
Open BEAGLE Compilation HOWTO

Christian Gagné

Current affiliation:

Équipe TAO, INRIA Futurs,
LRI, Bat. 490, Université Paris Sud,

91405 Orsay Cedex, France.

Former affiliation:
Laboratoire de Vision et Systèmes Numériques (LVSN),

Département de Génie Électrique et de Génie Informatique,
Université Laval, Québec (QC), Canada, G1K 7P4.

E-mail: christian.gagne@lri.fr, cgagne@gmail.com

For Open BEAGLE version 3.0.1, document revision 1
Technical report RT-LVSN-2003-02-V301-R1

October 10, 2005

Contents

1 Introduction 2

2 Building the libraries and examples 2

2.1 Building the libraries and examples on Unix . 2

2.2 Building the libraries and examples with Microsoft Visual C++ .NET 5

3 Building a new project 6

3.1 Building a new project with the GNU Autotools . 6

3.2 Building a new project with KDevelop . 8

3.3 Building a new project with Microsoft Visual C++ .NET . 11

1

Open BEAGLE Compilation HOWTO 2

4 Specific problems and solutions 16

4.1 stringstream into gcc ≤ 2.95 and egcs . 16

4.2 Problems with compiling the libraries and/or the examples on Unix 16

4.3 Build a fully optimized binary under Unix . 16

4.4 Building a multi-threaded co-evolution application under Unix 17

4.5 Activating “optimization” or “full debug” mode on Microsoft Visual C++ .NET 17

4.6 Compiling with Microsoft Visual C++ .NET version 2002 . 17

4.7 Enable support for compressed files on Microsoft Visual C++ .NET 18

4.8 Pre-compiled headers with gcc ≥ 3.4 . 18

1 Introduction

This document is on the compilation of the Open BEAGLE1 C++ framework for evolutionary computations.
It first presents how to compile the libraries and examples of the framework on the two supported environ-
ments, that is most Unix environments supported by the GNU Autotools [1] (including Linux, Mac OS X,
and Cygwin), and Microsoft Visual C++ .NET. The second part of the document explains how to set a
project that is linked with the Open BEAGLE libraries, on supported platforms. Finally, known compilation
problems and fixes are presented at the end of the document.

2 Building the libraries and examples

The first step toward the use of Open BEAGLE is, obviously, to compile the libraries. Once the libraries
compiled, the first contact with the framework can be made by compiling some of the twelve examples
provided, and then experimenting with them.

2.1 Building the libraries and examples on Unix

To build Open BEAGLE on Unix, uncompress the distribution, open a shell, cd in the root directory of the
uncompressed distribution, and type the following commands.

./configure
make clean
make

This will configure and compile the libraries that compose the framework. Optionally, you can install the
framework with the following command.

1http://beagle.gel.ulaval.ca

http://beagle.gel.ulaval.ca

Open BEAGLE Compilation HOWTO 3

make install

By default, the compiled libraries are installed in folder /usr/local/lib, while the headers are installed in
folder /usr/local/include. You can specify the installation folder by giving the option --prefix=PATH
to the configure script.

configure recognizes the following options to control how it operates.

• --prefix=PATH
Set the main installation folder (default: /usr/local).

• --disable-shared
Disable the build of the shared framework libraries.

• --disable-static
Disable the build of the static framework libraries.

• --enable-optimization
Enable the “optimization” mode by setting the optimization flags of the compiler and disabling of some
useful, but not essential, debugging statements. Use this flag to compile a version of the framework
libraries that are linked with EC applications that are fully debugged.

• --enable-full-debug
Enable the “full debug” mode of the code by enabling some validation and logging statements. Use
this flag to compile a version of the framework for special debugging requirements.

• --cache-file=FILE
Use and save the test results in file FILE instead of ./config.cache. Set FILE to /dev/null to
disable caching, for debugging configure.

• --help
Print a summary of the options to configure, and exit.

• --quiet
--silent
-q
Do not print messages saying which checks are being made. To suppress all normal output, redirect it
to /dev/null (any error messages will still be shown).

• --version
Print the version of autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely useful, options.

You can also compile the libraries with KDevelop2. In fact, KDevelop acts only as a graphical wrappers
over the configure script and the makefiles. KDevelop is a part of the KDE project and is available for
most modern Unix flavor. To compile the Open BEAGLE libraries, open file beagle.kdevelop in Open
BEAGLE main directory (Project → Open Project...). Then you should execute the configure script (Build
→ Run Configure) and compile the libraries (Build → Build Project).

2http://kdevelop.org

http://kdevelop.org

Open BEAGLE Compilation HOWTO 4

Once the libraries compiled, the examples can now be compiled. Individual compilation setups have been
made for each of the twelve examples. These examples are in directories examples/GA, examples/GP and
examples/Coev. The building process is very similar to the one of the building process of the libraries. To
do so type the following commands.

./configure
make clean
make

Then, the binary is in directory with the name of the example, i.e. for the maxfct example the binary is in
the directory examples/GA/maxfct/maxfct.

The configure script of the examples recognizes the following options to control how it operates.

• --enable-optimization
Enable the “optimization” mode by setting the optimization flags of the compiler. Use this flag to
compile a version of the examples linked with an optimized version of the framework libraries.

• --with-pacc-util=DIR
Specify installation path of PACC::Util (default: ../../../../PACC).

• --with-pacc-util-include=DIR
Specify exact dir for PACC::Util headers (default: ../../../../PACC).

• --with-pacc-util-libdir=DIR
Specify exact dir for PACC::Util libraries (default: ../../../../PACC/Util).

• --with-pacc-xml=DIR
Specify installation path of PACC::XML (default: ../../../../PACC).

• --with-pacc-xml-include=DIR
Specify exact dir for PACC::XML headers (default: ../../../../PACC).

• --with-pacc-xml-libdir=DIR
Specify exact dir for PACC::XML libraries (default: ../../../../PACC/XML).

• --with-pacc-math=DIR
Specify installation path of PACC::Math (default: ../../../../PACC).

• --with-pacc-math-include=DIR
Specify exact dir for PACC::Math headers (default: ../../../../PACC).

• --with-pacc-math-libdir=DIR
Specify exact dir for PACC::Math libraries (default: ../../../../PACC/Math).

• --with-beagle=DIR
Specify the installation path of Open BEAGLE (default: ../../../../beagle).

• --with-beagle-include=DIR
Specify exact installation directory for Open BEAGLE headers (default:
../../../../beagle/include).

Open BEAGLE Compilation HOWTO 5

• --with-beagle-GA-include=DIR
Specify exact installation directory for Open BEAGLE GA headers (default:
../../../../beagle/GA/include).

• --with-beagle-GP-include=DIR
Specify exact installation directory for Open BEAGLE GP headers (default:
../../../../beagle/GP/include).

• --with-beagle-libdir=DIR
Specify exact installation directory for Open BEAGLE base library (default:
../../../../beagle/src).

• --with-beagle-GA-libdir=DIR
Specify exact installation directory for Open BEAGLE GA library (default:
../../../../beagle/GA/src).

• --with-beagle-GP-libdir=DIR
Specify exact installation directory for Open BEAGLE GP library (default:
../../../../beagle/GP/src).

• --cache-file=FILE
Use and save the test results in file FILE instead of ./config.cache. Set FILE to /dev/null to
disable caching, for debugging configure.

• --help
Print a summary of the options to configure, and exit.

• --quiet
--silent
-q
Do not print messages saying which checks are being made. To suppress all normal output, redirect it
to /dev/null (any error messages will still be shown).

• --version
Print the version of autoconf used to generate the configure script, and exit.

As with the libraries, configure also accepts some other, not widely useful, options.

You can alternatively build your example using the KDevelop environment. As with the libraries, the
KDevelop project file of the examples is configured to directly use the underlying autoconf / automake scripts
and makefiles. To compile the Open BEAGLE examples with KDevelop, open the appropriate .kdevelop
file in the example main directory (Project → Open Project...), execute the configure script (Build → Run
Configure), and start the building process (Build → Build Project). You can run (Build → Execute Program)
and even debug (Debug → Start) the examples in KDevelop.

Once some examples built, you can start experimenting with them. Take a look to the respective README
file to get the usage of the binaries, and the details of the examples.

2.2 Building the libraries and examples with Microsoft Visual C++ .NET

Here is the step-by-step process to compile the libraries on Microsoft Visual C++ .NET 2003 (English
version):

Open BEAGLE Compilation HOWTO 6

1. Open folder beagle/include/beagle with the Windows file manager. Copy (or rename) file
config.hpp.msvcpp as file config.hpp (in the same folder).

2. Open the solution file beagle.sln in Microsoft Visual C++ .NET, This file is in the folder MSVCPP to
the Open BEAGLE main directory.

3. Choose the desired compilation configuration in menu Project → Properties. Set the active configura-
tion, between Debug and Release. I advice you to use the Debug configuration until your application
is well debugged and you really need performance.

4. Compile the libraries with menu Build → Build Solution.

Actually, the solution file is configured only to compiled static libraries (.lib files). You must reconfigure
the projects manually to build shared libraries (.dll files). I let the advanced users doing this by themselves.

By default, the examples are compiled along with the libraries. Individual solution files have also been
made for each of the twelve examples. These examples are in directories examples\GA and examples\GP.
Here is generic step-by-step directives on how to build an example.

1. Open the .sln file is are in folder MSVCPP of the example main directory.

2. Set the compilation configuration (menu Project → Properties) to the same profile used to compile the
libraries.

3. Compile the libraries with menu Build → Build Solution.

Once the example compiled, you can execute the examples with menu Debug → Start Without Debugging
or debug it with menu Debug → Start.

3 Building a new project

This section presents different ways to configure compilation projects of EC applications that use Open
BEAGLE. The two first sections presents two different ways to proceed under Unix, that is with the GNU
Autotools and KDevelop. The last section presents the configuration step necessary to develop a new Open
BEAGLE application with Microsoft Visual C++ .NET on Windows.

3.1 Building a new project with the GNU Autotools

The GNU Autotools, that is autoconf, automake and libtool, are very powerful script-oriented tools to
manage portable projects on most modern Unix flavors. Although I found this set of tools very interesting,
I would not advice newcomers to use them for their projects, as the learning curve is very steep. I would
rather advice newcomers to use KDevelop, that is explained in section 3.2. The more experimented users, not
familiar with the GNU Autotools but that are motivated to use them, should start by reading the excellent
book from Vaughman et al. [1] and the official manuals of autoconf [2], automake [3] and libtool [4].

It is not in my intention to give a step-by-step explanations on how to set-up a compilation project with
the Autotools. I would rather give indications on how I set up my compilation projects in order to give some

Open BEAGLE Compilation HOWTO 7

tips on how to do it right at the first try. The Open BEAGLE have been configured as stand-alone projects
configured with the Autotools. Let’s take a look to the configure.ac file of the symbolic regression example
(symbreg).

dnl Process this file with autoconf to produce a configure script.
AC_INIT([GP symbolic regression example],[3.0.0],[cgagne@gmail.com],[symbreg])
AC_CONFIG_SRCDIR([symbreg/SymbRegEvalOp.cpp])
AC_CONFIG_AUX_DIR([config])
AM_INIT_AUTOMAKE
AM_CONFIG_HEADER([symbreg/config.hpp:symbreg/config.hpp.in])

dnl Checks for programs.
AC_PROG_AWK
AC_PROG_CXX
AC_PROG_CXXCPP
AC_PROG_LN_S
AC_PROG_LIBTOOL

dnl Set language.
AC_LANG([C++])

dnl Checks for libraries.
AC_HEADER_STDC

dnl Check for zlib support.
CHECK_ZLIB

dnl Initialize PACC libraries with the given paths.
PACC_UTIL_INIT([../../../../PACC], [../../../../PACC], [../../../../PACC/Util])
PACC_XML_INIT([../../../../PACC], [../../../../PACC], [../../../../PACC/XML])
PACC_MATH_INIT([../../../../PACC], [../../../../PACC], [../../../../PACC/Math])

dnl Initialize Open BEAGLE with the given paths.
OB_BEAGLE_INIT([../../../../beagle],

[../../../../beagle/include],
[../../../../beagle/src],
[../../../../beagle/GA/include],
[../../../../beagle/GA/src],
[../../../../beagle/GP/include],
[../../../../beagle/GP/src],
[../../../../beagle/Coev/include],
[../../../../beagle/Coev/src])

dnl Create makefiles.
AC_CONFIG_FILES([Makefile symbreg/Makefile])
AC_OUTPUT

This file includes all the necessary settings for a plain C++ project with autoconf, with the addition of a call

Open BEAGLE Compilation HOWTO 8

to the PACC UTIL INIT, PACC XML INIT, PACC MATH INIT, and OB BEAGLE INIT macros. This macro sets all
the compilation variable to the appropriate paths in order to find the headers and the libraries of PACC and
Open BEAGLE at the compilation and link time. These macros are in file acinclude.m4 of the projects.
You can recuperate this macro for your projects if you want.

The macro CHECK ZLIB is not standard in autoconf. It was taken from the autoconf macro archive3 and
copied into file acinclude.m4. This macro is pretty useful to dynamically locate installation directory of
zlib4, used to gzip/gunzip Open BEAGLE files. It also adds some nice command-line arguments to the
configure script, in order to set manually where zlib are installed.

To generate the configure scripts and makefile, I use a script named bootstrap that call the appropriate
Autotools commands. Execute it as needed when you modify the configure.ac and Makefile.am files.
Take note that the projects are set-up with a directory named config in which several scripts goes. This
is to keep the main directory as clean as possible. I also add a KDevelop project file (.kdevelop file) in
the main directory. These projects are configured to directly use the underlying Autotools settings without
modifying them. For the rest of the configuration of an Open BEAGLE project with the Autotools, take a
look to the content of an example, they will give you as much details as you need.

3.2 Building a new project with KDevelop

KDevelop is a nice Integrated Development Environment (IDE) for Unix-based systems. I use it for most of
my developments tasks. The following text will explain the simplest way to set up a KDevelop project of a
Open BEAGLE application. These explanations have been tested on KDevelop 3.4.2 under Fedora Core 3
(English localization).

First, let’s create a new C++ terminal project (menu Project → New Project...). Select C++ → Simple
Hello world program project in the application wizard.

3http://www.gnu.org/software/ac-archive
4http://www.gzip.org/zlib

http://www.gnu.org/software/ac-archive
http://www.gzip.org/zlib

Open BEAGLE Compilation HOWTO 9

Set the other options as needed and then generate the project and exit the application wizard. You have
now an empty C++ terminal project. The project must now be set in order to add the paths to the PACC
and Open BEAGLE headers when compiling, and to give the paths to the libraries to the linker. To do so,
open the Automake Manager window, which is usually activated by clicking on a button at the right of the
KDevelop main window.

In the Automake Manager window, click on the src directory and them click on the Option button, which
is represented by a wrench icon at the upper right of the window. Then go into the Includes tab and add
the directory where the PACC and Open BEAGLE includes can be found using the Add... button.

Open BEAGLE Compilation HOWTO 10

In my case, I installed PACC and Open BEAGLE in the directory
/home/cgagne/build/beagle-3.0.0-debug, so the headers have been installed in directory include.
Change /home/cgagne/build/beagle-3.0.0-debug for the installation prefix you used when you compiled
and installed the Open BEAGLE libraries.

Now click on your project in the lower half of the Automake Manager, in my case mybeagleproject (Program
in bin), and then click on the Option button represented by a wrench icon at the center right of the window.

Then go into the Libraries tab and then add the absolute path where the the PACC and Open BEAGLE
librairies can be found using the Add... button.

Open BEAGLE Compilation HOWTO 11

It is important to enumerate the libraries from the most dependent to the least dependent one. The
libraries are linked to the binary following the order they are given in the option window. In our
case, the dependencies are (from most dependent to the least): libbeagle-GP.la, libbeagle-GA.la,
libbeagle.la, libpacc-math.la, libpacc-xml.la, and libpacc-util.la. You must also inform the
linker to use zlib by giving the flag -lz. Don’t forget that the installation prefix used here is
/home/cgagne/build/beagle-3.0.0-debug and is probably different on your system.

Then, your KDevelop project is ready to be compiled. If you have problem with your new setup, force
clean-up of the project configure with menu Build → DistClean, followed by menu Build → Run automake
& friends, menu Build → Run configure, and menu Build → Build Project.

3.3 Building a new project with Microsoft Visual C++ .NET

Now, let’s discuss on a to setup a new Open BEAGLE project with Microsoft Visual C++ .NET. First,
make a new project (menu File → New → Project...). Select Visual C++ Projects → Win32 Project →
Win32 Console Project, give the location and the name of the project, and click on OK.

Open BEAGLE Compilation HOWTO 12

Then, click on the Application Settings, set application type to Console application, and select the Empty
project option in additional options.

Click on Finish and a new Win32 console application project is generated. The project must be configured
properly to find the Open BEAGLE headers. Go in menu Project → Properties, tab C/C++ → General.
Click on the field of Additional Include Directories and add the directories in which the PACC and Open
BEAGLE headers are.

This can be easily done by clicking in the field, then clicking on the three dots, and finally adding the file with
a dialog. In my case, the PACC and Open BEAGLE main installation directory is E:\beagle\beagle-3.0.0.

Open BEAGLE Compilation HOWTO 13

Open BEAGLE supports co-evolution based on a multi-threading model. Even if your application does
not use co-evolution, you must select the multi-threaded runtime library for your application in tab Code
Generation.

By default, Open BEAGLE makes use of Run-Time Type Information (RTTI). You must enable this feature
for your project by going in tab C/C++ → Language.

Open BEAGLE Compilation HOWTO 14

The project must also be linked with the PACC and Open BEAGLE libraries. Add the path to the
libraries in the tab Linker → General, field Additional Library Directories

As with the includes, a friendly dialog allow you to select the directories with some click. To enter this
dialog, click in the Additional Library Directories entry field and then click on the three dots.

Open BEAGLE Compilation HOWTO 15

And finally, the project must be set in order to be linked with the three PACC libraries (pacc-util.lib,
pacc-xml.lib, and pacc-math.lib) and the three Open BEAGLE libraries (beagle.lib, beagle-GA.lib,
and beagle-GP.lib). Go in the Linker → Input tab and add them to the Additional Dependencies field.

Another friendly dialog is also available to type the name of these six libraries.

Open BEAGLE Compilation HOWTO 16

Then, the Microsoft Visual .NET project is ready for developments. Enjoy!

4 Specific problems and solutions

4.1 stringstream into gcc ≤ 2.95 and egcs

stringstream are not available with default installations of the compilers gcc, version 2.95 and below, and
egcs. This problem is addressed by the gcc FAQ at http://gcc.gnu.org/faq.html#2.95sstream. This fix
has enabled the building of the Open BEAGLE framework with gcc 2.95.3 and egcs 1.1.2.

4.2 Problems with compiling the libraries and/or the examples on Unix

If you have problems with the compilation of the libraries and/or the examples on Unix, the first thing to
try is to regenerate the configure script and the makefiles. First be sure that you have autoconf, automake,
and libtool installed on your workstation. Then, execute the script bootstrap in the Open BEAGLE main
directory in order to regenerate everything. It may be necessary to execute the script several time. When
everything seems to be correctly regenerated, erase file config.cache in main directory, and repeat the
compilation process of section 2.1. This may solve most of the problems that occurred during the building
process on Unix.

4.3 Build a fully optimized binary under Unix

To build a fully optimized binary, several arguments must be given to the configure scripts. The first one is
the --enable-optimization, which set the BEAGLE NDEBUG preprocessor flag. Then some compiler-specific
optimization flags must be given using the CPPFLAGS and CXXFLAGS variables. For gcc, a good combination
of optimization flags for the CXXFLAGS variable is -march=i6865, -ffast-math and -O3. The command-lines
to compile with full optimization would then be:

./configure --enable-optimization CPPFLAGS=-DNDEBUG CXXFLAGS=’-march=i686 -ffast-math -O3’
make clean
make

These command-lines must be used to both (re-)compile the Open BEAGLE libraries and your application
code. A good way to proceed is to install the Open BEAGLE headers and libraries in a specific path different
from the usual one used for developments, by assigning a different value with the --prefix argument.

In KDevelop, you can set the variables by going in the menu Project → Project Options → Compiler
Options, tab C++, and put in the field Compiler Flags (CXXFLAGS) the compiler-specific values.

5This suppose that you are using a Pentium II or better. On other architectures, choose the appropriate flag supported by
gcc.

http://gcc.gnu.org/faq.html#2.95sstream

Open BEAGLE Compilation HOWTO 17

4.4 Building a multi-threaded co-evolution application under Unix

When you want to build an Open BEAGLE multi-threaded co-evolutionary application, you must enable
your application to use POSIX threads. On Linux this is done by giving the -pthread flag to the compiler
and the linker. You must also take care to link on both the beagle-Coev and pacc-threading libraries
provided by Open BEAGLE.

In KDevelop, you can set these compilation flags by going in the menu Project → Project Options →
Compiler Options, tab C++, and put in the field C++ Compiler Flags (CXXFLAGS) -pthread option, and
then going in tab General and put in field Linker flags (LDFLAGS) the same -pthread option.

If you use a custom autoconf project, you can automatically detect how to set up your application to
use POSIX thread, by using the macro ACX PTHREAD from the autoconf macro archive6. To get an example
on how to use this macro, consults the configure.ac and acinclude.m4 files of the coev symbreg and ipd
Open BEAGLE co-evolutionary examples.

4.5 Activating “optimization” or “full debug” mode on Microsoft Visual C++
.NET

To activate the “optimization” or “full debug” mode on Microsoft Visual C++ .NET as development environ-
ment, open file beagle/include/beagle/config.hpp in your favorite editor. To activate the “optimization”
mode, change the line

/* #undef BEAGLE_NDEBUG */

by the following one

#define BEAGLE_NDEBUG

For the activation of the “full debug” mode, change the line

/* #undef BEAGLE_FULL_DEBUG */

by the following one

#define BEAGLE_FULL_DEBUG

4.6 Compiling with Microsoft Visual C++ .NET version 2002

Solution and project files for MS Visual C++ .NET are now generated using version 2003, in opposition to
version 2002 which was used previously. Forward compatibility is not a practice at Microsoft, so you probably
need to pass to 2003 to use the solution and project files provided. But, it is still possible to regenerate these
files for MS Visual C++ .NET 2002. Sorry for the problems that this might cause to Windows users, but
the Visual Studio .NET installation in my laptop is now 2003.

6http://www.gnu.org/software/ac-archive

http://www.gnu.org/software/ac-archive

Open BEAGLE Compilation HOWTO 18

4.7 Enable support for compressed files on Microsoft Visual C++ .NET

Support for gzipped files on Microsoft Visual C++ .NET is disabled by default. To enable it, you must first
install the zlib7 library. The zlib compiled DLL version 1.2.1 installation package, available at the moment of
writing this on zlib’s Web site, has been tested successfully to work with Open BEAGLE. Once zlib installed,
you must modify file beagle/include/beagle/config.hpp by uncommenting the following lines.

#ifndef BEAGLE_HAVE_LIBZ
#define BEAGLE_HAVE_LIBZ 1
#endif

Defining the preprocessor flag BEAGLE HAVE LIBZ enables support for gzipped file in Open BEAGLE. Then,
you should modify the Open BEAGLE libraries projects to properly include zlib headers. And finally, you
should modify Open BEAGLE examples and your application projects in order to include zlib headers and
to link on zlib library.

4.8 Pre-compiled headers with gcc ≥ 3.4

Advanced users might be interested to know that experimental support for pre-compiled headers (available
only with gcc ≥ 3.4) is now provided in the Open BEAGLE build system. To enable pre-compiled headers,
only add a call to make pch during the compilation of Open BEAGLE, that is:

./configure
make clean
make pch
make

This will generate .gch files for the four Open BEAGLE libraries. It has been observed that enabling
pre-compiled headers reduced by about 40% the compilation time on my laptop. But unfortunately, using
pre-compiled header might cause some silly compilation problems, for example if you try to include headers
that are present in several distinct pre-compiled headers. In some circumstances, gcc might refuse to complete
the compilation of your program. In such cases, re-compile your application without pre-compiled headers!

References

[1] Gary V. Vaughan, David MacKenzie, Tom Tromey and Ben Elliston, GNU Autoconf, Automake, and
Libtool, New Riders Press, October 2000, Available on-line at http://sources.redhat.com/autobook.

[2] David MacKenzie, Ben Elliston and Akim Demaille, Autoconf, Free Software Foundation, December 2002,
Available on-line at http://www.gnu.org/manual/autoconf.

[3] David MacKenzie and Tom Tromey, GNU Automake, Free Software Foundation, December 2002, Avail-
able on-line at http://www.gnu.org/manual/automake.

7http://www.gzip.org/zlib

http://sources.redhat.com/autobook
http://www.gnu.org/manual/autoconf
http://www.gnu.org/manual/automake
http://www.gzip.org/zlib

Open BEAGLE Compilation HOWTO 19

[4] Gordon Matzigkeit, Alexandre Oliva, Thomas Tanner, and Gary V. Vaughan, GNU Libtool, Free Software
Foundation, September 2001, Available on-line at http://www.gnu.org/manual/libtool.

http://www.gnu.org/manual/libtool

	Introduction
	Building the libraries and examples
	Building the libraries and examples on Unix
	Building the libraries and examples with Microsoft Visual C++ .NET

	Building a new project
	Building a new project with the GNU Autotools
	Building a new project with KDevelop
	Building a new project with Microsoft Visual C++ .NET

	Specific problems and solutions
	stringstream into gcc 2.95 and egcs
	Problems with compiling the libraries and/or the examples on Unix
	Build a fully optimized binary under Unix
	Building a multi-threaded co-evolution application under Unix
	Activating ``optimization'' or ``full debug'' mode on Microsoft Visual C++ .NET
	Compiling with Microsoft Visual C++ .NET version 2002
	Enable support for compressed files on Microsoft Visual C++ .NET
	Pre-compiled headers with gcc 3.4

