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Abstract

A novel method is proposed to detect multi-part objects of unknown specific shape
and appearance in natural images. It consists in first extracting a strictly over-
segmented map of circular arcs and straight-line segments from an edge map. Each
obtained constant-curvature contour primitive has an unknown origin which may be
the external boundary of an interesting object, the textured or marked region en-
closed by that boundary, or the external background region. The following process-
ing steps identify, in a systematic yet efficient way, which groups of ordered contour
primitives form a complete boundary of proper multi-part shape. Multiple detec-
tions are ranked with the top boundaries best satisfying a combination of global
shape grouping criteria. Experimental results confirm the unique potential of the
method to identify, in images of variable complexity, actual boundaries of multi-part
objects as diverse as an airplane, a stool, a bicycle, a fish, and a toy truck.

Key words: Multi-part object detection, segmented contour map, grouping
constraints, global shape grouping criteria.

1 Introduction

Whether you are sitting looking at a picture or walking in a new place, your
attention is often captured by some part of what is in your field of view. Atten-
tion is considered a key factor in cognitive science given the limited processing
capabilities of humans [1], the quantity of information in the observed scenes,
and the variety of perceptual and cognitive tasks and contexts. Attention is
sometimes considered a purely reactive behavior where, for instance, a generic
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big, moving, red thing leads you to move your eyes in its direction. How-
ever, low-level, reactive behaviors are not sufficient to attain the sophistication
made possible by higher-level cognitive capabilities. For instance, recognizing
a known object would elicit a higher-level attention capture and a specific
intelligent reaction.

Apart from these two extreme situations, other types of attention capture
may also exist involving various forms and combinations of detection, local-
ization, and recognition of objects at different levels of specificity. For instance,
a widely discussed question about human vision is whether detection, local-
ization, and recognition are sequential or parallel processes and, in the former
case, what their temporal relationships are. The same questions arise in com-
puter vision. Clearly, it is impossible to recognize a horse and still not know
whether a horse is present in the field of view. However, as exemplified by
recent research in computer vision, it could be possible to detect that a horse
is present in the field of view without being able to localize it precisely. In
that case, a specific model of a horse, e.g. a set of, possibly structured, local
appearance features, is required a priori. In a different scenario, a four legged
animal could also be detected and localized before its specific recognition as
a horse in a given pose and posture. That scenario makes more sense from a
complexity point of view since the number of known objects is huge and their
possible appearances are also numerous. One way toward efficient high-level
attention capture is to detect whether an unexpected but interesting object
is present in the field of view and if yes, to recognize it more specifically with
its pose and posture.

In this paper, a computer vision method for high-level attention capture is pro-
posed on that basis. A major hypothesis made is that no explicit or specific
model is available a priori for the shape and appearance of potential objects
of interest. Hence, the addressed problem is the detection of unexpected but
interesting objects. This differs from problems referred to as object (category)
detection, localization, or recognition in the literature, where an explicit (pos-
sibly learned) object model of limited genericity is available a priori. One
may argue that interest is often highly context-dependent. Humans may be
assumed to be generally aware of context but not computer vision systems.
Besides, if context is often an important factor, out-of-context vision is not
uncommon even for humans. For instance, consider situations such as opening
an image book, a photo album or a web image search result window, looking
at the first shots of a movie in a theater, zapping television channels, or even
awakening in the morning. Out-of-context detection and localization of un-
expected or unknown objects by computer vision systems is to become more
common as applications get more sophisticated and challenging. If specific
context is not known, it means one either has to do without it or recognize
it first. The latter is however a problem at least as difficult as object detec-
tion and localization itself. In this paper, specific context is assumed to be
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unknown and detection and localization of unexpected but interesting objects
is sought for.

2 Related Work

Model-based hypothesis-verification methods for object recognition match lo-
cal image features to a known model in order to find the pose of a specific
object [2]. Recent visual object categorization methods apply supervised sta-
tistical learning methods in order to build a more generic model for each of a
number of known object categories [3–6]. Though local features such as interest
points or contour fragments clearly bring useful information about image con-
tents [7], their use in object categorization still consists in identifying features
specific to a given class of object appearances. Despite rapid progress, state-of-
the-art methods still have important limitations, namely their lack of a precise
localization of the detected objects, their limited invariance to viewpoint, their
possible confusion between different detectors responding positively to a test
image, and their choice of categories which is rarely discussed and appears to
be ad-hoc. Scaling of the methods to a large number of categories is another
important problem yet to be fully addressed.

As a result, the previous methods may hardly be seen as properly modeling
high-level attention capture. In a sense, human attention capture implies that
one does not have specific expectations and hence does not look or visually
search for a particular object in a given pose but is instead surprised by what
is observed. Hence, having a classifier for each type of possibly interesting
object appearance and verifying in turn which one is in fact present in an
image is unrealistic and inefficient for high-level attention capture. Detecting
that an interesting but unexpected object is present in an image implies that
it is also localized. Delimiting the region occupied by an interesting object in
a static image is both useful and easy for humans. This is sometimes referred
to as figure-ground discrimination. In computer vision, the related problem
of partitionning an image into object and background regions is referred to as
figure-ground segmentation. This is still a fundamental problem in computer
vision with no existing general solution yet. The method proposed in this
paper offers a possible solution to that problem for multi-part objects, a large
and very generic class of objects.

State-of-the-art segmentation methods in computer vision rely on very generic
contextual knowledge, e.g. interesting objects are compact, contrasting, and
of at least a certain size, but they fail to provide a satisfying means of detect-
ing and localizing objects of interest in challenging situations. On the other
hand, state-of-the-art detection methods typically rely on specific contexts
e.g. the object of interest is a horse seen from the side with the head facing
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left and whose formal model has specific parameters, in order to provide the
best results in proper contexts that is, good combinations of detection and
false alarm rates. The method proposed in this paper efficiently detects and
precisely localizes, out of the huge number of possibilities, unexpected but
interesting objects in a given contour primitive map obtained from a single
intensity image. It relies on contextual knowledge more generic than state-of-
the-art detection methods but more specific than state-of-the-art segmentation
methods. The proposed approach is to use an extended set of grouping criteria
and constraints in order to find objects of interesting shapes. Much evidence
has been published that perceptual grouping of contour primitives is impor-
tant in human vision [8,9]. However, as discussed in [10], few results are known
concerning high-level grouping for object detection and localization.

In computer vision literature, generic grouping criteria for shapes are typically
limited to simple ones, e.g. local continuity and smoothness [11], or global clo-
sure [12], [13] and convexity [14]. Elder and Zucker [12] used a shortest-path
algorithm to find maximum-likelihood closed contours. Even though no crite-
rion was used to explicitly target multi-part objects, they presented a result
where a single contour for the complete shadow of a multi-part wooden doll
was extracted. However, very few if any confounding primitives seemed to be
present on the object, on its shadow, or in the background (the actual prim-
itive map was not shown). Different partial contours were also extracted on
the doll and in between the doll and its shadow. No attempt was made at
identifying the most interesting contours. Targeting simpler shapes and high
efficiency, Jacobs [14] used a constraint (threshold) on a global salience crite-
rion based on the relative amount of gaps in a convex closed shape. Efficiency
resulted mainly from using monotonic constraints, meaning that a subset of
primitives could be rejected as soon as it did not satisfy the constraint since
adding more primitives could not make the larger subset acceptable. While
convexity is properly monotonic, [14] also used the salience constraint as if it
were monotonic, even though it is not since adding a long convexity-preserving
segment with no gap to a convex group may increase its salience. In fact, rela-
tively few grouping criteria and constraints are proposed in literature and they
are mostly monotonic. Unfortunately, this choice limits the possibilities of pro-
posed methods in terms of detecting shapes of interest. A comparative study
of [12] and two competing methods was made by Wang et al. [15]. For natural
images of animals, the optimal boundary has a simple near-convex shape not
representative of the animal shape. The limitation to monotonic criteria and
near-convex shapes is also typical of previous saliency-based methods [11]. For
instance, saliency networks impose that an optimal curve must be composed of
sub-curves that are themselves optimal, a property equivalent to monotonicity
and referred to as extensibility in [16].

With complex shapes, effective grouping criteria are more likely to be non-
monotonic. Non-monotonic grouping refers to the fact that the value of a given
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formal criterion is not changing monotonically i.e. either always increasing or
always decreasing as the number of grouped (added, merged) primitives in-
crease. For instance, a group of two primitives may get a higher score on a
given criterion than another group of two primitives but the same third prim-
itive added to the first group may give a lower score than when added to the
second group. This makes it much more difficult to reach even a local opti-
mum simply by following an ascending or descending gradient in the value of
a single grouping criterion. In the method proposed in this paper, many such
non-monotonic grouping criteria are combined in the objective function which
makes typical deterministic and even random discrete optimization techniques
most likely ineffective. The effect of grouping non-monotonicity becomes more
apparent as the number of elements in each group grows from two to three and
more, as is the case in the proposed method. In practice, an important conse-
quence of the non-monotonicity of the grouping criteria is that, as the subsets
of primitives considered increase in size, the constraints need to be adapted.
For instance, as the shape and interest of a partial object becomes clearer,
constraints may appear or disappear or more simply diminish or increase.
Previous search-based methods avoided this added complexity by implicitly
or explicitly assuming monotonic criteria and constraints. A recent method by
Estrada and Jepson [13] extracts salient non-convex contours by developing a
search tree, enforcing fixed constraints and rejecting a fixed proportion of less
promising partial contours.

In this paper, the hypothesis is made that global, non-monotonic grouping
criteria are needed in order to detect and localize unexpected but interesting
objects directly from a noisy and cluttered primitive map. A single generic set
of grouping criteria is used in the proposed detection method. Our approach is
a generalization of [14] where the criteria and constraints are more numerous
and non-monotonic. The main contextual knowledge to be relied on in defining
the shape-based grouping criteria is that objects of interest are of intermediate
complexity. One may argue that intermediate complexity objects are generally
interesting since they are complex enough to be discriminated from each other
and from distracting structures in complex natural images, and still simple
enough to be detected, described, understood, and memorized using limited
processing capabilities [17,1]. Here, objects of intermediate shape complexity
are called multi-part objects and assumed to be of general interest in out-
of-context situations. Multi-part objects are everywhere, from living beings
to man-made objects, rigid or deformable, articulated or not. They can be
a person, with a head, body, two legs, and two arms, or an airplane, with
its nose, body, two wings, and tail. In a projected view of a 3D multi-part
object, evidence for parts lies in the successive concavities and convexities
along its external boundary [18]. In practice, as primitive maps are noisy, a
single criterion is not sufficient to always localize the most interesting objects.
For instance, an object may have the proper number of concavities but be
of less interest than a more complete or larger object. A trade-off among a
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number of criteria is used to define the degree of interest of each possible
object boundary.

While many non-monotonic criteria are needed to evaluate the complex bound-
ary of a multi-part object, fewer monotonic criteria could be sufficient to di-
rectly detect its parts. Part extraction using contour grouping algorithms have
been proposed by a number of authors [19–22]. In practice, as a result of the
limited evidence for part connections in images, the performance of part ex-
traction algorithms depends on either assuming very simple part shapes and
object structure or having previously determined the region occupied by the
interesting object in a cluttered scene [23]. In the former case, generic object
detection and localization must precede specific part-based shape analysis and
recognition. As an extreme example, sophisticated skeleton-based shape analy-
sis methods always assume binary silhouettes as given or easily obtained. The
method proposed in this paper aims at detecting and localizing interesting
objects in a generic context, prior to a more specific shape analysis, cate-
gorization, or recognition. Basic grouping constraints impose upper or lower
constraining or limiting values (thresholds) to basic criteria evaluating par-
tial boundaries while global grouping criteria evaluate complete boundaries.
Basic grouping criteria and constraints are used to limit the number of par-
tial boundaries considered while global criteria are used to rank the obtained
complete boundaries. Criteria and constraints are detailed in Section 5.

Even though our grouping criteria and constraints are based on shape, it is
important to emphasize that our goal is not to directly compare different
shapes for classification, recognition, or retrieval purposes. In those cases, bi-
nary shape silhouettes are usually the input to be processed and a description
or model of each shape is required. This problem is addressed using a for-
mal representation for the shape, e.g. skeletons [24] or codons [25]. A shape
matching procedure then computes the similarity of any pair of shapes de-
scribed in the chosen representation. Here, the goal is different. It is to detect
and localize the shapes in images. Furthermore, that detection is not obtained
by searching for a shape similar to a given model. Instead, the localization
of the shapes likely to capture attention, being of general interest, is sought
for. Finally, as the goal is to detect and localize interesting objects with no
specific shape model, active contours could be seen as a simpler alternative
to grouping primitives from a strictly over-segmented input map. However,
to be successful, active contours need to be properly initialized. This is likely
to necessitate manual intervention in the context of this problem since shape,
position, posture, internal textures and markings, and background structures
may vary widely from one image to another. Besides, active contours defor-
mations are likely to be affected by those internal textures and background
structures present in natural images.

The following two sections describe the shape grouping primitives and the
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detection problem. The proposed detection method is then detailed in Section
5. Experimental results are presented in Section 6, which is followed by a final
discussion and conclusion.

3 Input Data

Given an image of an unexpected multi-part object, the basic goal is to iden-
tify the region occupied by the object in the image. From a raw intensity or
color image, state-of-the-art region-based segmentation methods do not always
produce satisfying object detection results. Being obtained on the basis of re-
gional photometric statistics, the resulting region map is likely to suffer from
both over- and under-segmentation. That is, no single region is to cover the
whole object, when its shape and appearance are complex, and some regions
are to overlap the object and the image background, when background is com-
plex and object pose is unconstrained. A strictly over-segmented region map
would make it possible to recover the interest region solely by grouping con-
nected regions, with no need to either backtrack (completely removing the last
added regions) or split (partially removing) regions, as with heuristic search
or split-and-merge segmentation. Besides, even if a strictly over-segmentated
region map were obtainable, region grouping constraints and criteria needed
to efficiently and effectively identify the best interest region on the basis of its
shape would be difficult to define.

By comparison, an edge map is trivially strictly over-segmented since each
edgel is either on the object boundary or not. However, edgels are both too
numerous and local to be a primitive of choice for efficient and effective shape-
based grouping. Conversely, discrete image contours obtained by linking neigh-
boring edgels may be small in number but they suffer from two related dif-
ficulties. First, grouping constraints and criteria are not likely to be effective
unless strong regularities are assumed in the shapes of interest. Secondly, a
raw contour map may also suffer from under-segmentation when contrast is
poor and image contours overlap boundary and background or boundary and
object body (interior). However, this under-segmentation is likely to be more
limited since there is no spill out effect typical of region growing.

The best trade-off appears to be a strictly over-segmented map of simple
contour primitives. For instance, a small group of simple contour primitives is
directly indicative of a too simple shape, which is not the case with a small
number of uniform regions or image contours. In particular, constant-curvature
contour primitives (CCPs) are amenable to both strict over-segmentation and
efficient and effective shape-based grouping for multi-part object detection.
Hence, as a preprocessing step to the proposed method, a constant-curvature
contour primitive map need to be obtained from the static intensity image.
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Extracting CCP primitives directly from a static intensity image is possible
using one of many proposed algorithms in the literature, for instance those
based on the Hough Transform [26,27]. However, it may be difficult to en-
force strict over-segmentation with such direct methods since they typically
need to trade off primitive continuity and size. Besides, it may be difficult to
properly cover the object boundary without extracting a very large number
of overlapping primitives.

Computing straight-line-segment or CCP approximations of open and closed
discrete image contours is a better approach which is likely to remove contour
under-segmentation. Boundary CCPs are not to overlap the image background
or object body unless a perfect accidental alignment of features (continuous in
position and curvature) arises between the external boundary and the back-
ground or the object body. Many algorithms are available in the literature
to segment and approximate contours. Unfortunately, most of them do not
properly enforce invariance properties needed in generic contexts, for instance
invariance to partial occlusion and scale. The selected algorithm [28] was de-
veloped for generic shape-based object recognition and, as such, it explicitly
attempts to enforce the needed invariance properties. In that algorithm, each
discrete contour is processed independently. A number of straight-line-segment
approximations is first built, each starting at one of the discrete contour points.
Segments are grown on each side of the starting point, were applicable, with a
new segment generated when the appoximation error exceeds a scale-related
threshold. A second step attempts to group consecutive straight-line segments
into circular arcs along each produced polyline. Again, a new group is started
when the approximation error exceeds another scale-related threshold. A final
step selects, for each discrete contour, the best CCP approximation among
those produced using a combination of statistical criteria. The resulting CCP
map for a given image consists in all CCPs in the selected approximations
of the different discrete contours. Those contours were obtained using a 8-
neighbor edgel linking algorithm. A thinned edgel map was previously ob-
tained using a basic Canny filter. The straight-line segments and circular arcs
of the produced CCP map are the input data for the proposed detection
method.

In this paper, the algorithm computed the CCP maps using a single one-pixel
scale. As a result, the obtained approximations retain the significant shape fea-
tures along the object boundary, the number of CCPs is manageable, and the
CCP maps may be assumed to be strictly over-segmented. A more systematic
analysis of the strict over-segmentation of the produced CCP maps would be
interesting but it was not attempted here. Given the choice of primitives and
the relative complexity of the object shapes, any under-segmentation is to be
local and limited in size, not affecting much the boundary growing and evalua-
tion criteria of the proposed method. Figure 2 presents five typical input CCP
maps (circular arcs are red and straight-line segments are blue) obtained by
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preprocessing the five images in Figure 1. Noise in the input CCP maps arise
from low contrast in some areas, small structures, and local contour clutter.
The proposed method is meant to be robust to that noise.

(a) Toy (b) Plane (c) Stool (d) Bike (e) Fish

Fig. 1. Images of multi-part objects. Each dimension is between 256 and 512 pixels.

(a) 427 (b) 552 (c) 203 (d) 205 (e) 640

Fig. 2. Input maps. Preprocessing produced the indicated number of CCPs.

4 Detection Problem

Figure 3(b) reproduces the constant-curvature contour primitive (CCP) map
of the image in Figure 3(a). Any proposed solution to the multi-part object
detection problem has to be an ordered group of CCPs selected from the
input map. Such a solution is assumed to represent a complete clockwise or
counter-clockwise traversal of the object boundary. From this ordered group
of primitives, the region occupied by the object in the image may easily be
recovered.

The detection problem thus consists in selecting and ordering the proper sub-
set of primitives from the map. Considering an average map of 400 CCPs
and complete boundaries with, say, 30 CCPs, the number of possible com-
plete boundaries is about 1086. In the generic context where a large number
of variations in object appearance is possible, as discussed earlier, it is hard
to eliminate any of those boundaries a priori. In the proposed method, the
detection problem is formalized as a combinatorial optimization problem and
the best solution is found according to a multi-criteria cost (or value) function.
Given the non-monotonicity of the individual grouping criteria, as discussed
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earlier, a random or heuristic search for the best boundary or a small num-
ber of good-enough boundaries would not work. Hence, even if practically
impossible, an evaluation of every possible boundary is theoretically needed
in order to guarantee that the best is identified. In any case, a fundamental
requirement is a scoring function able to provide an assessment of the value
of any selected boundary from the huge number of possible ones. More im-
portantly, that scoring function has to be consistent with human judgment, a
truly difficult requirement.

As discussed earlier, the global shape grouping criteria on the basis of which
each boundary is to be scored were not readily available from human or com-
puter vision literature. SAFE (Subjectivity and Formalism Explicitly), a novel
methodology [29], has been used to identify a first set of criteria for the present
implementation of the detection method. The main idea behind SAFE is to
make explicit the role and choices of the system designer (the subjectivity)
and to consider them separately from the resulting system (the formalism).
A common formalism for grouping algorithms is used, based on the combina-
torial optimization of a multi-criteria objective function. The explicit choices
to be made are the experimental context (input and output formats, test
data, and ground-truth), the conceptual criteria, their formalization and com-
bination, the optimization algorithm, and the metric to objectively compare
output with ground-truth. The rationale behind the SAFE methodology is to
make it easier to document and compare competing methods at the high level
of main design choices. An interactive tool was built to implement the SAFE
methodology and it was used to identify the set of conceptual and formal
shape grouping criteria used in the detection method proposed in this paper.
These criteria are to be discussed in more detail in Section 5.

Figure 3(c) is the best boundary as interactively selected by a human. In
SAFE, it is referred to as the subjective ground truth (SGT). SGT is not
known by the proposed detection method. It will only serve to assess the qual-
ity of its results. Let us assume that a scoring function exists for boundaries.
The formal ground truth (FGT), is the boundary with the highest score, out
of the huge number of possible boundaries. FGT is usually not known either
as it would require that all boundaries be considered and that each of them
be scored. More practically, a subset of the possible boundaries is considered
and the one with the highest score is selected. The selected optimal boundary
is only an approximation of FGT. It is referred to as FGTa. FGTa may be the
same as FGT, but this can seldom be verified in images of typical complexity.

The goal of the proposed method is to generate, in an efficient manner, an
effective FGTa as close as possible to SGT, for natural images of multi-part
objects. Figure 3(d) shows an example of a randomly generated boundary
with 30 CCPs. Each CCP is displayed with a small arrow and a number since
the same set of CCPs in a different order, or with one CCP pointing in the
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(a) Image (b) CCP map (c) SGT (d) Random

Fig. 3. Basic concept. A random boundary is unlikely to be similar to SGT.

opposite direction, represents a different boundary. In the proposed method,
grouping constraints applied to partial shapes help discard such a poor bound-
ary early on. Besides, the developed scoring function based on global shape
criteria would assign a very low value to that poorly structured boundary. The
proposed method represents a first attempt at using the SAFE methodology.
As a result, the design choices made could certainly be optimized in vari-
ous ways. Despite this fact, it is remarkable that the best scoring boundaries
produced, including FGTa, are actually quite similar to SGT (see Figure 9).

It is important to realize that grouping, as understood here, is not limited to
partitioning the set of primitives e.g. by clustering or labeling approaches. This
agrees with the definition in [30] but not with the more restricted definition
in [31]. In fact, the previous two generic grouping algorithms from literature
are not suitable for our detection problem. In [31], monotonic criteria (in fact,
consistency constraints) are explicitly assumed, such as the co-circularity of
segments. As for [30], groups are obtained by hierarchical pairing, enforcing
the same constraints (called restrictions) and using the same criterion (called
similarity) at each level.

5 Detection Method

For each input CCP map, a manageable number of complete boundaries must
be produced efficiently. A complete boundary consists of an ordered group
of primitives with no self-intersection and a satisfied closure constraint. Each
produced group should enclose a shape that scores well with respect to a
combination of generic multi-part grouping criteria. Besides, the boundary of
a multi-part object actually present in the original image should be among the
best-scoring shapes produced. For instance, at most a thousand or so complete
boundaries with the ground-truth shape in the first few percentiles is sought
for, in a matter of a few minutes or less.

The proposed strategy is to build the groups in parallel and iteratively, start-
ing with as many groups as there are primitives in the CCP map. Then, for
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each existing group, as many new groups are created as there are primitives
remaining in the map, adding one of the primitives to each new group. And
so on, until each group is complete or rejected. This systematic generation
and elimination of ordered subsets of contour primitives from the map is the
only way to make sure each possibly interesting multi-part shape is given due
consideration.

In order to decide if a group is to be rejected at a given iteration, it is tested
with respect to a number of grouping constraints. As discussed earlier, the
grouping constraints need to be adaptive, in terms of which ones are used at
each iteration and what limiting values they have. At each iteration, all groups
failing to satisfy the tested constraints are removed from consideration.

The grouping procedure can be likened to traversing a tree from each start-
ing primitive, adding a primitive at each level and pruning a branch when a
group fails to satisfy the constraints. In the tree, each node corresponds to
a boundary with one CCP added from the partial boundary associated with
its parent node. Each parent node generates as many child nodes as there are
CCPs left i.e. CCPs from the input map that are not part of its associated
partial boundary. In practice the number of generated nodes may be less since
each one has to be validated by two so-called preliminary tests, as described
below. Once nodes are generated at a given level of the tree, they are pruned
using the grouping constraints. The retained nodes are the parent nodes of
the next generation and grouping iteration. Figure 4 illustrates the genera-
tion and pruning of nodes at level-1 (left) and level-2 (right) of the tree. An
empty partial boundary is associated with the single parent node at level-1.
The number of generated nodes corresponds to the number of validated CCPs
in the input map. That is, a partial boundary is initiated at each CCP in the
map. Pruning removes some of these 1-CCP partial boundaries. As will be
shown in Table 1, that first pruning is done on the basis of the length of the
CCPs. In the figure, only two 1-CCP partial boundaries are retained. Each
is a parent node at level-2 where it will generate a number of 2-CCP partial
boundaries that are to be pruned according to an adapted set of grouping
constraints, and so on.

As mentioned earlier, besides the need to satisfy the grouping constraints, each
CCP to be added to an existing partial boundary must be validated by two
preliminary monotonic tests. The first and simplest test consists in verifying
that the distance between connecting endpoints is less than a limiting value.
That is, the start endpoint of the oriented CCP under test must be within a
fixed distance from the finish endpoint of the last CCP of the partial boundary.
The limiting value was empirically set at 30 pixels. Nevertheless, gaps larger
than 30 pixels may be present in the complete boundaries obtained by merg-
ing partial boundaries, as discussed in Section 5.3. The second test is more
complex and it is only performed when the first test is successful. It consists in
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Fig. 4. Node generation and pruning. Grouping constraints controls expansion.

verifying that the CCP under test does not intersect with the partial bound-
ary. This condition eliminates a large number of possible boundaries. Gaps in
the partial boundary are filled with virtual straight-line segments to perform
the test. In the present implementation, the intersections are recomputed each
time a CCP is tested.

Fifteen levels of the tree are developed, each with a generation and pruning
stage as described before. A unique CCP from the map is associated to each
level on any path from a given root to a leaf node. These 15-node paths are
usually partial. That is, the corresponding chain of fifteen CCPs is typically
not long enough to totally cover the actual boundary of a multi-part object.
As explained in Section 5.3, this first step is followed by one or two merging
steps of partial boundaries associated with level-15 nodes. Final scores are
computed for the obtained complete boundaries using global shape criteria
to be described in Section 5.4. In the reported experiments, CCP maps have
from about 100 to more than 600 CCPs. Since boundaries are made of an
ordered chain of CCPs selected from the map, each CCP may be added to
a partial boundary from either end. Hence, the number of generated nodes
at each level is actually twice the number of remaining CCPs. On the other
end, very short CCPs are only considered at the end to fill some holes in the
produced complete boundaries. In the present implementation, a minimum
size of 5 pixels is enforced. For the CCP map in Figure 3(b), the number of
retained partial boundaries (parent nodes) at each of the fifteen levels is as
follows: 1:131, 2:166, 3:278, 4:301, 5:163, 6:242, 7:623, 8:389, 9:1082, 10:874,
11:690, 12:780, 13:819, 14:937, 15:500. Figure 5 presents a sample of those
partial boundaries at levels 7, 10, and 15.

A block diagram of the boundary grouping algorithm appears in Figure 6. Its
worst-case complexity corresponds to the generation of all possible ordered
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01234 5 6

(a) 7

0123456

(b) 7

01234 5 6 7 8 9

(c) 10

01234567 8 9

(d) 10

01234 5 6 7 89101112 13 14

(e) 15

01234567 8 9 10 11 12 13 14

(f) 15

Fig. 5. Sample partial boundaries. Level numbers are indicated.

subsets of CCPs from the input map. That is, each generated group at any
given iteration satisfies the combined grouping constraint at that iteration. As
explained in the previous section, this worst-case complexity is exponential and
with a typical number of CCPs in the input map, the number of subsets of a
given size typical of actual multi-part object boundaries is unrealistically high.
Hence, the combined grouping constraints at the different iterations must be
strong enough to end up removing all but a small number of the generated
groups. Besides, the few retained complete boundaries should be multi-part
shapes and include the actual multi-part object shape present in the image.
More details on the different steps of the algorithm appear in the following
sections.

5.1 Basic Grouping Criteria and Constraints

Each continuation of a partial boundary consists in adding a given CCP from
the map. The added CCP must first be validated according to a distance
test and an intersection test, as described earlier. Once the added CCP is
validated, the obtained boundary is further tested using a boolean combination
of grouping constraints. Each individual constraint corresponds to a limiting
value on one of ten basic grouping criteria. Each criterion is associated with a
code number. Those numbers are arbitrary. They are used to efficiently encode
the boolean expressions defining the combination of constraints at the different
levels. The ten basic grouping criteria are: Continuity (code 1), Distance (code
4), Number of Parts (code 8), Surface Cover (code 16), Boundary Size (code
32), Contraction (code 64), Filled Continuity (code 128), Jaggedness (code
256), Lack of Cover (code 512), and Part Strength (code 1024). These ten
basic criteria were formalized using simple mathematical expressions. Given
the number of times a constraint is tested, it is important to have a fast, even
if approximate, result. A short description of each criterion is given next.

Continuity is the arithmetic mean of the differences of angles between tan-
gents at the finish endpoint of each CCP and the start endpoint of the fol-
lowing CCP. A zero mean angle is worth 100%. A 180 degrees mean angle is
worth 0%. In between, the scale is linear. A 100% continuity boundary has
perfectly matching tangents between each pair of consecutive CCPs. Any

14



Image

Edge detection

Contour extraction

Contour segmentation

CCP Grouping

Boundary Merging

Boundary Ordering

CCP map

FGTa

Boolean combination
Basic grouping criteria 

and constraints 

Final score Global criteria

Preprocessing

Fifteen incremental 

generation/pruning steps

Optional second 

merging step

Complete  boundaries

Fig. 6. Boundary grouping algorithm. The main output is an ordered set of complete
boundaries. A secondary output is a set of open boundaries with 15 to 45 CCPs.

kind of perfectly smooth shape, whatever its complexity in terms of number
of parts, would have perfect continuity. This criterion is ideally maximum.

Distance is the Euclidean distance from the finish endpoint of the partial
boundary to the start endpoint of the added CCP. It is ideally minimum.

Number of Parts is the number of concavities in the obtained boundary
after closing it with a virtual straight-line segment. A number of consecutive
segments with small angles between their tangents is replaced by a single
virtual segment oriented according to the sum of the angles. Also, gaps
between consecutive CCPs of the boundary are filled using virtual straight-
line segments. One is added to the resulting number of concavities to take
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into consideration the main body of the multi-part object. The ideal 100%
value is with four or more parts. With a single part, the value is 0%. Two
and three parts have 33% and 67%, respectively.

Surface Cover is the ratio (expressed as a percentage) of the surface enclosed
by the virtually closed partial boundary (last primitive is connected with
first one using a virtual straight-line segment) to the area of the bounding
box of the primitives in the input CCP map. The ideal maximum value is
100%.

Boundary Size is the sum of the total length of the gaps between consecu-
tive CCPs and the total length of the CCPs themselves. Larger values are
preferred.

Contraction is the ratio of the length of the virtual closing straight-line
segment (see Number of Parts) to Boundary Size. In the first iterations, the
ideal maximum value is 100% in order to go straight away from the starting
point. Later on, the ideal minimum value is 0% in order to have a long
complete boundary.

Filled Continuity is the same as the continuity criterion but with virtual
straight-line segments filling the gaps between consecutive CCPs.

Jaggedness is the number of obtuse angles along the boundary. Smaller val-
ues are preferred. It is complementary to but less important than the con-
tinuity criterion.

Lack of Cover is the ratio between the total length of the gaps between
consecutive CCPs and Boundary Size. Its value is normalized between 0%
and 100%. A small value is preferred. This criterion is the complement of
the salience fraction used by Jacobs for convex groups [14].

Part Strength is the minimum distance between the final endpoint of the
last CCP added to the partial boundary and the other CCPs of the partial
boundary. The distances considered are not limited to endpoints. Larger
values are preferred in order to limit the occurrence of very thin parts or
connections.

It is important that the criteria be generic enough to be effective in the context
of the multi-part object detection task. That is, this single set of shape group-
ing criteria must permit to detect and localize interesting objects of different
shapes and appearances. As explained earlier, the criteria have to operate in
a context where a large number of intrinsic and extrinsic variations in object
appearance are possible. In particular, compared to state-of-the-art methods
for detecting expected objects, a greater invariance to changing shape, texture,
markings, and viewpoint are needed.

In the present implementation, no attempt was made at systematically op-
timizing the set of criteria and its formalization. Some criteria are inspired
by global shape grouping criteria identified using the SAFE methodology (see
Section 5.4). Others are inspired by criteria from the perceptual grouping lit-
erature. The main contribution of the proposed method, with respect to those
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criteria, is the variable subset used at each level and the adaptive boolean
combination and limiting values for the corresponding constraints. These de-
signer choices were made empirically but not systematically. They are detailed
next.

5.2 Boolean Combination of Constraints

To be retained as a continuation of the partial boundary, a tested CCP must
satisfy a given boolean expression specific to its position on the boundary
under construction. As a general rule, constraints combined in the boolean
expression are more restrictive in the early levels and more permissive later
on. Also, alternative combinations of constraints with different limiting values
are possible at a given level.

Table 1 presents the boolean expressions for the fifteen levels of the tree. In
each expression, an operand is a constraint represented by a pair of numbers
(the criterion code and its associated limiting value). The expressions are
written in postfix notation. The three possible combining operators are: AND
(*), OR (+), and FAND (X). The first two are standard boolean operators
applied to a single pair of constraints. The last one is similar to the first one
but it can be applied to an arbitrary number of constraints.

As an example, let us first examine the boolean expression at level 3. In this
case, if either of two pairs of constraints is satisfied, the boundary produced by
adding the tested CCP to the partial boundary is retained. Each pair imposes
a limiting value to the Continuity (code 1) and Distance (code 4) criteria.
That is, either an 80% Continuity is combined with a Distance of 10 pixels or
a 65% Continuity is combined with a Distance of 2 pixels. A third possibility
is a Distance of 1 pixel with no constraint on the Continuity criterion.

A common pattern is used all the way down the tree. It expresses the trade-
off between continuity and distance. Large distance asks for good continuity
and smaller distances allow more discontinuities. Notice also the Boundary
Size criterion (code 32) applied one level out of two in low levels, and more
frequently at the end. This way, a chance of survival is left to shorter partial
boundaries. By level four, Lack of Cover (code 512), Boundary Size (code
32), Part Strength (code 1024), and Contraction (code 64) criteria become
meaningful. Part Strength is used until the end because every newcomer must
be tested for correct positioning. Level six is the first time the Number of parts
(code 8) criterion is applied. Level ten is quite challenging for groups as all
criteria are part of the boolean expression, except Contraction (code 64) which
is never used after level 4.

Given the complexity of the multi-part shapes and the simplicity of the CCPs,
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Table 1
Boolean expressions for the combination of constraints.

Level Boolean expression

1 32 10

2 1 80 4 10 * 1 65 4 2 * + 4 1 +

3 1 80 4 10 * 1 65 4 4 * + 4 2 +

4 1 75 4 10 * 1 60 4 5 * + 4 2 + 512 10 * 32 50 * 1024 2 * 64
20 *

5 1 75 4 15 * 1 60 4 6 * + 512 5 + 512 12 * 128 55 * 256 2 *
1024 3 *

6 1 70 4 15 * 1 60 4 7 * + 512 5 + 128 55 * 8 1 8 2 + * 32 80
* 512 12 * 1024 4 *

7 1 70 4 15 * 1 60 4 8 * + 1 55 4 5 * + 256 3 * 1024 5 *

8 1 65 4 18 * 1 60 4 10 * + 128 65 * 32 100 * 512 15 * 1024 6 *

9 1 65 4 20 * 1 60 4 12 * + 128 75 * 512 15 * 32 120 * 1024 7 *

10 8 2 1 65 * 128 75 * 16 0.5 * 256 3 * 8 4 1 70 128 75 * 1 65
128 65 * 512 5 * + * 16 1 * 256 4 * + 512 15 * 4 20 * 32 150
* 1024 8 *

11 to 15 4 20 128 70 512 12 X

it rarely happens that ten CCPs cover the whole boundary. Level 11 to 15
have relaxed constraints so that proper continuation of promising boundaries
is possible. Since the relaxed constraints represent a risk of combinatorial
explosion, an upper limit on the number of retained partial boundaries at
each node is set to 2500. In fact, when this upper limit is passed, the partial
boundaries are ordered and only the best 2000 are used in the next iteration.
A partial score is computed in order to order the different nodes at a given
level. Four of the ten criteria, also members of the global shape criteria to be
described in Section 5.4, are combined with unit weights to produce the score.
They are: Number of parts (code 8), Filled Continuity (code 128), Surface
Cover (code 16), and Lack of Cover (code 512).

The boolean expressions in Table 1 were used in all reported experiments.
In the present implementation, neither the expressions nor the parameters
were optimized. Boolean expressions were chosen by hand on the basis of our
understanding of the role and functioning of each formalized criterion in the
context of the problem, irrespective of the specific dataset. Values of parame-
ters in the expressions were adjusted using trial and error on the input maps
of Figure 2. No systematic procedure was used and no systematic optimization
was attempted. Only a small number of parameter values in the expressions
were actually selected by experimenting with this small number of images
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(representing less than a third of the test images reported in this paper). The
values were also strongly constrained. All were selected from a small number
of possible values. A single set of expressions and values appears sufficient as
long as image dimensions are within a limited range.

5.3 Boundary Merging

In practice, groups of fifteen CCPs rarely produce a satisfying boundary. How-
ever, it was found difficult to efficiently and effectively keep on adding CCPs
one at the time with further relaxed constraints. Instead, direct merging of
pairs of level-15 nodes is attempted. The rationale is that complex partial
boundaries that merge well are likely to belong to the same object boundary.
Once again, each potential merge has to be validated using an intersection
test and relaxed constraints for a majority of criteria. Boundaries for partly
occluded objects may be accepted given the relaxed constraints.

The two merged boundaries result in a longer boundary which corresponds
to the second boundary appended to the first one. The ordering of CCPs is
kept but CCPs are renumbered for the second boundary, starting at one plus
the number of CCPs in the first boundary. When a partial chain of CCPs
in the final part of the first boundary is identical to a partial chain of CCPs
in the initial part of the second boundary, one of the two partial chains is
removed in order to avoid overlap and duplication of CCPs in the merged
boundary. In other words, merging a subset of primitives in the final part of
a partial boundary to another partial boundary is acceptable (see Figure 7).
The minimum number of primitives to be kept from the overlapping boundary
is set to 5. Hence, the number of CCPs in a merged boundary is from 20 to 30.
In order to limit the complexity of the merging step, only the best 500 level-15
nodes are kept, according to their partial scores. Those 500 nodes correspond
to 250 000 candidate pairs for merging.

(a) Node 1 (b) Node 2 (c) Merging

Fig. 7. Merging. The two partial boundaries overlap.

In our test images, some multi-part object boundaries have more than 30
CCPs. A final merging step further combines merged boundaries that are
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not yet complete with level-15 nodes. A merged boundary is complete when
Contraction is less than or equal to 10% and a virtual closing straight-line
segment has no intersections with CCPs of the boundary. Given the same
constraint that at least 5 CCPs are kept from the overlapping boundary, the
twice-merged boundaries may have from 25 to 45 CCPs.

The second merging step is optional. It will not occur when the score of the
best complete boundary is at least as high as the best score in the merged
boundaries and the number of CCPs in the best complete boundary is at
least 15% of the number of CCPs in the input map. Final scores are now
used instead of partial scores. They are computed from the global grouping
criteria, as described in the following section. Once boundary merging is over,
very short CCPs initially removed are brought back to try filling small gaps
in the obtained boundaries. The final score is re-computed if some gaps are
filled to produce a refined boundary.

5.4 Global Criteria and Final Scores

Global grouping criteria evaluate each obtained complete boundary in order to
find its rank among the retained boundaries. In particular, the best boundary
obtained, for a given input CCP map, is our approximation to the formal
ground truth (FGTa). Its similarity to the subjective ground truth (SGT) is
our measure of success for the method (see Section 6).

A set of ten global grouping criteria was defined and formalized by Randri-
anarisoa et al. [29]. The first four global criteria were also part of the basic
criteria used to rank partial boundaries. They are: Number of Parts, Filled
Continuity, Surface Cover, and Lack of Cover. The Lack of Cover criterion is
actually reformulated in order to favor only boundaries with limited gaps cov-
ering between 5% and 12% of the boundary. The other six basic grouping cri-
teria are not part of the global grouping criteria as they would be less effective
in properly ranking the obtained complete boundaries. They are: Continuity,
Distance, Boundary Size, Contraction, Jaggedness, and Part Strength. Six new
global grouping criteria are introduced in order to benefit from now having
a complete shape. They are: Cover, Visual Balance, Non Compactness, Gap
Distribution, Centering, and Foreground. Each criterion is normalized between
0% and 100% and the maximum value is preferred. A short description of the
new criteria is given next.

Cover is the ratio between the total length of the CCPs and Boundary Size.
It is complementary to the original Lack of Cover criterion.

Visual Balance is the complement of the normalized distance between the
mass center of the CCPs on the boundary and the mass center of the bound-
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ing box of those CCPs. The mass center of the CCPs is the mass center of
the individual mass centers. A unit weight is given to each CCP, short or
long. The normalization factor is half the diagonal of the bounding box.

Non Compactness is the complement of the ratio between 4π times the
area and the square of Boundary Size. A circle is minimally non compact.

Gap Distribution is computed similarly to Visual Balance except that the
mass center of the bounding box is replaced by the mass center of the virtual
primitives filling the gaps between consecutive primitives on the boundary.

Centering is also computed similarly to Visual Balance except that the mass
center of the bounding box is replaced by the center of the image or CCP
map.

Foreground is a binary criterion that receives a maximum value unless the
boundary passes near a side of the image, in which case it receives a mini-
mum value.

The final score of a complete boundary is computed as a weighted sum of the
ten global criteria. All but three criteria have unit weights in the sum. Cover,
Filled Continuity, and Surface Cover each have a weight of 5. Although it was
not found possible to normalize the final score, the range of values obtained
is similar for the different images of multi-part objects tested.

6 Experimental Results

Four views on the obtained results are presented. Together, they indicate that
the proposed method is remarkably apt at detecting multi-part objects in
natural images of variable complexity, on the basis of the developed basic and
global criteria and scores.

6.1 Qualitative FGT/SGT Comparison

The best boundary found (best final score boundary, or FGTa) and other
retained boundaries need to be compared to the human segmentation (SGT).
The comparison is in two parts. The qualitative part consists in displaying the
final CCP map for retained boundaries next to the SGT map (with no CCP
ordering shown). In this first view on the obtained results, it will be clear that
the best retained boundaries, including the FGTa, are quite similar to SGT
and much more so than the worst retained boundaries.

Figures 8 to 10 present results for three typical CCP maps. Final scores of
displayed boundaries are shown. The retained boundary with the best final
score is FGTa. Retained boundaries are ordered using the final score computed
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as a weighted sum of the ten global grouping criteria. In each figure, the
displayed retained boundaries are the best one (FGTa), the second best, the
worst, and the next to worst.

The CCP map of the toy truck (Figure 8) is difficult since the method must face
more than one good object. Despite the numerous possibilities, the final FGTa
is at the proper complexity and quite similar to the SGT reference. Given the
large variety of multi-part shapes, it is difficult to perfectly reproduce the SGT.
In fact, the computed final score of SGT is 1663, compared to 1721 for the
FGTa. That means, the proposed method considers FGTa as a better multi-
part object than SGT. The CCP map of the plane (Figure 9) is probably
the most difficult one. It has background clutter and internal textures and
markings. As a result, many spurious CCPs create bridges to go around some
parts, like the plane’s right wing. Hence, some boundaries include only a subset
of object parts. However, their final score is lower than the final score of more
complete boundaries. The best scoring boundary obtained covers most of the
important parts of SGT. In the CCP map of the stool (Figure 10), many
internal CCPs, junctions, and holes increase the complexity of the detection
task. Fortunately, the proposed method eliminates most partial boundaries
rapidly and the FGTa obtained is very similar to SGT.

(a) (b) 1663 (c) 1721 (d) 1697 (e) 1415 (f) 1417

Fig. 8. Toy. From left to right: CCP map, ground-truth boundary (SGT), best
retained boundary (FGTa), second best, worst retained boundary, next to worst.

(a) (b) 1582 (c) 1642 (d) 1636 (e) 1288 (f) 1410

Fig. 9. Plane. From left to right: CCP map, ground-truth boundary (SGT), best
retained boundary (FGTa), second best, worst retained boundary, next to worst.

The previous three examples demonstrate qualitatively the effectiveness of
the proposed method in detecting unexpected objects of interest of proper
complexity in natural images, delimiting precisely the region occupied by the
object in the image.
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(a) (b) 1734 (c) 1716 (d) 1709 (e) 1578 (f) 1579

Fig. 10. Stool. From left to right: CCP map, ground-truth boundary (SGT), best
retained boundary (FGTa), second best, worst retained boundary, next to worst.

6.2 Quantitative FGT/SGT Comparison

The quantitative part of the FGT/SGT comparison consists in formally ex-
pressing the differences and similarities in terms of the CCPs in each map
and their ordering. A new informative measure is defined to compare retained
boundaries to SGT. Similarity is the ratio between the total length of consec-
utive CCPs in the two boundaries that are common and in the same order and
the total length of the CCPs in the longest of the two boundaries. To compute
the similarity, common subsets of consecutive CCPs that are in the same order
in the two boundaries are first obtained. For instance, the CCPs at position
4,5,6, and 7 in boundary 1 may be the same as CCPs at position 11,12,13,
and 14 in boundary 2. The similarity is the sum of the lengths of those four
CCPs divided by the sum of the lengths of all CCPs for the longest boundary.
In practice, a similarity above 50% indicates notable similitudes with some
large differences, while a similarity above 70% usually means all differences
are minor. A similarity above 90% is obtained for boundaries almost identical
to SGT that is, with mostly meaningless differences. In the following section,
two further standard quantitative measures are to be used to compare partial
and final retained boundaries to SGT: Precision and Recall.

The quantitative FGT/SGT comparison differs from state-of-the-art meth-
ods for detecting expected objects where features voting for a true positive
detection are rarely validated as actually member of the object of interest.
That is, neither the completeness of the feature set, in terms of covering the
whole set of ground-truth features, nor its exactness, in terms of consisting
only of ground-truth features, are estimated. Hence, the type of comparison
performed here is more demanding and the results obtained have to be judged
in that respect.

In order to obtain this second view on the results, the set of retained bound-
aries is first ordered according to the final scores. The similarity measure
introduced earlier is then computed for each retained boundary. Finally, the
boundary most similar to SGT is identified in the ordered set and its rank is
obtained.
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(a) Juice (b) Water (c) Angel (d) Hand (e) Man

Fig. 11. Images of multi-part objects. Each dimension is between 124 and 741 pixels.

(a) 178 (b) 32 (c) 188 (d) 31 (e) 192

Fig. 12. Input maps. Preprocessing produced the indicated number of CCPs.

Table 2 shows the obtained rank and the corresponding similarity of the re-
tained boundary most similar to SGT, for ten images of multi-part objects.
The first five images and their CCP maps appeared in Figures 1 and 2. The
last five images and their CCP maps appear in Figures 11 and 12. Rank is
an integer between one (best retained boundary according to final score) and
the number of retained boundaries (third column). The latter is always much
smaller than the huge combinatorial number of possible boundaries, as dis-
cussed in Section 4. Rank is also expressed as a grade (100% being ideal)
using Grade = 100(1− (Rank − 1)/number) rounded to the nearest integer.
The results indicate that the most similar boundary is always close (either in
absolute or relative terms) to the best boundary according to the final score.
Running times are discussed in Section 8.

As expected, the number of retained boundaries is much less than the huge
number of possible boundaries. Even the worst retained boundaries (accord-
ing to their final scores) contain good partial boundaries that respected the

24



constraints at each of the fifteen levels and at the merging steps. Hence, the re-
jected boundaries are usually much worse than the retained ones. For instance,
a boundary such as the one in Figure 3(d) is always rejected. Moreover, the
final score of retained boundaries is a good indication of their formal similarity
to SGT, which means their ranking is effective and FGTa is close to SGT.

Table 2
Statistics for the retained boundary most similar to SGT.

CCP map Number Rank Grade (%) Similarity Time (sec)

Toy 1259 27 98 0.87 386

Plane 236 2 100 0.68 227

Stool 393 1 100 0.98 307

Bike 857 1 100 0.81 375

Fish 157 1 100 0.85 256

Juice 53 3 96 0.93 82

Water 2 1 100 1.00 25

Angel 35 3 94 0.99 71

Hand 7 3 71 0.97 62

Man 158 1 100 0.93 217

As indicated by the previous results, objects with a part structure visible
at a proper scale successfully produce an FGTa that is actually quite close
to SGT and among the best ranked retained boundaries. According to the
similarity values obtained, only minor or meaningless differences are expected.
In practice, the Fish, the Toy, and the Bike images have some visible differences
between their most similar boundary and their SGT. The Plane has the worst
similarity in the previous ten test cases. Its input map is probably the most
difficult one. Its SGT contains a number of large gaps. More importantly, it
has a total of 61 CCPs which is too many given the maximum of two merging
steps in the current implementation (retained boundaries are limited to a
maximum of 45 CCPs). For this reason, many CCPs from SGT are not in the
achieved FGTa which results in a low recall (see below) at 59%. Despite these
current limitations, the achieved FGTa does not overlap the background or
the internal texture. Hence, most CCPs from the retained FGTa are in SGT.
In fact, FGTa has a precision (see below) of 94%.

The final two views on obtained results are presented next. They track per-
formance measures step-by-step as processing unfolds.
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6.3 Performance Graphs

A third view on the obtained results consists in performance graphs displaying
the distribution of four performance measures at the different algorithmic
steps. Four types of graphs are produced: the final score (Figure 13(a)), the
similarity (Figure 13(b)), the precision (Figure 14(a)), and the recall (Figure
14(b)). Formal final score and similarity measures were defined earlier. Formal
precision and recall are defined as follows. Precision is computed as the number
of CCPs in the boundary that are present in the SGT, divided by the total
number of CCPs in the boundary. It can be seen as the degree of purity
of a boundary. Recall is computed as the number of CCPs in the boundary
that are present in the SGT, divided by the number of CCPs in the SGT. It
corresponds to the proportion of CCPs from SGT that are successfully found.

In each graph, algorithmic steps 1 to 15 correspond to the levels of the tree,
16 is the first merging, 17 is the optional merging, 18 is the cleaned complete
boundaries list (only the few best of very similar boundaries are kept), and 19 is
the refined complete boundaries, where very short primitives may be added in
order to fill small gaps. At each step, a point is drawn in each graph according
to the value of its performance measure (final score, similarity, precision, or
recall) for each boundary in a sample set of one hundred boundaries. For
the final score graph, the sample boundaries are obtained in the following
way: a third from the best scores, a third from the middle ones, and the last
third from the worst scores. For the precision and recall graphs, the samples
correspond to the best one hundred boundaries according to the final score.
Finally, for the similarity graph, the best one hundred boundaries according
to the similarity are selected. The asterisk is the average value of the sample
boundaries.

Figures 13(a) and 13(b) display the final score and similarity graphs for the
toy truck. Final scores, from steps 2 to 15, are from about 600 to more than
1600 that is, a range of around 1000. This confirms the high diversity of partial
boundaries considered at the different steps. Merging is seen to be effective
since it rapidly concentrates the scores to the top values. Similarity grows
pretty linearly with step number, with an important discontinuity at the first
merging step. One may also notice that the range of the final scores is reduced
at step 16 as merging adds new criteria. Average final score and similarity show
a clear improvement at that step too. Otherwise, the trends are as expected
with a regular increase in performance as the algorithm progresses and better
partial boundaries are expanded.

Figures 14(a) and 14(b) display the precision and recall graphs for the toy
truck. The precision behavior is intimately linked to the criteria used. In the
first levels, precision takes only a few values due to the small number of possi-
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Fig. 13. Final score and similarity graphs for the toy truck. Asterisk is average value.

bilities. This creates graphs with a typically rising tendency from level 1 to 10
where severe constraints force the selection of CCPs on the actual boundary
of the plane. Those constraints are relaxed thereafter in order to find miss-
ing pieces of the boundary. That permits spurious CCPs to enter boundaries,
explaining the temporary drop in precision between levels 11 and 15. This
is necessary in order not to miss good complete boundaries. Recall also rises
linearly during the boundaries expansion. At each step, the recall score tops
at the number of CCPs in a boundary, divided by the number of CCPs in the
SGT. So, the 100% mark is attained only at the end. Precision, however, can
top 100% right at the beginning, and even drop afterwards, if the number of
CCPs in SGT is low enough. For instance, an early good boundary may be
spoiled by adding spurious CCPs.
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Fig. 14. Precision and recall graphs for the toy truck. Asterisk is average value.
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6.4 Normalized CCP Maps

As the fourth and final view on the obtained results, normalized maps are
produced showing the relative number of times each CCP from the input
map appears in boundaries at different algorithmic steps. Although not a
performance indicator as such, it allows one to precisely and globally track
when some background and texture features disappear or when some partial
boundaries become stronger.

Figure 15 shows the normalized CCP maps for the plane. Background and
texture noise rapidly disappear through levels of the tree, except in specific
areas like the background road, due to its continuity and its very good connec-
tion with the plane. Still, merging successfully cut through this difficult case.
Interestingly, the final normalized CCP map is a quite good probabilistic map
for boundary CCPs, except for the plane’s right wing.

(a) Level 2 (b) Level 3 (c) Level 10

(d) Level 15 (e) Merging (f) Complete

Fig. 15. Normalized CCP maps. The darker a CCP, the more it is used in boundaries.

7 Discussion

The intended scope of the proposed method is mainly non-occluded macro-
scopic objects in natural settings, as could be observed by the human eye or a
robot camera from proper viewpoints. Proper or adequate viewpoints ensure
that images of multi-part objects are in the scope of the method. In images
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obtained from proper viewpoints, the size of the object is large enough to pro-
duce a sufficiently precise input CCP map after preprocessing. Besides, the
multipart structure of the object is visible. That is, the viewpoint is not such
that the object looks much simpler that it is in reality. For instance, a top
view of a lamp may not be indicative of the object’s structure. An example
of a proper viewpoint of a thin object is Figure 2e. Proper viewpoints are
usually natural viewpoints. For most 3D objects, a very small proportion of
viewpoints are inadequate.

As implemented, the method does not favor objects with very thin parts (e.g.
characters) or high-frequency variations in the boundary contrast (e.g. a high-
resolution view of tree with its leaves, a high-complexity shape with a very
large number of parts). Nevertheless, even a very simple shape (e.g. a ball)
could end-up being the most interesting in a given image if no other more
interesting shape is present.

A better assessment of the scope of the proposed method may be obtained by
looking at the eight additional input maps, ground-truths, and best retained
boundaries presented in Figures 16, 17, and 18. For all eight images, the best
retained boundary is quite good and it represents a significant achievement
with respect to state-of-the-art methods (see below). The lamp, the butter-
fly, the mushroom, and the statue have near perfect precision and recall. In
each case, only a few short ground-truth CCPs are not extracted. The best
similarities obtained are above 96% for boundaries at ranks 1 to 3. The best
similarities for the octopus, the cat, the compass, and the hat are from 72%
(cat) to 84% (compass), all at rank 1 expect the octopus which is at rank 42
(out of 915 retained boundaries). The octopus has a perfect precision but a
60% recall due to small object structures with many CCPs. The cat has a 89%
recall but a 67% precision due to internal structure in the obtained boundary.
The compass has a 91% recall with a 80% precision. Finally, the hat has a
82% precision with a 69% recall. In this last case, the ground-truth is more
ambiguous since the boy, the hat, and the bucket are different objects but
they touch each other to form a complex structure.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 16. Additional input CCP maps. CCPs are superposed on each input image

As shown, tested images varied in complexity, some having less background
clutter and internal textures and markings than others. Given that all possi-
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 17. Ground-truths. SGT boundary is superposed on each input image

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 18. Results. FGTa boundary is superposed on each input image

ble boundaries are considered, additional distractor CCPs in the background
and inside the object could have no effect, apart from possibly longer running
times. Similarly, images with more than one multi-part object in the fore-
ground could produce boundaries for both objects in the first ranks, as long
as each one respects global criteria just as well as the other. More likely, one
object is to score higher than the other. A sequential detection of the fore-
ground objects, removing CCPs of an object after its detection, is likely to
succeed in such a case. This conjecture needs to be systematically tested in
future work.

In the current implementation, the main limitation is that no complete bound-
aries are found in some CCPs maps that actually contain an interesting object.
The problem is usually caused by a very irregular and/or disconnected bound-
ary in the CCP map. Such a boundary arises, for instance, when an object has
either very fine part structure, e.g. a flower or a tree, or fine texture connected
to the boundary, e.g. an exotic butterfly, a tiger, a bear, or a zebra. Extraction
of coarser scale edge and CCP maps could offer some help towards solving the
figure-ground problem in such cases. However, automatic scale selection might
not be easily obtained. Examples of problematic CCP maps are presented in
Figure 19. The level at which no partial boundary satisfies the grouping con-
straints is indicated. A future improvement to the method could consists in
relaxing the constraints when this situation arises.

An interesting method bearing similarities with our approach was proposed
by Saund in the domain of sketches and drawings [32]. As here, image con-
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(a) 3 (b) 7 (c) 9 (d) 4 (e) 9

Fig. 19. Problematic input CCP maps. The maximum level reached is indicated.

tours are initially segmented into fragments. However, the raw fragments are
kept whereas the proposed method segments and approximates contours using
CCPs primitives, as a result of the necessity to address the under-segmentation
problem. In [32], basic grouping criteria are used to control path expansion
the same way as done here. Three criteria are used (continuity, smoothness,
and turning) which are somewhat specific to the problem domain and may
not apply to multi-part objects. More importantly, those criteria express con-
flicting trade-offs, as in the proposed method, but instead of being combined
to find the best contours of a given type (multi-part shapes in our case) they
are used independently to find salient contours of different types (e.g. small
shapes or smooth shapes). A larger number of basic criteria are defined in the
proposed method and they are combined adaptively at each iteration of the
tree expansion. Another major difference between the two methods is in the
global evaluation criteria. In [32], compact or loosely convex shapes are favored
whereas the proposed method prefers non-compact shapes. Both methods have
a closure criterion but the proposed method has eight additional global cri-
teria. Also, whereas backtracking best-first search is used to follow a single
optimal path in [32], the proposed method follows all paths simultaneously
with iterative pruning and no backtracking. Another difference between the
two methods is that pre-computation of local groups e.g. possible junctions in
a given neighborhood of a contour primitive is used in [32] to eliminate some
paths a priori whereas the proposed method follows all paths with no a priori
elimination.

A state-of-the-art boundary extraction method was recently defined, as an
improvement to the best method among the three compared in [15]. Basically,
an enclosed area criterion was introduced to better favor large objects [33].
This state-of-the-art graph-based optimization method uses a simple objective
function (ratio of continuity to area) with a no-self-intersection constraint. Its
output is the single best closed boundary. Multiple boundaries may also be
obtained from a given image by removing the segments from the input map
after each boundary extraction. This is in contrast with the proposed method
where retained boundaries may share CCPs and additional boundaries may
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overlap the best one. Figure 20 presents results obtained using this state-of-
the-art method on original test cases used in this paper (default parameters
using the authors’ software available online). The obtained boundaries are
either incomplete or they overlap the object and background significantly. The
proposed method is more robust in that at least one of the retained boundaries
is to be close to SGT. Moreover, that boundary is to be ranked high. Finally,
each retained boundary is evaluated and its relative goodness is quantified by
the proposed method. Figure 21 presents comparative results obtained by the
two methods on test cases from [33]. Again, compared to the state-of-the-art
method, the proposed method similarly or better captures the objects in the
tested images.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 20. State-of-the-art results. Best two boundaries obtained by a state-of-the-art
method on original test cases.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 21. Comparative results. Best boundaries obtained on state-of-the-art test cases.
a-f: state-of-the-art-method, g-i: proposed method.

The main fundamental difference between the state-of-the-art method and the
proposed method lies in their choice of grouping criteria. The state-of-the-art
method is based on a single small set of simple grouping criteria whereas the
proposed method has two different larger sets of grouping criteria, one for
growing the boundaries and one for evaluating them. Apart from this funda-
mental difference, a number of reasons may explain their relative performance
on specific images. For instance, preprocessing in the state-of-the-art method
includes a line extraction step that allows filling gaps to merge different image
contours. No such gap-filling is presently permitted at the preprocessing stage
in the proposed method. This may allow the state-of-the-art method to end-
up with a smaller number of segments after preprocessing a noisy edge map.
A too large number of CCPs on the boundary may affect the performance of
the proposed method given its current limitation to two merging steps. This
was demonstrated with the plane image for which the best retained boundary
did not include a part of the object. Most importantly, the proposed method
produces solutions with limited overlap with the background and the internal
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texture, as was shown with the plane image. In cases where the best obtained
boundary is either incomplete or of poor shape, as indicated by the final score,
the proposed method could also attempt further merging steps. In Figure 22,
the best two boundaries obtained with the state-of-the-art method are com-
pared with an incomplete boundary obtained in the current implementation.
The latter could be further merged with a partial boundary obtained at level
15 to produce a complete boundary.

(a) (b) (c) (d)

Fig. 22. Large number of boundary CCPs. a-b: best two boundaries obtained by a
state-of-the-art method, c: an incomplete boundary obtained using current imple-
mentation of proposed method, d: a complementary partial boundary obtained at
level 15.

Another more fundamental but related reason for the varying relative per-
formance is that the state-of-the-art method adds virtual segments between
endpoints of real segments, allowing to fill even larger gaps between extracted
segments. Again this may favor the state-of-the-art method when parts of the
object boundary have poor contrast. However, virtual segments could make
the number of primitives much too large given practical time and memory
limitations. Hence, the state-of-the-art method is restricted to only add vir-
tual segments of limited length. The choice of a proper threshold value is
difficult. In some cases, a boundary gap is properly filled but, in other cases,
the obtained boundary significantly overlaps the external background or the
internal texture and markings. A third reason explaining some differences in
performance is that the current implementation of the proposed method does
not take image border into account. That is, an object touching the image
border may not be properly extracted given its incomplete, open boundary.
A virtual segment joining endpoints of two CCPs touching the image border
would help the proposed method in such a case. However, this could again
be at the expense of producing some partly under-segmented boundaries that
include background structures.
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7.1 Selection of Parameters

A direct consequence of the addressed problem and the selected approach is
the large number of design decisions and parameters in the proposed method.
For instance, if each basic grouping criterion could be used irrespective of the
size of the partial boundary, any subset of grouping criteria could be used at
each incremental grouping step. If 15 steps are used with 10 grouping crite-
ria, there are 2150 possible combinations. At each step, a boolean expression
is used to logically combine chosen criteria (a criterion may be used more
than once in a given expression). Some of the grouping criteria do not make
sense when the size of the partial boundary is too small or too large. At each
grouping step, a choice was made on which criteria to use. No experimentation
was made with the expressions themselves. As far as the number of retained
boundaries is manageable, within acceptable time and memory limits, and the
best boundaries (those on the actual object boundary) are among the retained
boundaries, the expression is acceptable. In future work, we intend to explore
the space of retained boundaries at each step in more detail. Even for a single
test case, a lot of data has to be looked at and the proper methodology to do
the analysis still has to be figured out. This could lead to an improvement of
the expressions with even better final results for the proposed method.

Given the need to have a strictly over-segmented input map of primitives
and the complexity of the shapes of interest, a relatively large number of
primitives are needed to cover the complete object boundaries. The number
of incremental grouping steps used in the method before merging may be seen
as a parameter of the algorithm. By looking at typical object and image sizes,
the shape complexity of objects of interest, and the description scale in the
CCP map, a value of 15 was selected to obtain a complete boundary after a
limited number of merging steps (one or two in the current implementation).
A smaller value would make it difficult to efficiently prune out bad solutions.
A larger value would increase the processing time with no improvement in the
quality of the results.

With each boolean expression, there are parameters (thresholds) setting ac-
ceptable limits for each chosen criterion, actually transforming the criterion
into a constraint. Most of the parameters in the proposed method are from
those boolean expressions. Their values in the current implementation were
adjusted using trial and error on the input maps of Figure 2. However, no sys-
tematic procedure was used and no systematic optimization was attempted.
More precisely, only a small number of parameter values in the Boolean ex-
pressions were selected by experimenting with a small number of images (less
than a third of the tested images). The values were also strongly constrained,
that is selected from a small number of reasonable integer values.
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In the proposed method, pruning parameters determine how many boundaries
are kept after some of the processing steps. These were chosen on the basis
of computational (time and memory) limits. Merging steps further include
a maximum overlap size parameter for which a single reasonable value was
chosen. Besides, all criteria are used with relaxed constraint values. We did
not experiment with different values. In cases were no complete boundary is
found, the constraints could be further relaxed. Most importantly, weighting
parameters are needed to combine the global grouping criteria into a single
final score. Again, no experimentation was done to optimize those parameters.
The present weights are most probably not the best possible ones for the
reported test cases.

Finally, the three preprocessing stages needed to get contour primitives are
based on simple algorithms and their number of parameters may hardly be re-
duced. The quality of the input CCP map will vary according to the quality of
the image (noise, contrast, blur, etc.). The most important aspect is the strict
over-segmentation of the input CCP maps which was confirmed by observa-
tion. The precision of the map is not that important. That is, a slight variation
in position, orientation, or length of the primitives should affect similarly all
possible boundaries and it should not affect their pruning and ranking. A more
thorough investigation of these aspects is also planned as future work.

8 Conclusion

In this paper, a hypothesis was made that global, non-monotonic grouping
criteria are needed in order to detect and localize unexpected but interest-
ing multi-part objects directly from a noisy and cluttered primitive map. A
single generic set of shape-based grouping criteria were used in the proposed
detection method. The main contextual knowledge relied on in defining the
grouping criteria was that objects of interest are of intermediate complexity.
Objects of intermediate shape complexity were called multi-part objects.

The main contributions of the proposed method are: i) the identification and
formalization of a proper set of global shape criteria and weights that qualify
and quantify the interest of a complete object shape, ii) the identification
and formalization of a proper set of basic shape criteria and weights that
qualify and quantify the potential interest of a partial object shape, and iii) the
empirical identification of adaptive limiting values (constraints) on a subset of
the basic shape criteria that enable an early rejection of unpromising shapes.
Significant qualitative and quantitative results were obtained under realistic
practical constraints for a problem with very high fundamental complexity.
This represents the main accomplishment of the proposed method.
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Interesting objects of different shapes and appearances were detected and
localized, limiting misses and false alarms, in the generic context where a
large number of variations in object appearance are possible. These variations
may be of both intrinsic (shape, size, aspect ratio, reflectance, texture, mark-
ings) and extrinsic (viewpoint, partial occlusion, illumination, light disper-
sion, scene embedding, projection, lens distortion, sensor noise) origins. The
actual improvement made by the proposed method to state-of-the-art detec-
tion methods is the greater invariance to changing shape, texture, markings,
and viewpoint. Compared to state-of-the-art segmentation methods, high-level
attention capture by interesting objects of properly complex shape is now at-
tainable. The proposed approach consists in preprocessing input images to
obtain a strictly over-segmented input CCP map which is then processed by
grouping CCP primitives to obtain a single, complete object boundary (no
over-segmentation) that does not overlap with the internal texture and mark-
ings or the external background (no under-segmentation). The obtained re-
sults confirm that, compared to state-of-the-art boundary extraction methods,
best retained boundaries in the proposed method are more complete and they
overlap less with the background and the internal texture and markings.

The proposed method represents a first attempt at using the SAFE method-
ology. As a result, the design choices made could certainly be optimized in
various ways. In the present implementation, no attempt was made at sys-
tematically optimizing the set of criteria and its formalization. Despite this
fact, it is remarkable that the best scoring boundaries produced, including
FGTa, were actually quite similar to SGT. The main contribution of the pro-
posed method, with respect to those criteria, is the variable subset used at
each level and the adaptive boolean combination and limiting values for the
corresponding constraints. As explained, these designer choices were made
empirically but not systematically.

In addition to those discussed in Section 7, various improvements could be
made to the proposed method. For instance, an experimental study of the sig-
nificance of the various criteria could result in a different combination function
or even the removal of the less useful ones. A simpler CCP map with a smaller
number of distractors could also be beneficial, in terms of both effectiveness
and efficiency. For instance, a value could be attributed to each CCP in the
input map and only the best ones selected for multi-part object detection. A
method has been developed to selectively enhance CCPs on the basis of pair-
wise grouping criteria and relaxation [34]. Another possibility is to enhance
CCPs on the basis of their compatibility with region maps [35]. Finally, the
present merging algorithm is very simple and it could easily be improved to
produce additional boundaries when the best retained ones have poor final
scores.

Given the a priori definition of an SGT, as required by the SAFE methodology,
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it is possible to objectively determine the degree of failure of the method for
any tested image (with respect to its SGT). To the best of our knowledge, this
is far from being common practice in the computer vision literature, especially
in the context of object boundary extraction in the figure-ground segmentation
context. In the present implementation, the method sometimes give rise to
a particular case of failure where no complete boundary is found despite a
number of good partial boundaries in the final levels of the tree. The reason
is grouping constraints may be too successful at pruning contours. It would
be possible to adaptively relax constraints in the final levels to ensure a fixed
number or percentage of partial contours after pruning. This condition would
not apply to the first levels of the tree if the algorithm were to avoid producing
complete boundaries for images containing no multi-part object.

Running times are indicated in Table 2. On a Pentium IV 2.0 GHz with 1
GB of RAM, they presently range from 25 seconds for a simple image like the
water can to 6.5 minutes for a complex image like the toy. The plane required
about 4 minutes and the stool a little more. Precomputation of table entries
for geometrical relationships between CCP pairs could improve the efficiency
of the method. Similarly, earlier rejection of candidate pairs for merging would
provide important benefits since a large part of the running time is for bound-
ary merging. Finally, a parallel computation of scores for competing partial
boundaries would further improve running times. Memory limits exist with
respect to the number of CCPs in the input map. Numbers shown are in the
range of acceptable size in the present implementation.

To conclude, it was said earlier that the rationale behind the SAFE method-
ology is to make it easier to document and compare competing methods at
the high level of main design choices. Given that the performance of any com-
puter vision algorithm intimately depends on the input data, another way to
compare methods is to use standard image datasets. A number of those were
recently proposed for object detection and categorization in the literature, for
instance the Weizmann Horse Database, Caltech 101, and the PASCAL Visual
Object Classes. As discussed in Section 2, successful detection methods use
these datasets in a supervised learning framework where a model in a selected
representation is obtained from a statistical training procedure. Such an ap-
proach is not appropriate here given the larger number of variations in object
appearance that are possible compared to each single category in standard
datasets. The detection problem addressed in this paper is more generic, be-
ing related to the high-level attention capture problem. Recent segmentation
methods proposed in the literature also adopt the statistical learning frame-
work. None are appropriate for our problem since they either limit themselves
to local, low-level criteria [36], or impose severe constraints on the object pose
or appearance [37–39]. In the literature, there are no learning-based methods
for detection or segmentation that target an object category as generic as the
multi-part objects. No published detection or segmentation method goes as
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far as localizing precisely the boundary of various multi-part objects whose
specific shapes and appearances are initially unknown. State-of-the-art salient
boundary extraction methods do not yet extract nor rank boundaries of an
appropriately complex shape. Hence, the method proposed in this paper is
unique with respect to its goal, its approach, and its obtained results.
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