. Finally is presented the different
approaches to customize the evolutionary process and a specific manual for the different standard
EC algorithms implemented in Open BEAGLE.

4.1 Guidelines

Open BEAGLE is a powerful framework for EC. It is based on different elaborated mechanisms
that make it both a flexible and programmer-friendly environment. But, these mechanisms
require that to the user follows some general guidelines. A little adaptation effort is necessary
to make the experience with Open BEAGLE as pleasant as possible. There is these general
guidelines, accompanied by a deeper discussion on each of them.

1. Any instance (i.e. C++ objects) used in combination of Open BEAGLE must inherit,
directly or indirectly, from the abstract Object class.
As explained in previous sections of the document, every Open BEAGLE classes are derived
from the Object abstract class1. The Open BEAGLE class architecture can be see as a
tree with the Object class as root. The internal mechanisms of Open BEAGLE usually
manipulate data types by using the common Object interface. It is then necessary for
the user to integrate his application classes to the basic architecture. This is often done
implicitly by sub-classing some Open BEAGLE entities. But, in some circumstances, a

1With as exception the class Pointer and derived.

54
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user may need to define a new class that do not have any relation with other existing Open
BEAGLE classes. To do so, it is advised to use the WrapperT template to encapsulate
these custom types.

2. Any Open BEAGLE objects that are smart pointed must be allocated on the heap and
memory-managed by object handles.
The smart pointer, also called handle, is a very useful mechanism that both simplify
the task of the user and add global functionality and flexibility to the Open BEAGLE
environment. But, users have to be cautious when they use smart pointers. They must be
sure to allocate smart pointed objects on the heap, by a call to the new operator. This is
fundamental because the smart pointed objects are automatically destructed, with a call
to the delete operator, when their reference counter reach 0. This is incompatible with
stack-allocated instances.

3. The nested types Handle, Alloc, and Bag must be defined in any object classes.
In every classes of the Open BEAGLE framework, the types Handle, Alloc, Bag are
defined. The handle type is a smart pointer to the type associated (i.e. a Double::Handle

is a smart pointer of Double). An allocator is a type that can allocate, clone and copy the
associated type. A bag is an Open BEAGLE container of the given type. Both these types
are used extensively by the Open BEAGLE mechanisms. These three types can be easily
defined by a synonym declaration to the associated template classes, as in the following
listing.

class MyClass : public SuperClass {
public:
typedef PointerT<MyClass,SuperClass::Handle> Handle;
typedef AllocatorT<MyClass,SuperClass::Alloc> Alloc;
typedef ContainerT<MyClass,SuperClass::Bag> Bag;
...

};

The templates take as first parametrized value the type of the associated object. In
this case, the associated object is the type MyClass. The second parametrized value is the
equivalent nested type of the direct superclass. In this case, the class MyClass inherits from
the class Object so the equivalent nested type to a MyClass::Handle is a Object::Handle.

4. Any upcast of Open BEAGLE objects must be done by a call to the Open BEAGLE
castObjectT operator for references and C-pointers, and by call to the Open BEAGLE
castHandleT operator for smart pointers.
With the ANSI/ISO C++ standard, it is highly recommended to use the new style cast
operators instead of the old C-style one. This new style cast operators, such the operators
static cast and const cast, are more specialized cast operations. The use of different
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cast operators prevent some unwanted casting operations that could lead to nasty hid-
den bugs. In the Beagle namespace, two new cast operator is defined, castObjectT and
castHandleT. These operators must be used to cast any Open BEAGLE object type into
another object type. The usage of this casting operator is identical to the usage of new
style cast operators.

5. Any call to Open BEAGLE methods must be into a try-catch block to handle properly any
thrown Open BEAGLE exceptions.
Open BEAGLE defines his own exceptions in spirit of the modern C++ exception handling
mechanisms. In fact, an hierarchy of classes are defined to cover different cases of error,
with at the top the class Beagle::Exception. When programming an application, the
user should be aware to catch any Open BEAGLE exceptions and treat them accordingly.
At least, the user should catch them and call the exception aborting method. The following
code is an example of an internal structure of Open BEAGLE that detects an irregular
situation and throws an appropriate exception.

if(n > size()) throw Beagle_RunTimeExceptionM("Out of bound!");

The macro Beagle RunTimeExceptionM is a wrapper to create an exception object of the
type Beagle::RunTimeException, with the message given and the good file name and
line number. For almost all the exception classes of Open BEAGLE there is a wrapper
macro associated to construct exception with the appropriate file name and line number.
A Beagle AssertM macro is also provided to check some condition as with the useful
standard C assert macro.

A simple way to achieve the current guideline is to try-catch all the main routine of the
user application, to intercept any Open BEAGLE exceptions. Using the following code,
the exceptions not previously caught is displayed at the standard error output, just before
the program exit.

int main(int argc, char** argv) {
try {
...

}
catch(Beagle::Exception& inException) {
inException.terminate();

}
return 0;

}
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4.2 Building a System for an Evolution

To build an EC application with Open BEAGLE, some components need to be configured.
Depending the type of evolutionary algorithm and the application, the configuration step is
more or less demanding. Conceptually, the components to be configured are divided in three
classes, the system, the population and the operator and evolver.

• The system

The Open BEAGLE system of EC contains handles to some central entities used all over
the evolution, such the register, the randomizer, the logger, and the context. Depending
of the evolutionary algorithm used, the system can handles other specialized entities.

• The population

In Open BEAGLE, the representation of the individual is not restricted. The application
developer can use different standard population representation or implement his own.
However the way to instantiate a population for an evolution follows the same bottom-up
pattern:

1. Instantiate an allocator of the fitness type used;

2. Instantiate an allocator of the genotype type used;

3. Instantiate an allocator of the individual type used with the genotype and fitness
allocators;

4. Instantiate an allocator of statistics type used;

5. Instantiate an allocator of the deme type used with the individual and statistics
allocators;

6. Instantiate the vivarium with the deme and statistics allocators.

As example, for multiobjective real-valued GA, the above pattern is translated into the
following code.

FitnessMultiObj::Alloc::Handle lFitsAlloc = new FitnessMultiObj::Alloc;
GA::FloatVector::Alloc::Handle lGenoAlloc = new GA::FloatVector::Alloc;
Individual::Alloc::Handle lIndivAlloc =
new Individual::Alloc(lGenoAlloc,lFitsAlloc);

Stats::Alloc::Handle lStatsAlloc = new Stats::Alloc;
Deme::Alloc::Handle lDemeAlloc = new Deme::Alloc(lIndivAlloc,

lStatsAlloc);
Vivarium::Handle lVivarium = new Vivarium(lDemeAlloc,

lStatsAlloc);

For the other EC flavors the pattern is the same, only the types used must be changed.
There is several other vivarium constructors, which can take directly, for example, alloca-
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tors to genotypes and fitness values. You can use these instead of the previously exposed
long pattern, if you only wanted to use a specific genotype of fitness type.

• The operators and the evolver

As explained in section 3.4.3, the evolver applies iteratively, at each generation, the op-
erators on each deme. The operators are packed in the evolver into the bootstrap and
the main-loop sets. For usual application, the user can instantiate the default evolvers.
If the user want to customize the evolutionary algorithm, he can build his exotic evolver,
using the configuration file. This is the topic of section 4.4. In all case, once the operator
sets is built, the whole EC system is initialized with a call to the evolver initialize

method. The method takes as arguments an handle to the system and the command-line
arguments. Once the EC system initialized, the evolution can then be launch with a call
to the method evolve of the evolver, taking the vivarium to evolve as argument.

All the EC applications are built following the previously presented scheme. To get more
details on how to develop an application for a specific EC flavor, take a look in the sections 2
and 4.6 for GP and 4.5 for GA. The section 4.4 gives also good insight on configuring a custom
evolution.

4.3 Using the Register

The register is a central repository of all Open BEAGLE modifiable parameters. All these
parameters must be registered when the EC system is initialized. The parameters are held in
the register as a pair of tag and smart pointer. The tag is the unique identifier of a parameter
associated to a smart pointer which is an indirection to the instance of the parameter.

4.3.1 Registering Parameters

When the EC system is initialized, the different parameters must be registered by the appropriate
holding objects. As example, a probability of crossover is registered at the initialization time
by a crossover operator. Usually, the parameters are registered when the initialize methods
are called. The register is referred in the system object. The parameters are added in the
register with a call to the method addEntry. The method take as arguments the tag of the
parameter, the smart pointer the value of the parameter, and the description of the parameter.
The following example add the parameters ec.cx.indpb with a reference to the floating point
attribute mMatingProba of the crossover operator.

class CrossoverOp : public BreederOp {
public:
CrossoverOp() { }
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virtual void initialize(System::Handle system) {
BreederOp::initialize(ioSystem);
if(ioSystem.getRegister().isRegistered("ec.cx.indpb")) {
mMatingProba =
castHandleT<Float>(ioSystem.getRegister().getEntry("ec.cx.indpb"));

} else {
mMatingProba = new Float(0.5);
Register::Description lDescription(
"Individual crossover probability",
"Float",
"0.5",
"Single individual crossover probability for a generation."

);
ioSystem.getRegister().addEntry("ec.cx.indpb", mMatingProba, lDescription);

}
}
...

protected:
Float::Handle mMatingProba;

};

In this example, a test is first done to check if the parameter is already registered. If it is
registered, a reference is taken on it. If the parameter is not registered, the parameter is
instantiated on on the heap and is then registered. When a parameter is registered, a short
description must be given. This description is used by the usage of an application and to
explain the meaning of the parameter. Note that the parameter referenced by the smart pointer
attribute mMatingProba is a Float Open BEAGLE object instead of a C++ float. The type
Float is a wrapper of float. All the parameters registered must be smart pointed, which mean
that they must be Open BEAGLE objects.

4.3.2 Interaction with the Register

The application programmer can fetch parameters from the register with a call to the method
getEntry (or the operator operator[]) of the class Register. This method takes as argument
a tag and returns an handle to the parameter associated. The handle returned is a smart pointer
of Object. The developer must upcast the handle referred into a exact derived type, if needed.
If the named parameter is not registered, the method getEntry (or the operator operator[])
returns a null handle.

void MyClass::MyMethod(System::Handle ioSystem) {
Object::Handle lParameter = ioSystem->getRegister()["ec.cx.indpb"];
if(lParameter == NULL) {
std::cout << "No crossover probability registered" << std::endl;

}
else {
try {
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Float::Handle lCastedParameter = castHandleT<Float>(lParameter);
std::cout << "The crossover probability is "

<< *lCastedParameter << std::endl;
}
catch(Beagle::BadCastException&) {
std::cout << "Object registered is not of the Float type" << std::endl;

}
}

}

The exception handling of the object casting is to intercept some abnormal cases, that is when
the parameter fetched is not of the desired Float type.

4.3.3 Modifying Parameters

The parameters recorded in the register can be modified in three different ways: by directly
modifying the value in the program, by passing specials arguments on the command-line and by
using configuration files. The initialization sequence is the following:

1. Initialize the parameters to their default value (before the registration);

2. Read the default configuration file;

3. Parse the command-line, the parameters being modified in the order they are expressed
(left to right);

4. Read the configuration files given on the command-line, if any. The files are read at the
time the configuration file argument is parsed.

4.3.4 Modifying Parameters on the Command-Line

It is possible to modify the parameters registered with arguments on the command-line. When
an evolver is initialized in the method initialize, it takes the command-line value (i.e the
variables argc and argv) as method argument. This is done to parse the command-line and
extract Open BEAGLE specific arguments. All the Open BEAGLE specific arguments start
with the prefix -OB, followed by the tag, an equal sign and the values of the parameter. As
example, if our executable is named maxfct and the crossover probability must be changed to
0.75, the command-line would be:

./maxfct -OBga.cx.indpb=0.75

If more than a parameter must be changed on the command-line, the user can specify numerous
arguments starting with a -OB, or enumerate all of them following a single -OB, separated by
comas:
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./maxfct -OBga.cx.indpb=0.75,ec.term.maxgen=100

Note that all the command-line arguments starting with the -OB prefix are erased from the
structure argc/argv once they are parsed.

There is four special parameters that can be given on the command-line. First, there is the
special argument usage, that made the application to display the tag with a short description
of the available parameters and exit normally without evolving.

./maxfct -OBusage

The second special argument, help, is very similar to the first one except that it display the
tags with everything you want to know on the parameters and exit normally without evolving.

./maxfct -OBhelp

The third special argument, ec.conf.file, can be assigned to the configuration file to use to
set the parameters of the evolution. This argument take as value a string that contains the
name of the configuration file.

./maxfct -OBec.conf.file=maxfct.conf

And finally, the fourth special command-line argument, ec.conf.dump, can be used to generate
configuration file with the default parameters value for a given application. This argument takes
the name of the configuration file to generate as value.

~> maxfct -OBec.conf.dump=mymaxfct.conf

4.3.5 Modifying Parameters Using a Configuration File

Another interesting way to modify parameters is to use a configuration file. This file, formatted
in XML, contains the new value of some or all of the parameters registered. The file format is
quite straightforward in the XML style, the logical sequence being preserved. The following is
a presentation of a short, but valid, Open BEAGLE XML configuration file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle version="2.1.1">
<Register>
<Entry key="ec.hof.demesize">0</Entry>
<Entry key="ec.hof.vivasize">1</Entry>
<Entry key="ec.mig.interval">1</Entry>
<Entry key="ec.mig.size">5</Entry>
<Entry key="ec.pop.size">100</Entry>
<Entry key="ec.sel.tournsize">2</Entry>
<Entry key="ec.term.maxgen">50</Entry>
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<Entry key="ga.cx1p.prob">0.3</Entry>
<Entry key="ga.init.bitpb">0.5</Entry>
<Entry key="ga.init.bitstrsize">125</Entry>
<Entry key="ga.mutflip.bitpb">0.01</Entry>
<Entry key="ga.mutflip.indpb">1</Entry>
<Entry key="lg.console.enabled">1</Entry>
<Entry key="lg.file.name">beagle.log</Entry>
<Entry key="lg.log.level">3</Entry>
<Entry key="lg.show.class">0</Entry>
<Entry key="lg.show.level">0</Entry>
<Entry key="lg.show.type">0</Entry>
<Entry key="ms.write.interval">0</Entry>
<Entry key="ms.write.over">1</Entry>
<Entry key="ms.write.perdeme">0</Entry>
<Entry key="ms.write.prefix">beagle</Entry>

</Register>
</Beagle>

4.4 Customizing the Evolutionary Algorithm

The present section thread of important aspect of Open BEAGLE: how to customize an existing
evolutionary algorithm (EA). This can be as simple as to modify a genetic operator of a standard
EA to the more complex task of implementing a brand new EA. In any cases, this is an advanced
topics that a newcomer can skip in the first time. This section presents the important concepts
that is related to the customizing of the EA. It is advised to consult the reference manual for
the implementation details.

4.4.1 Building a Custom Evolver

The evolver is a high level entity that apply the iterative evolution process on a population.
An evolver is composed of two operator sets, the bootstrap and the main-loop. The bootstrap
operators are applied once on the population, at the beginning of an evolution (at generation
0). The main-loop operators are then applied iteratively, until the termination state is reached.
These iterations can be seen as generations in a generational evolution model or as certain
amount of individual processing in the steady-state evolution model. In all case the basic
algorithm is independent of the underlying evolution operations.

Evolvers can be dynamically configured directly by the configuration file. The set-up of
the evolver is stated between two Evolver tag, with the list of the operators to used listed in
the BootStrapSet and the MainLoopSet tags. The following XML snippet presents the default
evolver of GA previously presented in Table 3.13, for the maxfct example.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle version="2.1.0">
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<Evolver>
<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GA-InitBitStrOp/>
<MaxFctEvalOp/>
<StatsCalcFitnessSimpleOp/>

</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>

</NegativeOpSet>
</IfThenElseOp>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</BootStrapSet>
<MainLoopSet>
<SelectTournamentOp/>
<GA-CrossoverOnePointBitStrOp/>
<GA-MutationFlipBitStrOp/>
<MaxFctEvalOp/>
<MigrationRandomRingOp/>
<StatsCalcFitnessSimpleOp/>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</MainLoopSet>
</Evolver>

</Beagle>

When an user want to change the evolutionary algorithm by changing the order of operations, or
using other standard operators, he only needs to modify the configuration file accordingly. If the
user wants to use custom operators, he must first implement them, as explained at the following
section, and then add an instance of them to the evolver, using the method addOperator,
before initializing the evolver. Several typical configuration files are given with the examples to
illustrate how these can be used to modify the EA used.

4.4.2 Custom Evolver with a Breeder Tree

The breeder model2 allows the implementation of sophisticated EA. For example, the steady-
state formulation of GA, you can use a specialized configuration file using the steady-state
replacement strategy operator, with crossover, mutation, and selection operators structured
under it as a breeder tree. The configuration file of a steady-state version of maxfct example,
using a breeder tree would be the following.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle version="2.1.0">
<Evolver>

2See section 3.4.4 to get a detailed explanation on the breeder model.
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<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GA-InitBitStrOp/>
<MaxFctEvalOp/>
<StatsCalcFitnessSimpleOp/>

</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>

</NegativeOpSet>
</IfThenElseOp>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</BootStrapSet>
<MainLoopSet>
<SteadyStateOp>
<MaxFctEvalOp>
<GA-CrossoverOnePointBitStrOp>
<SelectTournamentOp/>
<SelectTournamentOp/>

</GA-CrossoverOnePointBitStrOp>
</MaxFctEvalOp>
<MaxFctEvalOp>
<GA-MutationFlipBitStrOp>
<SelectTournamentOp/>

</GA-MutationFlipBitStrOp>
</MaxFctEvalOp>
<SelectTournamentOp/>

</SteadyStateOp>
<MigrationRandomRingOp/>
<StatsCalcFitnessSimpleOp/>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</MainLoopSet>
</Evolver>

</Beagle>

The important thing to understand is that the steady-state operator (SteadyStateOp) is a
replacement strategy and that the XML tree under it (between the <SteadyStateOp> and
</SteadyStateOp> tags)) is its breeding tree. The three sub-trees under it are called randomly
following a uniform probability density function parametrized by their respective breeding prob-
ability. For the first breeding sub-tree to the steady-state replacement strategy, the breeding
probability is given by parameter ga.cx1p.indpb, while for the second sub-tree the breeding
probability is given by parameter ga.mutflip.indpb, and the last sub-tree breeding proba-
bility is given by parameter ec.repro.prob. The steady-state replacement strategy generates
n individuals with its breeder tree at each generation, where n is the size of the population.
Each newly generated individual replaces a randomly chosen individual existing in the actual
population in a steady-state fashion. Once the configuration file set-up correctly, an evolution
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using the given EA structure can be launched by given the good configuration file to use on the
command-line. See previous section 4.3.4 for more details.

4.4.3 Defining New Operators

An operator is a specialized agent that apply an operation to an EC system. It is generally a
genetic or utility operations such applying the crossover operation on a deme or calculating the
fitness statistics for the actual generation. The operators are generally applied on one deme at
the time for each generation, or sometime once a generation on all the population.

The definition of a new operator is not that complicated, usually the developer only needs
to subclass the Operator class and over-define the method operate. The method received as
argument a Context object. All the important contextual data are in the context object: smart
pointers to the actual population, deme and system, the actual generation, etc. Furthermore,
some EA use an extended context that haves some more specific informations in it. Several
general pre-defined operators are already defined for most common operations such crossover,
mutation, and selection. For these operators, the operate is usually already defined, and another
operator-specific method need to be coded. This operator-specific method is usually the piece
of coded very specific to the operation and representation used. Take a look into the code of
existing operator to figure out the specificities of each case.

An usual operator also holds some evolution parameters, probabilities, and such. These
parameters must be registered in the register of the evolutions system. This is done by redefining
the initialize method by calling the appropriation registration method of the class Register.
The method initialize is called once an evolution, before any the operator is applied to any
population.

The user that define his own operators must be aware that the system is not fully set-up
when the initialize method is called. For example, the random number generator must not
be used, as the seed can be modified thereafter on the command-line or a configuration file.
The rule is that the initialize method must be used only to add elements to the evolution
system. If the user defines a new operator derived from an existing one, he must also call the
initialize method from the super-class operator, as illustrated here.

class DerivedClassOp: public SuperClassOp {
virtual void initialize(System& ioSystem) {
SuperClassOp::initialize(ioSystem);
// DerivedClassOp initialization code follow ...

}
};

This is necessary as the super-class operator might do some specific operation such as registering
its parameter.
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The postInit operator method is the a companion method of initialize. The postInit

method is called once for each operator, just after the whole system is initialized and the param-
eters are set. This method is best to do some parameters value checking and to setup operators
internal structures. As with method initialize, if the postInit method is over-defined in a
given operator, the parent’s postInit must be called in the implementation before executing
the actual operator post-initialization code.

There is a important hierarchy of standard defined operators in Open BEAGLE. The user
is advised to interface his operators classes to already defined operator, using inheritance. This
is in the spirit of OO programming and code reusing.

4.5 GA User Manual

NOTE: More explanations are necessary here on the integer-valued vector, real-valued vector,
non-isotropic SA-ES and CMA-ES. Only the GA bit string representation is properly explained.

The Genetic Algorithm (GA) framework has been re-engineered in version 2.1.0 to extend
its support over the basic binary representation to real-valued GA and simple Evolution Strat-
egy (ES) representations3. The three standard representations of the GA framework share the
namespace GA and a similar organization. Each representation has a genotype class that im-
plement the linear structure which are derived from a std::vector. There is several crossover
operators generic (1-point, 2-points, uniform) for vector-based representation implemented as
class template, where the templated parameter must respect the STL sequence conceptual in-
terface (the std::vector template respects this interface). A representation-specific type for
each generic crossover operator is defined for each standard GA representation. There is also a
representation-specific mutation operator defined for each standard representation, along with a
per representation evolver. Every representation-specific evolver set the bootstrap and main-loop
operators set with the default structure presented on Tables 3.13, 3.14 and 3.15.

To implement an application using a GA representation, we should follow the steps explained
in section 4.2 by taking attention to specify the genotype used and the appropriate evolver. The
following code snippet is extracted for the onemax example and illustrates this for a bit-string
GA representation.

// 1. Build the system.
System::Handle lSystem = new System;
// 2. Build evaluation operator.
OneMaxEvalOp::Handle lEvalOp = new OneMaxEvalOp;
// 3. Instanciate the evolver.

3In fact, ES is not considered as a GA representation, but rather as a completely different EC flavor. But
in Open BEAGLE, it is implemented as another EC linear representation in the existing GA framework. The
accommodate the purists, we should in fact consider the GA framework a generic vector-based EC framework.
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const unsigned int lNumberOfBitsPerGenotype = 50;
IntegerVector lEncoding(1, lNumberOfBitsPerGenotype);
GA::EvolverBitString::Handle lEvolver = new GA::EvolverBitString(lEvalOp, lEncoding);
// 4. Initialize the vivarium for bit string GA population.
GA::BitString::Alloc::Handle lBSAlloc = new GA::BitString::Alloc;
Vivarium::Handle lVivarium = new Vivarium(lBSAlloc);
// 5. Initialize the evolver and evolve the vivarium.
lEvolver->initialize(lSystem, argc, argv);
lEvolver->evolve(lVivarium);

Each of three GA standard evolvers have a constructor that take as argument an integer vector.
The size of this vector states the number of genotypes in each individual, while the integer value
of it specify the number of elements4 of each linear genotype. So in the previous example, the
integer vector passed to the evolver at step 3 configures the evolve to initialize the individuals
with one bit-string of 50 random bits. The vivarium is initialized at step 4 with a bit string
allocator to generate the population. For the two other representation, we would have used a
GA::FloatVector::Alloc for real-valued GA or a GA::ESVector::Alloc for ES.

In the bit-string GA representation, the bits can be used as is (for example in the OneMax

problem), or transformed into floating-point value in a given interval and a given precision,
depending the number of bits used (for example in the function maximization problem). When
the bits are converted to floating-point values, these are used as parameters to solve the problem,
the fitness value is deduced from these parameters. The representation of a binary GA genotype
is implemented in the class GA::BitString, which both inherits from the class Genotype and
std::vector<bool>.

namespace GA {
class BitString : public Beagle::Genotype, public std::vector<bool> {
public:
struct DecodingKey {
double mLowerBound;
double mUpperBound;
unsigned int mEncoding;

};
void decode(const std::vector<DecodingKey>& inKeys,

std::vector<double>& outVector) const;
void decodeGray(const std::vector<DecodingKey>& inKeys,

std::vector<double>& outVector) const;
...

};
}

The method decode is used to decode binary-encoded bit strings, to translate it into a real-
valued vector using a decoding key. The method decodeGray is similar to the decode method,

4That is the number of bits for binary GA, the number of floating-point values for real-valued GA, or the
number of (value, strategyparameter) pairs for ES vectors.
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except that it supposes Gray-encoded bit strings. If the application needs to work directly on
the bits, the interface of the class std::vector<bool> can be used.

4.6 GP User Manual

This section goes more deeply into the GP specific aspect of Open BEAGLE. This concern
mainly the declaration of primitives by the user and the use of strongly typed GP.

4.6.1 Getting the Most of the Primitives

NOTE: The Primitive interface has slightly evolved since the writting of this section. New
methods and changes to modified methods should be given here.

The declaration of the primitives are a central aspect of the implementation of GP in Open
BEAGLE. An abstract class Primitive is declared with a standardized interface presented in
Figure 4.1.

As explained in previous sections, the primitive represent the operation to be done by nodes
of the GP trees. This operation is implemented the method execute, in classes derived from
GP::Primitive. In this method, the user can get the value of the child subtrees to the node
and apply the characteristic operation. The result must be returned in the datum given as
argument. A primitive has a fixed number of arguments, the child subtrees, and a unique name.
This attribute are generally given by the constructor of the derived subclass to the constructor
of GP::Primitive, as in the following declaration.

class Add : public Beagle::GP::Primitive {
public:
Add() : Beagle::GP::Primitive(2,"+") { }

};

The number of arguments and the name of the primitive can also be stated by a call to the
methods setNumberArguments and setName.

The primitives are put into sets of usable primitives before creating any GP trees. In the pro-
cess of trees creation, for every node, an associated primitive is chosen. Usually, the association
is made by a call to the method giveReference, affecting the node’s primitive smart pointer
to the chosen primitives. But, for some special case, such when using ephemeral constants, the
operation done must be different. In this case the method giveReference can be over-defined
to desired behavior. By default, the method return an handle to the primitive instance, which
is then put into the primitive smart pointer of the node. By over-defining the method, the user
can return any other kind of primitive instance that will be put into the node’s primitive smart
pointer.
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1 namespace GP {
2 class Primitive : public Object {
3
4 public:
5 typedef AllocatorT<Primitive,Object::Alloc> Alloc;
6 typedef PointerT<Primitive,Object::Handle> Handle;
7 typedef ContainerT<Primitive,Object::Bag> Bag;
8
9 explicit Primitive(unsigned int inNumberArguments=0,std::string inName="");

10 virtual ~Primitive();
11
12 virtual void execute(GP::Datum& outDatum,GP::Context& ioContext) =0;
13
14 virtual std::string getArgType(unsigned int inN) const;
15 virtual std::string getAttribute() const;
16 unsigned int getChildrenNodeIndex(unsigned int,GP::Context&) const;
17 std::string getName() const;
18 unsigned int getNumberArguments() const;
19 virtual std::string getReturnType() const;
20 virtual void getValue(Object& outValue);
21 virtual Handle giveReference(GP::Context& ioContext);
22 virtual bool isEqual(const Object& inRightObj) const;
23 virtual void initialize(GP::System& ioSystem);
24 virtual void read(InputStream& ioIS);
25 virtual void setAttribute(std::string inAttribute);
26 virtual void setValue(const Object& inValue);
27 virtual bool validate(GP::Context& ioContext) const;
28 virtual void write(OutputStream& ioOS) const;
29
30 protected:
31 void setName(std::string inName);
32 void setNumberArguments(unsigned int inNumberArguments);
33 void getArgument(unsigned int inN,GP::Datum& outResult,GP::Context& ioContext);
34 void getArguments(GP::Datum outResults[],size_t inSizeTDatum,
35 GP::Context& ioContext);
36 void get1stArgument(GP::Datum& outResult,GP::Context& ioContext);
37 void get2ndArgument(GP::Datum& outResult,GP::Context& ioContext);
38 void get3rdArgument(GP::Datum& outResult,GP::Context& ioContext);
39
40 private:
41 std::string mName; //!< Name of the primitive.
42 unsigned int mNumberArguments; //!< Number of arguments of the primitive.
43 };
44 }

Figure 4.1: GP::Primitive class declaration
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NOTE: Give explanations here on primitives with variable number of arguments and prim-
itive with variable selection weight in primitive set.

NOTE: GP trees are no more written as Lisp-like string but rather as complete XML trees.
The following paragraph should be completely rewritten.

The way the GP trees are inserted and extracted from a Open BEAGLE XML stream is
standard. For each trees, the composing nodes are written into a Lisp-like string. By default,
for each node, only the name of the primitive associated is written in the Lisp-like string. If
appropriate when the primitive is written, some information can be added to the name of the
primitive. This is called the attribute of the primitive. The attribute of the primitive is given by
a call to the method getAttribute and the attribute can be changed by a call to the method
setAttribute. When an attribute different from the null string is used, the value is put between
braces just after the name of the primitive, in the Lisp-like string.

A primitive can have a value that is modified at the runtime by a call to the method setValue.
A similar method exist in class GP::Primitive, taking a second argument that is the name of
the primitive to modify the value. Actually, the method of GP::EvaluationOp only call the
equivalent setValue of the variable primitive, with the GP::Datum given as argument. For
the abstract class GP::Primitive, the method setValue does nothing. This method can be
over-defined in the more specific subclasses to do what is needed to set the value of the primitive.

Three of the remaining primitive methods getArgType, getReturnType, and validate are
related to the usage of strongly typed GP. This is the topic of the next section.

4.6.2 Strongly Typed GP

NOTE: Typing verification in STGP has been changed to compare references to type info

object instead of strings. The whole subsection on STGP should be updated accordingly.

Strongly typed GP (STGP) [22] is a standard Open BEAGLE GP feature. In every standard
operators that modify the structure of the GP individuals, a dual operator supporting constraints
is defined. These operator apply their operation while checking whether the typing of the nodes
is respected when a GP genome is altered. Table 4.1 presents the list standard constrained GP
operators actually implemented in the framework.

When an user want to take advantage of STGP, he first needs to use an evolver made of
the constrained operators (instead of the simple unconstrained ones). The example spambase

included in the distribution contains configuration files where evolver composed of operators
that support constraints. Section 4.4.1 also explain how to change the set-up of evolvers.

The second point needed to do STGP is to set the typing in the primitives used. The typing
is made by associating a char string to a type, generally the RTTI name of the datum type.
To implement the typing of the individuals, two methods must be over-defined in the concrete
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GP Operator Constrained Dual Operator

GP::InitFullOp GP::InitFullConstrainedOp
GP::InitGrowOp GP::InitGrowConstrainedOp
GP::InitHalfOp GP::InitHalfConstrainedOp
GP::CrossoverOp GP::CrossoverConstrainedOp
GP::MutationSwapOp GP::MutationSwapConstrainedOp
GP::MutationShrinkOp GP::MutationShrinkConstrainedOp
GP::MutationStandardOp GP::MutationStandardConstrainedOp
GP::MutationSwapSubtreeOp GP::MutationSwapSubtreeConstrainedOp

Table 4.1: Open BEAGLE constrained operators

primitives classes, getArgType and getReturnType. The method getReturnType gives the type
of the datum that is returned by the primitives. The method getArgType give the string type
of the ith argument of the nodes associated to the primitive.

To illustrate this, suppose an application where two different datum types are used, Double
and Bool. STGP is usually implemented by using the RTTI naming of the types used. Supposing
a if-then-else primitive implemented in the class IfThenElse. The primitive received a Boolean
as first argument and return a floating-point number, that is the second argument of the primitive
if the Boolean is true and the third if not.

using namespace Beagle;
class IfThenElse : public GP::Primitive {
public:
IfThenElse() : GP::Primitive(3,"if-then-else") { }
virtual void execute(GP::Datum& outResult,

GP::Context& ioContext) {
Bool lTest;
get1stArguments(lTest,ioContext);
if(lTest == true) get2ndtArgument(outResult,ioContext);
else get3rdArgument(outResult,ioContext);

}
virtual std::string getArgType(unsigned int inN) const {
if(inN == 0) return typeid(Bool).name();
return typeid(Double).name();

}
virtual std::string getReturnType() const {
return typeid(Double).name();

}
};

The type of the root of a given tree is stated in the primitive set associated to the given GP
tree. The constructor of the class GP::PrimitiveSet is defined in such way that you only need
to pass the name of the type returned from the root of the tree when constructing the set.

This implementation of STGP is usually sophisticated enough to allow quite constrained
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tree structures. But, the use of STGP does not allow all kind of structural constraints, and
the user may want to apply to the GP individuals more elaborated constraints. The method
validate of GP::Primitive is called to do the typing validation. As defined in GP::Primitive,
this method implements STGP by checking the types returned by the methods getArgType and
getReturnType. The user can over-define the method to do his custom structural checking. The
method returns true if the structure imposed is respected, and false if not.

NOTE: More explanations should be given on general constraints that can be applied on
GP trees. The use of constrained operator for dynamic ADFs should also be detailed.

4.7 Multiobjective EA User Manual

Multiobjective Evolutionary Algorithms (MOEA) are now supported in Open BEAGLE. To
make use of it in your application, you must do the three following things:

1. Return a multiobjective fitness measure (class FitnessMultiObj or derived) in your eval-
uation operator;

2. Set the population allocators for the used multiobjective fitness measure allocators in the
main routine;

3. Set-up a configuration file with the appropriate evolver structure, that is a multiobjective
selection operator and a statistics calculation operator compatible with the fitness measure
used.

The basic MOEA fitness measure is implemented in class FitnessMultiObj, which maximize
all the objectives. A derived fitness measure is also defined in class FitnessMultiObjMin and
consists to minimize the objectives. You should either use one of the two preceding standard
MOEA fitness measure, or use a custom one derived from these as fitness measure. The class
FitnessMultiObj is derived from a std::vector<float> and thus the user should use the STL
vector interface to set the different objectives value.

Once the type of fitness measure used is stated in the evaluation operator, the population
allocators must be set up to use it. This can be done by following the explanations given
in Section 4.2, at the item population. This is necessary to clone/copy fitness value between
individuals and to read a milestone from uninitialized population.

Finally, the evolutionary algorithm must be set-up for the use of MOEA. This first im-
ply that a multiobjective selection operation must be used. There is actually two of these in
Open BEAGLE, NSGA-II implemented as replacement strategy operator NSGA2Op, and NPGA
2 implemented as a more classical selection operator NPGA2Op. The following presents how the
NSGA-II configuration file of the multiobjective bit string GA example knapsack.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle version="2.1.0">
<Evolver>
<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GA-InitBitStrOp/>
<KnapsackEvalOp/>
<StatsCalcFitnessMultiObjOp/>

</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>

</NegativeOpSet>
</IfThenElseOp>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</BootStrapSet>
<MainLoopSet>
<NSGA2Op>
<KnapsackEvalOp>
<GA-CrossoverOnePointBitStrOp>
<SelectRandomOp/>
<SelectRandomOp/>

</GA-CrossoverOnePointBitStrOp>
</KnapsackEvalOp>
<KnapsackEvalOp>
<GA-MutationFlipBitStrOp>
<SelectRandomOp/>

</GA-MutationFlipBitStrOp>
</KnapsackEvalOp>

</NSGA2Op>
<MigrationRandomRingOp/>
<StatsCalcFitnessMultiObjOp/>
<TermMaxGenOp/>
<ParetoFrontCalculateOp/>
<MilestoneWriteOp/>

</MainLoopSet>
</Evolver>

</Beagle>

The NSGA-II algorithm proceed first by generating a population of n children from a population
of n parents. This is actually done here by calling the breeder tree of the NSGA2Op replacement
strategy n times. The breeder tree generates the children one at the time by either applying one
point crossover or bit mutation on randomly chosen individuals from the parent individuals, and
then evaluating fitness of the newly generated individuals. When the n children are generated,
the parents and children populations are merged and a non-dominated sort is done to keep the
n best, which constitutes the new population. Note in the previous configuration file, the use of
operator StatsCalcFitnessMultiObjOp, which is the appropriate statistics calculation operator
for fitness measures FitnessMultiObj and FitnessMultiObjMin.
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The NPGA 2 MOEA selection operator can be more simply used as a replacement of a usual
mono-objective selection operators. The following configuration file shows the use of NPGA 2
in the knapsack MOEA example.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Beagle version="2.0.0">
<Evolver>
<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GA-InitBitStrOp/>
<KnapsackEvalOp/>
<StatsCalcFitnessMultiObjOp/>

</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>

</NegativeOpSet>
</IfThenElseOp>
<TermMaxGenOp/>
<MilestoneWriteOp/>

</BootStrapSet>
<MainLoopSet>
<NPGA2Op/>
<GA-CrossoverOnePointBitStrOp/>
<GA-MutationFlipBitStrOp/>
<KnapsackEvalOp/>
<MigrationRandomRingOp/>
<StatsCalcFitnessMultiObjOp/>
<TermMaxGenOp/>
<ParetoFrontCalculateOp/>
<MilestoneWriteOp/>

</MainLoopSet>
</Evolver>

</Beagle>

This time the formulation of the evolver structure is more straight-forward, without the use of
a breeder tree. Note that once again the multiobjective fitness measure statistics calculation
operator StatsCalcFitnessMultiObjOp is used.

Attentive reader may note the use of an operator named ParetoFrontCalculateOp in the
evolver’s main-loop operator set. This operator is used to compute the Pareto front of the
population into the hall-of-fame, just before exiting. This operator must be put in the main-loop
operator set after the termination operator (in this case operator TermMaxGenOp), to intercept
the moment that the evolution must stop, but before the milestone writing operator to get the
Pareto front written into the milestone. It is not compulsory to use this operator in your evolver,
although it may be very useful for result analysis.

NOTE: A section on co-evolution would be appreciated here.
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NOTE: A detailed section on Open BEAGLE file format is necessary here.



Chapter 5

Conclusion

In this document was presented the main concept of the Open BEAGLE framework for evo-
lutionary computations (EC). This framework has been designed following an Object Oriented
(OO) methodology, built on strong foundations and abstract descriptions of general concepts.
Open BEAGLE can do almost any evolutionary algorithms that fits into the following simple,
general algorithm: an evolutionary process done by a series of operations applied iteratively on
a population of individuals. The operations done can be anything and they can be apply on any
kind of population entities.

Over this generic algorithm, a standard library have been defined to enable Open BEAGLE
to do some classical EC flavor. With version 3.0 of the framework, Open BEAGLE support
five standard EC representations: binary genetic algorithms, integer-valued vector genetic al-
gorithms, real-valued vector genetic algorithms, evolution strategy, and genetic programming
(GP). The four vector-based representations are relatively simple to implement on a framework
such Open BEAGLE. On the other hand, GP is a quite more sophisticated EC paradigm and
is provided in Open BEAGLE as a complex, fully-featured implementation. In our opinion, it
is one of the most flexible and complete C++ implementation of tree-based GP available.

The Open BEAGLE characteristics and capabilities can be resumed in the following state-
ments:

• Open BEAGLE is a flexible, extensible EC framework.

As often stated in the actual document, the Open BEAGLE framework is built on a strong,
sophisticated OO foundation. Many mechanism had been deployed to allow finely mod-
ularized interchangeable components. The design was inspired from some proved design
patterns and existing generic OO frameworks. Every composing parts of the framework
can be replaced by another, custom or defined in the standardized library, with little
efforts.

• Open BEAGLE is a programmer-friendly environment.

76
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Toward all these sophisticated mechanisms, a prospective Open BEAGLE user may think
that the framework is usable only by C++ wizards. In fact, all the works to do by the user
had been simplified by the usage of generic programming (i.e. templates) that encapsulated
all the laborious programming tasks and letting the application programmer to implement
only the essential, application-specific parts. The programming is usually very high-level
and simple. Only some general guidelines, exposed in this document, needs to be followed.

• Open BEAGLE is an open source and free software.

Open BEAGLE is an open source and free, as in free speech, framework that allow the user
to do almost whatever they want with it. It is released under the GNU Library (or Lesser)

General Public License, LGPL, which encourage sharing of the software. The limitations
are common-sense: any individual or corporations cannot made any profit by selling it,
except by charging a reasonable cost for the media, and it is impossible to release any
closed-source version of the Open BEAGLE framework, or any derived products. This
mean that the framework will stay forever free and open source.

• Open BEAGLE is fast.

Although the Open BEAGLE framework is very flexible and user-friendly, the performance
of the framework had never been neglected. During the implementation process, we look
forward a quick, efficient implementation. Some optimization features had also been added
to the framework and can be turned on once an application is known to be stable.

• Open BEAGLE is a robust framework.

First, the framework had been developed using defensive programming principles, using
deep checking to detect any irregular situations and signal it as necessary. Secondly, the
framework intensively use the standards C++ exception mechanisms to handle erroneous
situations and send to the user appropriate feedbacks. Third, Open BEAGLE had also
been tested with specialized tools to ensure that there is no memory leaks, and successful
evolutions, that were spanning some weeks of intensive computing, had been done without
any crash. And finally, milestones can be written as often as necessary, up to one for each
deme at each generation, from which recovery from interruptions of any source is possible,
with a simple command-line argument.

• Open BEAGLE is a system independent library.

Open BEAGLE had been designed using a standardized, modern C++ programming ap-
proach. It also only use standard, portable library and the core frameworks don’t do
system-dependent call. Is is a portable, “write once, compile anywhere” environment.

• Open BEAGLE is well documented.

As you should realized, Open BEAGLE is supported by a quite big, comprehensive manual,
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that you are actually reading, an extensive HTML reference manual that deeply document
the implementation of the framework, and a maintained Web site.
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