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Abstract

In practical image querying applications, complex
graphs often have to be compared to verify the similarity
between two models. Since there is always uncertainty
while models are constructed, the nodes and the edges
require fuzzy attributes to properly describe the scene or
the object. This paper addresses the problem of matching
graphs with fuzzy attributes (GFAs) obtained by hypothe-
sizing volumetric primitives from 2D parts. The GFAs of
interests have nodes with many fuzzy attributes that corre-
spond to volumetric hypotheses, and edges that describe
the spatial relationship between the hypothesized volumet-
ric primitives. A model for representing 2D parts by
volumetric primitives is presented. Then, a method using
structural indexing adapted to GFAs is proposed. This
inexact matching method has been designed for matching
GFAs in large databases.

1 Introduction

In image querying applications, graphs are often used
to model scenes or objects in the image. Since creating a
model involves interpretation phases, there is always un-
certainty. Hence realistically, graphs with fuzzy attributes
(GFAs) must be used. Taking our application as an exam-
ple [1], the fuzzy attributes may be all the possible volu-
metric primitives that can be inferred from a simplified
part. Hence, one node (a simplified part) of a graph can
have many fuzzy attributes (each possible volumetric
primitive and a fuzzy ranking value). The edges of the
graph can also have many fuzzy attributes (e.g. the differ-
ent ways parts may be connected). How can such graphs
be compared?

A significant research effort ([2],[3],[4]) has been de-
voted to inexact matching of attributed graphs. However,
in general, these studies do not address the problem of
matching inexact graphs, i.e. GFAs. An exception is the
research of Christmas et al. [4]. Their method can match

graphs where the attributes are fuzzy. However, because
they are using probabilistic relaxation, their method needs
a convergence criterion on the probability. A method with
no convergence criterion would be more appropriate to
image retrieval applications as the level of similarity at-
tainable is not known a priori. In addition, their method is
more adapted to find a similar graph, than to rank graphs
based on a query graph. Chan and Cheung [5] have stud-
ied matching of a GFA and an attributed graph. Their
method does not apply to matching pairs of GFAs. Per-
chant et al. [6] and Medasani et al. [7] have addressed this
specific topic. Their approaches imply sequential match-
ing of pairs of graphs using relaxation algorithms or ge-
netic algorithms. Since our application of image querying
requires fast matching and similarity ranking of many
graphs, an approach using indexing is more appropriate as
it is less computationally expensive [8]. To compare
graphs quickly, structural indexing is a good choice as it
compares graphs by matching their subgraphs independ-
ently. Structural indexing has been studied by Stein and
Medioni [8], and by Nishida [9]. Structural indexing as
defined and used in these researches cannot be applied to
GFAs.

In this paper, a model for representing 2D parts by
volumetric primitives is presented and structural indexing
is extended to compare GFAs. The extension of structural
indexing to GFAs is the main contribution of this paper.
This extension is not trivial as it is stressed in Section 4.3,
yet essential in computer vision applications.

The paper is organized as follows. Our interest in
matching GFAs is explained by presenting our application
(named PLASTIQUE) in Section 2. Section 3 describes
the representation model. Section 4 details the fuzzy
matching problem and describes the matching method.
Section 5 gives results of experiments aimed at validating
our structural indexing method and its applicability in
matching graphs of volumetric primitives. Section 6 con-
cludes the paper.



2 Overview of PLASTIQUE

The application under development, named
PLASTIQUE (Parts, Links, and ASsociated Templates
Image QUery Engine), aims at querying an image data-
base of manufactured objects, which are interpretable as
arrangements of simple volumetric primitives. Images in
the database are from real scenes with one main object in
the foreground that must be detectable in the image (see
[10]).

Fig. 1. PLASTIQUE overview.

Fig. 1 shows an overview of the image database query
engine under development. The shaded region represents
the four modules required to add an image or query the
database. The database is composed of various 2D images
of 3D objects, and their associated models. To query or
add an image in the database, the user gives as input an
example 2D image or a sketch of the 3D object. The im-
age is first processed to obtain contours of linked local
intensity edges that are segmented to produce a map of
constant curvature primitives (CCPs) [11]. An initial
grouping of the CCPs produces the outline of the object
(Object detection) [10]. The CCP map is then processed
further to obtain parts using the extracted outline (Part
segmentation) [12]. These parts are labelled based on the
possible volumetric primitives that may project onto them
(Object modeling) [13]. Parts are interpreted as volumetric
primitives (VPs) since the aspect of a projected 3D object
may change significantly for different viewpoints. The
object modeling module also computes the spatial rela-
tionships between parts. Finally, the constructed model is
compared with the models in the database (Model match-
ing). If similar models are in the database, the correspond-
ing 2D images are shown to the user. If not, the newly
built model and its corresponding image may be added in
the database.

3 Construction of graphs from sim-
plified parts

As discussed briefly in the previous section, to increase
the overall matching performance of simplified parts
found in an image, they are not matched directly. A direct

matching of the simplified parts would not account for
viewpoint variations. For this reason, volumetric primitive
hypotheses are inferred from the parts. The goal of the 3D
inference is to establish which volumetric primitives,
when projected in an image, may look like the simplified
parts found. For more information on obtaining simplified
parts, see ([10],[13]). Simplified parts for a lamp are
shown in Fig. 2A.

Graphs are constructed from the spatial relationships
of the simplified parts and from hypothesized volumetric
primitives. Volumetric primitive hypothesizing is per-
formed using a rule-based classifier. The rules are based
on measures on the boundary and the shape of each sim-
plified parts. These measures verify the convexity and the
symmetry of the simplified part, the type and arrange-
ments of the constant curvature primitives (circular arc or
straight line segment) making the boundary. When a sim-
plified part verifies a rule, one or more ranked volumetric
primitive hypotheses are generated. Since simplified parts
in an image each corresponds to a node of the graph under
construction, each hypothesized volumetric primitive
corresponds to a node attribute. More specifically, nodes
attributes are the labels of each hypothesis associated with
a fuzzy value (see Fig. 2B). The constructed graph will
have nodes with one or more attributes that have values
between 0 and 1 reflecting the ranking between the hy-
potheses. Edges of the graph correspond to the spatial
proximity relationships between the simplified parts.
Edges have attributes with values between 0 and 1 that
describe the connections between the hypothesized volu-
metric primitives. The edges attributes consist of a label
that describes a connection type and a fuzzy value (see
Fig. 2B). Edges are undirected.

Fig. 2. Example of simplified parts for a lamp and its associated
graph.

4 Our approach to matching

Our approach to matching these graphs is to use struc-
tural indexing. Instead of attempting to compare graphs
pairwise, their level of similarity is established by a voting
mechanism and by comparing subgraph structures.



4.1 Details on the matching problem

The constructed graphs have nodes with 18 fuzzy at-
tributes and edges with 4 fuzzy attributes. Each attribute
has a fuzzy value between 0 and 1. The attributes for the
nodes are labels identifying the 18 volumetric primitives
(see [13]) that can be hypothesized for each simplified
part. The attributes for the edges are labels that identify
how the volumetric primitives are connected. Since ob-
jects have parts that interconnect in complex fashions,
nodes can form cycles, and because of processing errors,
some nodes may not be connected.

These graphs must be matched in the context of an im-
age database query engine. Thus, it has to be done
quickly, and matching cannot rely on perfect models of
objects, because the same processing modules model both
query and database images.

4.2 Structural indexing

Structural indexing (without fuzzy attributes) consists
of comparing graphs by comparing their subgraphs (struc-
tural matching) using an index structure. The graphs to be
compared are first decomposed into subgraphs of a chosen
number of nodes. Then, to avoid a sequential search of
subgraphs during matching, they are entered into an index.
Typically, the index is a table where each row corresponds
to a list of labels of graphs containing a given subgraph.
There are as many rows as there are possibilities of sub-
graphs. Hence, the choice of the dimension of the sub-
graphs is important. Large subgraphs require a very large
index because of combinatory explosion, whereas small
subgraphs have little discriminatory power (i.e. more
graphs will be considered as being similar).

Fig. 3. Example of structural indexing.

To find the most similar graphs, each subgraph of the
query graph is used to query the index. Each time a graph
is indexed via its label, it receives a vote. The graphs that
obtain the most votes are the best matches.

Fig. 3 shows an example of the use of structural index-
ing to find the graph (between Obj1 and Obj2) that is
more similar to graph Q. In the figure, shapes represent
the attributes of the graphs. A graph receives votes if it
has similar node attributes and similar duos of attributes
for groups of two nodes.

For graphs with attributes that are not fuzzy, the use of
structural indexing is simple. However, attributes with
fuzzy values complicate matters significantly. The next
section explains why.

4.3 Difficulties with matching GFAs

To illustrate the difficulties with matching graphs with
fuzzy attributes, consider again Fig. 3. Let’s suppose that
for graph Q, the two dark squares have fuzzy values of 0.9
and 0.5 (i.e. these nodes cannot be represented by perfect
dark squares). Let’s also suppose that the two dark squares
of Obj1 have fuzzy values of 0.6 and 0.2. If a square of
Obj1 and Q are matched, a vote of value one cannot be
attributed, since these nodes are not perfect squares and
they do not belong to the square type with the same
strength. A weighted vote value proportional to these
uncertainties and differences must be attributed. For ex-
ample, the minimum fuzzy value of the two squares can
be chosen. In any case, the weighted vote attributed to a
match will depend on the fuzzy values of the node
matched. Hence, the order of the matches will influence
the total match score for a pair of graphs.

In our case, there is also more than one attribute per
node. In theory, they should all be compared at once.
However, in practice this would create a very large index
to account for all possibilities (all possible combinations
of 18 attributes, only to compare graphs node by node!).

4.4 Our method for matching GFAs

Our method handles the two difficulties mentioned
above using the data structure shown in Fig. 4. The query
graph is decomposed into subgraph entities (SGEs). The
SGEs are single nodes, groups of two nodes and groups of
three nodes. Recall that nodes have 18 attributes and
edges have 4 attributes. Therefore 94625 (18 + 18*4*18 +
18*4*18*4*18) index rows are required to cover all com-
binations of volumetric primitives and connection types.
For simplicity, groups of two and three nodes are left out
of the following explanations. Note though, that they are
processed and used in exactly the same way as single
nodes, as combined attributes are associated to subgraphs
of two or three nodes. The combined attributes are ob-
tained by concatenating the attributes of the nodes and the
edges for each possible combination of the hypotheses
associated to nodes and edges for a given subgraph. For
example, the two upper nodes and the edge between them
of Fig. 2B, would give a two nodes subgraph with 8 dif-



ferent combined attributes (Truncated cone-Top-to-side-
Curved cylinder 0.4, Truncated cone-Side-to-side-Curved
cylinder 0.05, and so on).

After the decomposition, SGEs are processed in two
different ways depending if they are to be used as queries
or to be added to the database.

If they are used as queries, SGEs are sorted by increas-
ing fuzzy entropy. In our case, the fuzzy entropy is calcu-
lated by:

∑
−=

FVal

FVal
Entropy max1 , (1)

where FValmax is the maximum fuzzy value for any at-
tribute of the SGE and ∑FVal is the sum of all the fuzzy
values of the attributes of the SGE. Our measure is called
entropy because it estimates how ambiguous the volumet-
ric primitive hypotheses are. This definition of entropy is
different from the usual definition used in fuzzy logic,
because the fuzzy value of all attributes (volumetric primi-
tives) in a node do not sum to 1. It is based on the fact that
the way volumetric primitives are generated, a SGE is less
ambiguous when its best hypothesis has a fuzzy value
much larger then the other hypotheses. The sorting is done
to ensure that the matching order does not influence re-
sults. Therefore, parts that have been hypothesized with
less ambiguity are matched first.

If the SGEs are to be added to the database, they are
processed as follows. Before being added in the database,
the nodes can be truncated to the first n best hypotheses.
The number of attributes of a node to include in the data-
base depends on how much memory and disk space is
available for the index. In our current implementation we
have chosen to truncate to the first forty best hypotheses.
The chosen truncation does not significantly affect match-
ing results because the fuzzy values of the truncated hy-
potheses are usually very low. For 195 graphs, the index
size is of about twelve megabytes.

Coming back to Fig. 4, each row of the index is a list
of entries each associated with the graph of one object that
has one or more copies of the SGE corresponding to the
row. For single node SGEs, the rows correspond to the 18
volumetric primitives (VPs) that can be hypothesized. In
each entry, there is the identity of the graph or object and
a sorted list of its SGEs of the row type. For each SGE in
an entry, there is a field to indicate if the SGE has been
used during the current query.

To allow access to a SGE in the database not only from
its best volumetric primitive hypotheses, entries for the n
best are inserted in the index. Hence, nodes with different
best volumetric hypotheses can be matched. An example
appears in the next section.

Fig. 4. Data structure for matching GFAs. 1) For the query, there
is a list of nodes sorted by increasing entropy. 2) There is an
index for the graphs in the database. 3) There is a vote
accumulator to register votes for each graph in the database.

The vote accumulator is a simple structure that records
the number of votes each graph obtains. It also records
how many SGEs have been used for matching, and their
identifier to avoid multiple matches with the same SGEs.

4.5 Matching process

Let us now assume that three one-part objects (one
node graphs) are to be matched and the SGE (composed
uniquely of volumetric primitive hypotheses in this case,
since it is a one node SGE) for each object are the ones
shown in Fig. 5. The numerical values reflect the ranks of
the volumetric primitive hypotheses. The SGE identified
by Q is hypothesized from the query object. The SGEs
identified by OBJ1 and OBJ2 are hypothesized for objects
(OBJ1 and OBJ2) added to the database. SGE of object
OBJ1 is indexed at the cylinder row and at the cone row,
whereas SGE of object OBJ2 is indexed at the cone row
and at the pyramid row. To find the best match for query
Q, a cylinder is first searched in the database. At the cyl-
inder row, OBJ1 is found. The match value is calculated
as followed. First, the minimum value is calculated for the
ranking of the cylinders. The minimum of 0.65 and 0.8 is
0.65. Next, the other hypotheses are verified to complete
the similarity comparison. SGEs Q and OBJ1 both have
another hypothesis, which is a cone. Taking the minimum,
this adds 0.4 to the matching score. The matching for the
two SGEs is then 1.05. However, this score has to be
normalized so that a perfect SGE match gives 1. The nor-
malization factor is the sum of the rank values for all the
volumetric hypotheses of the current query SGE. In the
present case, it is 0.65+0.55=1.2. Therefore, the match
score for Q and OBJ1 is 1.05/1.2=0.88.
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Fig. 5. SGEs for illustrating the matching process.

Formally, the matching score of two SGEs is:
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where SGEQ is the query SGE, and RVQ(i) and RVD(j)
are the ranking values for the ith or jth volumetric primi-
tives hypotheses of the query and of the database SGE
respectively. i ≈ j means that the sum is computed only for
matching hypotheses in the two SGEs. The total score for
two objects or graphs (for all the SGEs of both graphs) is
given by:
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i ii
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where SGEQi and SGEDBi are respectively the number
of SGEs with i nodes the query and the graph in the data-
base has, MSi is a matching score for a SGE of i nodes, a
and bi are weighting coefficients. The weighting coeffi-
cients are adjusted dynamically. The smallest is the term it
multiplies, the highest is the coefficient value. This fo-
cuses the comparison on the differences between two
graphs. The sum of the weighting coefficients is 1, and in
the current implementation of our matching method, the
coefficients are selected, from sets of fixed values, based
on the value of each term of TS. The value for TS varies
between 0 and 1, where 1 is a perfect match between two
graphs.

To maximize matching scores, matching is performed
in consecutive passes. The first pass indexes the best
volumetric primitive hypothesis in each SGE of the query.
The second pass indexes the second best volumetric
primitive and so on. This is done to consider cases where
an object or part of an object is seen from another view-
point, and where noise or errors slightly deform simplified
parts. Therefore, a partial SGE match must be considered.
Indexing of the SGEs of the query must be done in a con-
stant and ordered fashion to ensure consistency in the
value of TS. A change in the order of indexing change the
value of TS for two matched graphs. This why a fixed
consecutive passes procedure if used to index the data-
base.

Let us now consider OBJ2. After the first pass, OBJ2
does not match with Q. In fact, it does match partially
because both Q and OBJ2 have cone hypotheses. The
cone is used to index the database at the second pass and
OBJ2 is found. OBJ1 is ignored because this SGE has
already been matched. The match score for Q and OBJ2 is
0.55/1.2=0.46. For this example, TS is equal the match
score calculated, because the graphs have only one SGE.

5 Experiments

In this section, the matching performance of our
method is analyzed by two experiments. The first experi-
ment investigates if identical graphs have the highest total
matching score when queried in the index. The second
experiment studies the ability of the combination of the
volumetric primitive model and the matching method to
group simplified parts from images of six objects. It is
compared to human abilities.

Fig. 6. Histogram of matching ranks for indexed graphs queries.

5.1 Validation of the matching method

This experiment aims at verifying if the matching
method matches graphs as it was designed to do. To verify
this aspect, 195 graphs built from simplified parts of ob-
jects in images have been used. Each image contains only
one object in the foreground. The graphs have been en-
tered in an index and each graph in the index has been
queried. If our matching method performs adequately, the
graph in the index that will get the highest total matching
score will be the same as the query. The results of this
experiment are shown in Fig. 6. For 192 graphs out of
195, the graph identical to the query obtained the highest
total matching score. However, it has not been the case for
three graphs which have ranked second. It is because in
the database, SGEs are sorted based on the index row
SGE hypotheses, whereas for the graph use to index, the
SGEs are sorted by entropy. Hence, matched SGEs for the
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graph used to index and its copy in the database are not
necessarily the same because they are sorted differently.
Therefore, when compared, the matching score cannot
always be equal to the perfect mark. For the case of these
three graphs, another very similar graph has benefited
from this difference in the sorting methods and sneaked in
at first rank. Since our method is an inexact matching
method, this was to be expected. Note that the query SGEs
and the SGEs of the graphs in the database cannot be
sorted in the same way, because entropy cannot be used in
the index as it would not maximize globally matching
scores, and because the sorting used in the index cannot
be used for the query graph as it is linked to the index
structure.

5.2 Grouping performance compared to
human cognitive abilities

This experiment has been designed to assess the abili-

ties of our volumetric primitive model and matching
method to group simplified parts obtained for six objects
viewed in 195 images (about the same number of images
for each object). Fig. 7 gives two examples for each ob-
ject, of images and associated simplified parts used for
this experiments. This experiment will allow us to verify
how the 3D model and the matching method allow
PLASTIQUE to abstract viewpoint and imperfections. To
do so, PLASTIQUE is compared with six humans that
have performed a similar clustering task. Among the six
humans, four were researchers in the field.

The experiment with human subjects has been con-
ducted as follows. Printouts of the simplified parts of the
195 images have been given to the human subject. They
have been asked to classify the printouts in groups they
thought corresponded to the same object. It has been men-
tioned to the human subjects, that the objects could be
seen from different viewpoints and deformed. The number
of groups to form was not specified.

The same clustering task has been performed with
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Fig. 7. Example of images used for the grouping performance experiment.



PLASTIQUE. Images of simplified parts were grouped
together if the total matching score, with an image of
simplified parts given as a query, was within a threshold.
Then, the grouped images of simplified parts were re-
moved from the index, and another query (an image of
simplified parts still in the index) was used. This process
has been done until the index was empty. This task has
been performed with two thresholds. With a 60% and a
70% threshold. That is, the matching score had to be
higher than 0.6 and 0.7 (a perfect matching score being
equal to 1). Threshold values larger than 70% give very
small groups. Hence, these values are not of interest. Fur-
thermore, threshold values smaller than 60% give poor
grouping performance as a lot of graphs are considered
alike.

The graph of Fig. 8 shows the precision obtained for
each object. The precisions have been computed as fol-
lows. The number of images or printouts in each group
where an instance of a particular object was found has
been summed. The number of images of the particular
object in the database was divided by this value. This
precision value reflects how many images or printouts of
simplified parts had to be considered so the human sub-
jects or PLASTIQUE could find all the images of the
particular object. The smaller the value, the larger the
number of images considered before finding all the im-
ages of an object.

Except for the watering can, the human subjects out-
perform PLASTIQUE on average. Considering that hu-
man subjects have a priori knowledge about the object
grouped in the experiment, PLASTIQUE suffers from a
major handicap. PLASTIQUE does not have a priori
models of objects. It simply compares the simplified parts
by hypothesizing and comparing 3D shapes and verifying
their relationships. The human subjects on the other hand
can guess the identity of objects by the area or the shape
the simplified parts are forming altogether. In any case,
PLASTIQUE using a 70% threshold approaches the low-
est precision level achieved by human subjects. However,
this part of our system can be improved to reduce the gap
between PLASTIQUE and human subjects. For example,
the use of global shape criteria on the area formed by all
the simplified parts may significantly increase the preci-
sion of PLASTIQUE. Note that human subjects have had
a lot of difficulties recognizing objects such as the stool,
the coffee cup and the watering can. This is because the
simplified parts extracted do not always adequately repre-
sent the object in the images. Discussion on this issue will
be the subject of another paper.

It can be noted from Fig. 8 that some complex objects
are grouped with more precision then simple objects, even
by humans. It is the case for airplanes and coffee cups.
The cause of this is not related to the subject of this paper.
This is explained by the simplified parts obtained for these
objects. The simplified parts obtained for the airplanes
capture more their shapes than those for the coffee cups,

because our part segmentation algorithms are not aware of
holes in objects [12] (see simplified parts of stools and
coffee cups in Fig. 7). Therefore, the handle is not well
segmented from the body of the coffee cup.

Conclusion

This paper has presented a novel method for inexact
matching of graphs with fuzzy attributes (GFAs) and a 3D
model of representation for 2D parts. We first stated that
matching GFAs is essential to many computer vision
applications since interpretation phases are always uncer-
tain as it is the case for our volumetric primitive inference
method. These uncertainties can be accounted for by using
GFAs.

Our matching method adapts structural indexing to
GFAs. The use of an entropy measure and adapted data
structures allows our method to handle the fuzzy nature of
the graphs. Our method ranks graphs by similarity based
on a query graph. Matching is done quickly as the models
are not compared sequentially. For 195 graphs, matching
and displaying the results take less then one second on a
Athlon 1.2Ghz. The complexity of our matching method
is O(nm), where n is the number of SGEs of the query and
m is the number of graphs in the database. This is the
worst-case complexity where each graph in the database
has at least an SGE at each row of the index. Furthermore,
the size of the index can be adjusted to fit one need of
matching accuracy and computer memory utilization. For
195 objects and SGEs truncated to 40 hypotheses, the
memory requirement is about twelve megabytes.

The results obtained thus far show that our method can
match GFAs adequately. When an image in the index is
queried, it ranks first in general for the matching score,
except in a few cases where the sorting methods used have
lowered the matching score below the score of another
image. Grouping simplified parts using our method gives
results that are still inferior to human subjects. However,
this experiment allowed us to gain valuable knowledge
and discover new ways to improve our method. These
improvements will be the subject of future work.
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