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Abstract 

This paper presents the integration in an image retrieval software of object modeling algorithms developed by the authors. 
The algorithms have been designed to model 3D objects from single 2D image. They are based on results obtained in cogni-
tive psychology. The purpose of the integration is twofold. First, it allows the assessment of the performance of our algorithms 
in a concrete application. Secondly, it allows us to reflect on how image retrieval application could benefit from object model-
ing algorithms. We show, that although not perfect, our algorithms are bases that could lead to the retrieval of images based 
on the identity of the objects they feature, while abstracting colors and textures when these are not important in a query. The 
implemented image retrieval software is named PLASTIQUE. The algorithms used in PLASTIQUE are first overviewed, and 
then performance assessment experiments are presented and discussed.   

1. Introduction 

Finding images in databases using another image as the query is currently an important research topic [1]. The idea of using 
an image as a query comes from the fact that it can be difficult to describe an image with words. In addition, many databases 
are composed of images that are not annotated by keywords. Hence, the content of the image itself has to be compared di-
rectly. Making a model of an image is not an easy problem. In the majority of efforts in this topic ([2],[3],[4],[5]), images are 
modeled by their colours, textures and 2D shapes. However, these models are sensitive to changes of viewpoint and changes in 
the textures and colours. For example, a blue desk lamp and a red desk lamp viewed from significantly different viewpoints 
cannot be matched. For this reason, we propose a 3D part-based model that abstracts colours and textures. This model applies 
to images of manufactured objects that are seen in the foreground. A method for obtaining this model from an image is pro-
posed. This method models objects in images by graphs of volumetric primitives. The same method can be applied to model 
objects for object recognition applications. 

This paper presents the integration, in an image retrieval software, of the different modules developed to implement our 
method. The main contribution of this paper is the evaluation in a whole of the latest contributions in part-based modeling of 
objects made by the authors ([6],[7],[8],[9]), and the assessment of their performances by an image retrieval application. 
Hence, it is not claimed here that our part-based modeling method outperforms other image retrieval modeling techniques. 
This paper essentially assesses, based on experimental results, how part-based modeling can perform in image retrieval appli-
cations. 

Our review of the image retrieval literature has shown that part-based models have not yet been used in this field, because 
object segmentation algorithms are said to be too brittle for automation [1]. Hence, the use of a part-based object representa-
tion in image retrieval is an important contribution in itself.  

The advantage of using a part-based representation in image retrieval is that objects in images, with different colors and 
textures, seen from different viewpoints can be matched. This is not possible with 2D shape-based, or colors and textures-
based image retrieval.  

Section 2 explains the basic principles behind our model and our method. Section 3 gives an overview of the method, and 
of PLASTIQUE, our image retrieval software. Section 4 illustrates the performance of our method by query experiments. 
Section 5 concludes the paper. 



2. The theory behind PLASTIQUE 

The representation model of objects in images is what distinguishes PLASTIQUE from other image retrieval engines. The 
model chosen for representing objects in images is a graph of volumetric primitives. This choice comes from the RBC (recog-
nition-by-components) theory and by researches in perceptual grouping. The RBC theory has given us the inspiration for the 
model, and perceptual grouping tools to obtain the model. 

2.1. RBC (Recognition-by-components) 

The RBC theory [10] claims that humans recognize objects by the structure of their constitutive parts. For example, humans 
recognize a table because they see four legs connected to a board. Hence, objects can be modeled as graphs of volumetric 
primitives. Whether it is true or not that this is how humans recognize objects, this model is interesting because recognition of 
objects seen from different viewpoints can be accomplished by only a few images. This is why this model has been chosen. In 
a database, there might be only one copy of a graph of an object. If the query is a similar object, the query engine must be able 
to compare the graph of these two images. This model allows the query engine to compare the two objects as graphs of volu-
metric primitives because they can each be constructed from a single image. View-based models cannot be used, as not 
enough views of the object are available. 

2.2. Perceptual grouping 

The chosen model has to be constructed from images of objects. Perceptual grouping [11] allows us to carry out this task. 
Researches in cognitive psychology have pointed out that when a human is shown and asked to make groups from sets of 
straight line segments, they are grouped in specific ways. The straight line segments are grouped by their level of symmetry, 
by proximity, by similarity, and by their level of overlap. Hence, humans are sensitive to the structure in the images they see. 
As image processing is concerned, these geometric relationships can be used to group (or structure) straight line segments and 
circular arcs into boundaries of areas that can be interpreted as being projections in a plane of volumetric primitives. These 
areas are named parts. A graph of volumetric primitives can be constructed by hypothesizing the volumetric primitives that 
might have given rise to the parts found by the grouping operation. 

3. PLASTIQUE 

PLASTIQUE (Parts, Links, and ASsociated Templates Image QUery Engine) has been designed for querying image data-
bases of manufactured objects, which are interpretable as arrangements of simple volumetric primitives. Images in the data-
base are from real scenes with one main object in the foreground that must be detectable in the image (see [6]). 

Figure 1 shows an overview of PLASTIQUE. The shaded region represents the four modules required to add an image or 
query the database. The database is composed of various 2D images of 3D objects, and their associated models. To query or 
add an image in the database, the user gives as input an example 2D image or a sketch of the 3D object. The image is first 
processed to obtain contours of linked local intensity edges that are segmented to produce a map of constant curvature primi-
tives (CCPs). An initial grouping of the CCPs produces the outline of the object (Object detection) [6]. The CCP map is then 
processed further to obtain parts using the extracted outline (Part segmentation) [7]. These parts are labelled based on the pos-
sible volumetric primitives that may project onto them (Object modeling) [8]. Parts are interpreted as volumetric primitives 
since the aspect of a projected 3D object may change significantly for different viewpoints. The object modeling module also 
computes the spatial relationships between parts. Finally, the constructed model is compared with the models in the database 
(Model matching). If similar models are in the database, the corresponding 2D images are shown to the user. If not, the newly 
built model and its corresponding image may be added in the database.  

Figure 1. Overview of PLASTIQUE 



3.1. PLASTIQUE graphical user interface 

The graphical user interface (GUI) of PLASTIQUE is shown in Figure 2. This GUI allows users to query and add images in 
the database. Images and sketches of objects can be used as query. The PLASTIQUE user interface has a result window that 
shows query results as a sorted list of matching images. In addition, this window allows users to visualize intermediate results 
from the computation of the model for the object in the query image. Being a multi-documents application, PLASTIQUE can 
keep results of different queries in separate documents. 

The PLASTIQUE user interface and PLASTIQUE query engine are distributed applications. The PLASTIQUE user inter-
face connects to the query engine via Internet. This gives PLASTIQUE flexibility. 

Figure 2. PLASTIQUE graphical user interface. 

3.2. Extraction of low-level data and object detection 

This step is essentially for information gathering. This step is used to extract the data needed for the application of percep-
tual grouping at the part segmentation step. First of all, an edge detector is applied on the image to process. Then, edges are 
grouped into edge contours. Constant curvature primitives (CCPs) are fitted on the edge contours. Edge detection, edge group-
ing, and CCPs extraction is performed using the algorithms of MAGNO [9]. The extracted CCPs are straight line segments 
and circular arcs. 

To obtain only parts that are inside the object area, the external outline of the object is extracted [6]. The external outline of 
the object is detected by making a closed cycle of CCPs that maximizes the area to perimeter ratio. During the construction of 
the cycle, CCPs are added following simple rules that improve robustness to object textures. These rules involve proximity 
and angular distance. Figure 3 shows the CCPs and the outline obtained for an airplane image. 

Figure 3. A) Original airplane image, B) Extracted CCPs, C) Extracted outline. 

3.3. Part segmentation 

Part segmentation [7] is the step where the construction of the models begins. Part segmentation determines the number of 
volumetric primitives the model will be made of, the relationships between them and the shapes of the projections. Hence, this 
step is critical for the quality of the model. 

Starting with the longest CCPs, part segmentation groups CCPs with a geometric criterion. The components of the geomet-
ric criterion are measures of parallelism, proximity, similarity in type, similarity in length and overlap. The geometric criterion 
is applied on pairs of CCPs. The pair that obtains the highest values for the measures of the geometric criterion is considered 
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as defining the main shape of a part. Joining the CCPs of the pair with CCPs nearby completes the boundary of the part. CCPs 
used for the part and CCPs inside the part are removed. Other part construction attempts are performed with the remaining 
CCPs. Several validation tests are applied on the pairs of CCPs to ensure that valid parts are obtained. A part may be invalid if 
it covers a region outside the extracted external outline. 

When all the possible parts are obtained, their relationships are established using proximity and the sequence in which they 
are appearing as the external contour of the object is scanned. Two consecutive parts on the outline are linked together. Figure 
4 shows the five parts obtained for an airplane image. The complete area of the projection of an object may not be completely 
covered by the parts, since there is no criterion specified to optimize coverage. 

Figure 4. Parts extracted from the airplane image. The CCPs inside each part are also shown. 

3.4. Object modeling part 1: Part simplification 

Object modeling can be separated into three distinct substeps. The first substep is part simplification [8]. As the name of 
this substep implies, its goal is to simplify parts so that a rule-based classifier can hypothesize volumetric primitives from 
them. The original parts can have a wide range of different shapes and they can have a boundary composed of various 
numbers of CCPs. Hence, a rule-based classifier cannot process these parts. An undetermined number of rules would be 
required to process all the possible parts. Furthermore, we want to keep the information conveyed by the CCPs types 
(straight line segment or circular arcs) of the boundary. Template matching of volumetric primitives may approximate two 
straight line segments by a circular arc. This is why we have rejected this method. Instead, we have chosen to approximate 
the parts by template parts, which are all the possible qualitative projections of a set of general volumetric primitives. These 
template parts preserve CCPs types. Since, the number of template parts is known, a rule-based classifier can be used to 
hypothesize volumetric primitives with a reasonable number of rules.  

The simplification of the parts has been designed to preserve the general shape of the original parts. Points are sampled 
on the boundary of a part. Among these, 3 or 4 points that maximize area coverage and rectangularity (since parts have 
their shape mainly defined by two CCPs) are selected. The CCPs of the boundary of the original part between these points 
are analysed. From this analysis, CCPs, that best approximate the original CCPs of the boundary are created between the 
points. The new CCPs approximate the boundary in such a way that the CCPs types are preserved as much as possible. 
Figure 5 shows the simplified parts for the airplane. 

Figure 5. Simplified parts for the airplane image. 

3.5. Object modeling part 2: Volumetric primitive hypotheses 

Volumetric primitive hypotheses [8] are performed from the simplified parts using a rule-based classifier. The rules involve 
geometric relationships between the CCPs of the simplified part. These relationships are parallelism, convexity, CCPs type, 
and the number of CCPs of the simplified part. In all, for 18 volumetric primitives [8], the classifier needs 49 rules. Each rule 
is associated with one or more volumetric primitive hypotheses with a fuzzy value reflecting a probabilistic ranking between 
the hypotheses. These hypotheses are volumetric primitives that project in the plane with shapes similar to the simplified part 
respecting the given rule. 



3.6. Object modeling part 3: Model construction 

Model construction consists in building a graph with the volumetric primitive hypotheses as nodes and their spatial rela-
tionships as edges. The constructed graph has nodes with fuzzy attributes (a volumetric hypotheses associated to a fuzzy rank-
ing value) and has edges with fuzzy attributes (the type of connection with a probabilistic fuzzy ranking value). 

3.7. Model matching 

Model matching [12] is performed using structural indexing adapted to graphs with fuzzy attributes. Graphs of images in 
the database are inserted into an index where each row corresponds to a subgraph of 1, 2 or 3 nodes. Therefore, before adding 
graphs in the index, they are divided into a subgraph of 1, 2, and 3 nodes. When the database is searched, subgraphs of the 
query are indexed. Each time a subgraph is indexed, all the images in the database that have this subgraph receive a vote. The 
images that obtain the most votes are the ones that have graphs that most resemble the query image graph. 

4. Experiments 

To validate our model and our model construction method, PLASTIQUE has been tested for querying images. The data-
base used has 135 images of six objects: an airplane, a stool, a lamp, a coffee cup, a compass and a watering can. Sample im-
ages of these objects and simplified parts obtained are shown in Figure 6. Before statistically measuring the performance of 
PLASTIQUE to query images, we show a query result to illustrate the capabilities of our method. 

Figure 6. Sample object images and associated simplified parts used in the experiments. 

4.1. Example of a matching result 

Figure 7 shows a query result for a lamp image. The 25 most similar images are shown. As it should, the query, which is in 
the database, ranked first. The rank reflects the level of similarity of the model of an image in the database with the model of 
the query image. From this result, several important observations can be made. The model of the query lamp image is matched 
with other models of images where the lamp is seen from significantly different viewpoints. In particular, this is the case for 
image 2, 6 and 14. The model of the query lamp is matched also with models of images of deformed lamps. This is case for 
image 3, 4 and 13. The deformations do not affect the model of the lamp because the same volumetric primitives can still 
represent the deformed pole. These two observations demonstrate the advantages of modeling objects by volumetric primi-
tives. 

There are some models of images of other objects that are considered resembling the model of the query lamp. The graphs 
of these images have nodes and groups of nodes similar to the query graph. Since our matching method is not exact and the 
graphs are not compared as a whole, theses graphs are considered quite similar. For example, they might be similar when 
compared node by node and by groups of two nodes, but different by groups of three nodes. Because there are variations in the 
models obtained for each lamp image, some models of lamps obtain a matching score that is inferior to images of other objects 
(images 21 and 25, for example). In this case, it can be observed that the model of the query lamp have 4 parts, while model of 
image 21 has three parts and the model of image 25 has five parts. If all lamps had the same model graph, this phenomenon 
would not occur. However, starting from images of a real scene, as is the case here, it is difficult to always obtain the same 
model. 

In any case, this result shows, based on experimental results, advantages and drawbacks of using a part-based representa-
tion. Although the result shown in Figure 7 is not perfect, it shows that part-based models are useful in certain circumstances. 
This is the case, for deformed objects and objects seen in different viewpoints. The next section investigates furthermore the 
performance of our model. 



Figure 7. Result from the query of a lamp image (image Q).  
The top of the figure shows the result as images. The bottom of the figure shows the result as simplified parts images. The 
numbers indicate the ranking between the images in terms of similarity to the query. 

4.2. Precision vs recall 

The previous section has shown qualitatively the abilities of our method. This section analyses our method by quantitative 
measures. To verify how our method performs, we have chosen to measure its precision for different recall values. This meas-
ure reflects how many images had to be found to get x% of the images of object y. This is the standard definition of "precision 
vs recall". The precision in percentage is formally, 

%100*
)(

precision
F 

iN(%recall)* image=                                                                 (1) 

where Nimage(i) is the number of images that feature object i, F is the minimum number of images needed to find the (%re-
call)*Nimage(i) images of object i in the database, and %recall is the proportion of the number of images of a given object to 
find. 

The experiment to measure the “precision vs recall” values of PLASTIQUE has been conducted as follows. First, a data-
base of 135 images of six objects has been constructed. The objects are the same as the one mentioned in the previous section. 
Each of the 135 images was used as a query. For each query result, the “precision vs recall” values have been computed from 
the sorted list (based on similarity ranking) of images obtained. Precision values have been computed for recall of 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 90% and 100%. This experiment has been repeated for different sets of criteria. Model matching 
can be done with no additional criteria, as they are not essential. That is the proportions and relative dimensions are ignored. 
However, it was of interest for us to verify if the use of additional information could improve matching performance. We have 
implemented three criteria that can be applied separately or in combination. The first criterion concerns the proportion of the 
volumetric primitives. With this criterion, volumetric primitives (single graph nodes) can be matched only if their axis to sec-
tion ratio is similar qualitatively. The second criterion applies to subgraphs of two nodes. Subgraphs of two nodes can be 
matched if the relative dimension of the volumetric primitives of each node is the same. The third criterion is identical to the 
second, but applies to subgraphs of three nodes. 

Figure 8 shows “precision vs recall” plots when matching without criteria and with criteria 1 and 2. When matching with-
out criteria, the maximum precision obtained is about 77%. When matching with criteria, the best result is obtained with crite-
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ria 1 and 2. On average a gain of 10% is obtained, with the best precision value being about 86%. Using a combination of all 
the criteria gives a slightly poorer performance, because the third criterion is too severe for the quality of the models obtained. 
Criteria 1 and 2 enhance the retrieval performance significantly. Hence, our model benefit from the use of additional in-
formation about the parts and their spatial relationships. Of course, this effect was expected, but it was nevertheless interesting 
to validate it experimentally.  

Figure 8. Precision vs recall average for all queries when matching is conducted with no criteria and 
with a combination of criterion 1 and 2. 

Even more interesting is the study of the “precision vs recall” for the six objects individually. The results for this study are 
shown in Figure 9. Our method performs better for simple objects like a watering can and a compass. It performs well also for 
the lamp. However, our method has difficulties with objects like the airplane and the stool. Our method performs poorly for 
the stool because a constant and good model cannot be obtained. This is because, our segmentation algorithm is not aware of 
the see-through holes in the stool. The inside area of the stool is not segmented from the background because only the external 
outline of the object is extracted. For the airplane, the performances are poor because PLASTIQUE fails in extracting all the 
wings. Sometimes, because of scale, the wings in the image are thin and cause part segmentation difficulties. Hence, 
PLASTIQUE has an unwanted sensitivity to scale. Furthermore, the external outline often does not enclose all the wings be-
cause edge detection separates the wings from the fuselage. By solving these issues, the performance of PLASTIQUE could be 
significantly improved. 

Figure 9. Precision vs recall for the objects individually. 

Globally, when observing Figure 8 and Figure 9, the results show that part-based models should not be neglected in image 
retrieval applications. First of all, even though not perfect, the current implemented algorithms can be applied for retrieving 
some types of objects, and this at the object level. Next, our method can be further improved by enhancing some modules, for 
example outline extraction. The outline extraction algorithm used is very simple. It could be easily improved. This way, object 
with holes or objects like airplanes could be segmented with more success. 

Part-based object models could be used in a specialized module in an image retrieval software, or in combination with other 
modeling approaches. For example, the image retrieval software of [5] has a module specialized for textures and another for 

Precision vs Recall

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

recall

p
re

ci
si

o
n

 (
%

)

Criterion 1 & 2

No criteria

Precision vs Recall

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

recall

p
re

ci
si

on
 (%

)

Watering can

Airplane

Compass

Coffee cup

Stool

VR room lamp

Average



shapes. Why not, a module for part-based objects ? Also, used in combination, part-based modeling of objects could improve 
the retrieval of some type of images where other image models fail. 

Another advantage of our part-based object model is that it allows formulating queries by drawing the outline of an object. 
Figure 10 shows the results of a query formulated in this way using PLASTIQUE. The sketch is drawn by adding straight line 
segments and circular arcs. 

Figure 10. Best 16 similar images obtained from a sketched query. 

Conclusion 

This paper has presented a 3D part-based method to model and match images in databases. This method allows images to 
be matched where objects have deformations or are seen from different viewpoints. It builds models directly from a single 
image. This is an important advantage as a single copy of an object can be matched without the need of explicitly building a 
model for each object. 

Experiments demonstrate the abilities of our method, as PLASTIQUE successfully matches deformed objects and objects 
seen in different viewpoints. Current results show that PLASTIQUE is not as successful at matching different classes of ob-
jects. However, these results show that the method of PLASTIQUE has very good potential. 

Analysis of the precisions for different recall values shows that our method can be further improved by extracting the in-
ternal outline of object and by improving segmentation of thin parts and outline extraction. These two issues will be the subject 
of future efforts. Additional experiments using more objects are currently underway. 
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