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Abstract. A method is proposed to enhance boundary primitives of
multi-part objects of unknown specific shape and appearance in natural
images. Its input is a strictly over-segmented constant-curvature con-
tour primitive (CCP) map. Each circular arc or straight-line segment
primitive from the map has an unknown origin which may be the closed
boundary of a multi-part object, the textured or marked region enclosed
by that boundary, or the external background region. Five simple criteria
are applied in order to weight each contour primitive and eliminate the
weakest ones. The criteria are defined on the basis of the superposition
of the CCP map on a multiscale quadtree segmentation of the original
intensity image. A subjective ground-truth binary map is used to assess
the degree to which the final weighted map corresponds to a selective
enhancement of the primitives on the object boundary. Experimental
results confirm the potential of the method to selectively enhance, in
images of variable complexity, actual boundary primitives of natural and
man-made multi-part objects of diverse shapes and appearances.

1 Introduction

Delimiting the region occupied by an unknown but interesting object in a static
image is both useful and easy for humans. In computer vision, this is still a fun-
damental problem with no existing general solution. This is particularly notable
with complex natural images where objects of interest appear under variations of
shape, illumination, surface texture, viewpoint, and background. A novel generic
object detection and localization method was proposed recently [1]. Its main as-
sumption is that objects of properly complex shape are of more interest and
preferably detected. On that basis, a number of potential object boundaries, de-
fined as ordered groups of primitives from an input map of constant-curvature
contour primitives (CCPs), are systematically generated and sorted according
to a number of shape grouping criteria and constraints. From a given boundary,
the region occupied by the object in the image is easily recovered.

Considering an average input map of 400 CCPs and boundaries of around
30 ordered CCPs, the number of possible boundaries is huge, that is about 1086.
Hence, very efficient pruning was required in order to reduce the number of gen-
erated boundaries to a manageable number of about a thousand. Still, images
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often took up to many minutes to process. Sorting of generated boundaries was
quite effective though since the generated boundary most similar to a manual
reference was always in the first absolute or relative positions. Quantitative simi-
larities obtained were from 85% to 100%. Besides, high-ranking boundaries were
qualitatively very similar to their manual reference (see Figure 1).

(a) Input (b) Reference (c) High-ranking (d) Low-ranking (e) Weighted

Fig. 1. CCP maps and boundaries. From left to right: binary input map, manual
reference boundary, high-ranking boundary, low-ranking boundary, weighted map.

The goal of the method proposed in this paper is to assign a weight to each
CCP in the input map that should reflect its potential to end-up on high-ranking
boundaries. If properly done, such a process shall enhance CCPs from an ob-
ject boundary with respect to distractor CCPs in the binary input map. The
weighted map obtained could then replace the binary input map in the object
detection and localization method. This would likely help reduce both the num-
ber of generated boundaries and the time required to generate and rank them.
Typically, near 90% of the CCPs of an input map are distractors, either internal
texture primitives or external background primitives (see Figure 1(a)). Figure
1(e) presents a weighted CCP map obtained by computing the relative num-
ber of times each CCP from the binary input map is used in the thousand or
so boundaries generated by the object detection and localization method. The
darker a CCP in that weighted map, the more it is used in the generated bound-
aries. That weighted CCP map could only be computed after all boundaries were
generated. In contrast, the method proposed in this paper directly transforms a
binary map into a weighted map to be used as input to a more efficient object
detection and localization method.

A method with a similar goal was proposed recently [2]. The weight of a
given contour primitive was computed using a number of criteria measuring
the quality of groups made by pairing the primitive with all other primitives
in the map. All but one criteria considered only the geometry or topology of
the contour primitive pairs. The last criterion considered the coherence in local
appearance of the paired primitives. That is, no criterion considered the appear-
ance of the region enclosed by the boundary primitives. The method proposed
in this paper precisely takes this type of complementary criterion into account.
Since the method it to operate before object (boundary) detection, the actual
object region is unknown and evidence for it must be obtained first.

More specifically, the binary input CCP map, made-up of straight-line seg-
ments and circular arcs [3], is superposed on a region map obtained from a low-
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level segmentation of the original intensity image. From this superposition, five
criteria are applied in order to weight each contour primitive and eliminate the
weakest ones. Generic low-level segmentation methods group and select image
data according to basic image parameters, irrespective of high-level knowledge as
to what constitutes an object of interest [4, 5]. Unfortunately, they tend to pro-
duce results that suffer from both under-segmentation and over-segmentation.
That is, no single region covers the whole object and some regions overlap the
object and the image background. The latter is more problematic since the
whole object is no more recoverable by grouping connected regions. By com-
parison, constant-curvature contour primitives (CCPs) are amenable to strict
over-segmentation, which is at the basis of the object detection method in [1].
Raw images are trivially strictly over-segmented since each pixel is either on the
object or not. However, pixels are both too numerous and local to be a primitive
of choice for the superposition. The selected trade-off in the proposed method
is a quadtree segmentation producing uniform regions of different sizes. In the
current implementation, uniformity of regions is related to the statistical devia-
tion of the pixel intensities from their average. Other definitions based on color
or texture are also possible but they are left for future work. In order to still be
robust to noise and detailed texture, the CCP map is superposed on a number
of image segmentations obtained at different scales.

The enhancement problem addressed by the proposed method is related to
the figure-ground segmentation problem [6, 7]. In both cases, one needs to iden-
tify which portions of an image contain important information and which are
only distractive to the ultimate processing goal. Whereas generic low-level seg-
mentation methods suffer from both under-segmentation and over-segmentation,
specific high-level segmentation methods are more likely to extract significant
segments of the image given their specialization to known objects of interest
[8–10]. While much progress has been made to high-level methods recently, they
still impose specific constraints on the object pose or appearance, which is not
in line with our goal. Recent model-based object detection methods are also
quite powerful in finding discriminating features of objects [11, 12]. However,
they need a training phase specific to each object category. Finally, a number of
generic perceptual grouping methods directly attempt to extract closed object
boundaries [13–15]. A comparative study of [13] and two competing methods was
made by Wang et al. [16]. For natural images of animals, the optimal contour
always had a simple near-convex shape not representative of the animal shape.
This limitation to near-convex shapes, also typical of previous saliency-based
methods [17], is not appropriate for our problem.

The following section describes the proposed method in more details. Exper-
imental results are presented in Section 3. A final section concludes the paper.

2 Proposed Method

As explained earlier, the main innovation of the proposed method is a superpo-
sition of the binary input CCP map on a quadtree segmentation of the original
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intensity image. Pixels forming quadtree regions are meant to have similar in-
tensities. Five segmentations are obtained, from fine to coarse, using five related
thresholds controlling whether a given quadtree region is decomposed into four
smaller regions. The finest segmentation, among the first three, with a number
of regions significantly higher than the number of regions in the next coarser
segmentation is selected as the main quadtree segmentation. The values of five
criteria are combined into a weight for each CCP of the binary input map. The
values of the first four criteria are computed using a superposition of the CCP
with the main quadtree segmentation. The value of the last criterion is based
on a superposition with the next two coarser segmentations. Constraints, corre-
sponding to limit values for the criteria, are enforced to directly eliminate some
CCPs from the output map.

Five simple and complementary criteria were selected. A short description of
each criterion is given next. Thresholds and parameters are determined empiri-
cally by maximizing quantitative performance values for a representative set of
images.

Local Coherence is the product of the CCP length and the number of quadtree
regions it intercepts. The idea is to verify that the CCP is on the border
between the region enclosed by the boundary and the external background
region. If so, the CCP is to intercept a large number of small quadtree regions.
Only the best one-third CCPs are retained.

Contrast is the difference between the average intensities on the two sides of the
CCP. On each side, the average intensity of the quadtree regions intercepted
by a band parallel to the CCP is used. A CCP with a too small contrast is
eliminated.

Salience is the difference between the average size of the quadtree regions in-
tercepted by the CCP and the average size of the quadtree regions on either
side. On each side, the average size of the quadtree regions intercepted by
a band parallel to the CCP is used. A CCP with a too small salience is
eliminated.

Global Coherence is a binary criterion that obtains a true value if and only
if the CCP intercepts a computed main region. Computation of the main
region is explained in Section 2.4.

Scale Coherence is a ternary criterion that obtains a true or doubly true value
when the CCP is among the best 20% CCPs in one or two of the additional
coarser segmentations, respectively. For each coarser segmentation, the CCPs
are sorted according to their local coherence, as long as they are not elimi-
nated due to their poor contrast or salience.

The weight of a CCP is its local coherence, doubled when it is globally
coherent and further multiplied by 1.5 when it is scale coherent or 2.25 when it
is doubly scale coherent. Eliminated CCPs have zero weight. For example, the
binary input map in Figure 4 has 552 CCPs. Local coherence eliminates 370
CCPs (two-thirds), contrast further eliminates 49 CCPs, and salience eliminates
20 CCPs. The number of CCPs in the output map is thus 113, about 20% of the
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original. Prior to evaluating the five criteria for each CCP in the input map, a
number of computations are performed as described in the following sections.

2.1 Quadtree Segmentation

Since images have arbitrary dimensions, quadtree regions are rectangular in-
stead of square. Otherwise, the classical quadtree segmentation algorithm is
used, starting with the complete image and recursively dividing it into four
regions until either the standard deviation of the pixel intensities in a region is
smaller than a given threshold or a region has less than four pixels. Let us define
Delta1 = 20% ∗ Stotal et Delta2 = 10% ∗ Stotal, where Stotal is the standard
deviation of the pixel intensities for the whole image The five segmentations are
obtained using the following thresholds: Stotal −Delta1, Stotal −Delta2, Stotal,
Stotal + Delta2, and Stotal + Delta1. The pixel intensities are obtained from the
three channels of the color image using Y = (0.299 ∗ R + 0.587G + 0.114 ∗ B).
Quadtree segmentations at five different scales are presented in Figure 2.

(a) (b) 6688 (c) 3745 (d) 2389 (e) 1501 (f) 1072

Fig. 2. From left to right: the original intensity image and five quadtree segmentations.
The number of rectangular regions is indicated for each segmentation.

2.2 Region Intersections

Each of the five criteria needs a list of the quadtree regions intercepted by a
given CCP. The intersections between each CCP and the quadtree regions are
computed only once and stored in a look-up table. In order to compute the
intersections, each quadtree region is represented by four straight-line segments,
its four sides. Intersections are computed between a CCP, a straight-line segment
or a circular arc, and each side. There are three possible cases: the CCP is fully
contained in the region, the CCP intersects one or more sides, or the CCP is
outside the region. The first two cases correspond to a CCP intercepting the
quadtree region.

2.3 Bands of Parallel CCPs

On each side of a CCP, two parallel CCPs form a band to be used in computing
the contrast and salience criteria. The distance between the CCPs is 5 pixels.
When the original CCP is a circular arc, the CCPs in the band have different
radii.
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2.4 Main Region

The main region is a coarse object segmentation obtained using a region growing
process on the main quadtree segmentation. In the present implementation, the
main region is simply grown by recursively adding connected regions, starting
from a small region seed. An empirical limit of 30 pixels is imposed on the area of
an added region. The seed region has the smallest area in the quadtree. Once the
first region is grown, another seed region is selected from the remaining regions,
as far as its area is smaller than 30 pixels. A second region is grown from the
new seed, and so on until all remaining regions are larger than 30 pixels. The
largest grown region is retained as the main region. On most tested images, the
main region covers the object at least in part. Future implementations of the
proposed method should improve the main region extraction.

2.5 Algorithm

The complete primitive enhancement algorithm consists in the following steps:

1. compute the five quadtree segmentations from the intensity image.
2. select the main segmentation.
3. compute the local coherence, the contrast, and the salience of each CCP.
4. eliminate the CCPs with smaller local coherence.
5. eliminate the CCPs with too small contrast.
6. eliminate the CCPs with too small salience.
7. compute the main region.
8. compute the global coherence and the scale coherence of each retained CCP.
9. compute the weight of each retained CCP in the output map.

3 Experimental Results

Ten images of variable complexity were tested. They are displayed in Figure 3.
Images c, f, and g are considered simple since they have limited background
structure and texture. Images a, e, h, i, and j are considered complex since
they have normal texture and background. Finally, images b and d are consid-
ered difficult mainly because of the poor constrast between the object and the
background in some areas. Experiments used a fixed set of parameter values.

(a) 552 (b) 585 (c) 188 (d) 745 (e) 229 (f) 640 (g) 178 (h) 304 (i) 243 (j) 165

Fig. 3. Ten tested images. The number of CCPs in the input map is indicated.
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Two types of qualitative results are presented. A detailed result for a complex
image is presented first, showing maps at different intermediate steps. Then,
a final result is presented for one sample image in each category of simple,
complex, and difficult images. In this case, the binary input CCP map, the
manual reference, and the thresholded output map are shown. Finally, a table
of quantitative performance values is presented for the ten images.

3.1 Qualitative Results

A detailed result is presented in Figure 4. Each criterion is applied in turn and
the binary map showing the retained CCPs is displayed. For criteria 4 and 5,
maps before and after the application of the criterion are thresholded to the
same number of CCPs in order to show the ranking differences. Sample results
for simple, complex, and difficult images are shown in Figure 5.

(a) (b) 1 (c) 2 (d) 3

(e) 4 (f) 5

Fig. 4. Sequence of binary maps obtained by applying the five criteria. For criteria 4
and 5, input and output maps are thresholded at 60 CCPs and 20 CCPs, respectively.
Circular arcs are red and straight-line segments are blue in the binary input map.

3.2 Quantitative Results

Table 1 presents the precision (PRE) and recall (REC) values for thresholded
output maps. The number of CCPs in the input map (CCP), the reference map
(SGT), and the thresholded output map (OUT) are indicated for each image.
The precision and recall values are computed using a unit weight for each CCP,
irrespective of its size and actual computed weight. The equal-error-rate (EER)
and area-under-curve (AUC) values are computed from a recall versus precision
curve (RPC), where the number of retained CCPs in the output map varies
from one to the number obtained after applying the first three criteria. When
CCPs included in the reference map are eliminated, the maximum recall value is
less than 100%. For this reason, the RPC curve and the associated performance
values are more challenging than the usual in object detection or image retrieval.
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(a) Simple

(b) Complex

(c) Difficult

Fig. 5. Input, reference, and thresholded output maps for three sample images.

Image CCP SGT OUT PRE REC EER AUC
a 552 50 60 73 60 65 66
b 585 33 45 31 40 32 17
c 188 32 27 80 84 84 78
d 745 45 55 38 40 41 32
e 229 33 32 84 77 84 71
f 640 44 44 72 72 72 63
g 178 30 28 70 80 70 69
h 304 41 43 46 45 45 41
i 243 32 29 62 52 55 45
j 165 29 30 40 35 31 20

Table 1. Quantitative performance values. The first three columns indicate the number
of CCPs in the input, reference, and thresholded output maps, respectively. The last
four columns indicate the performance values expressed as percentages. Precision and
recall are obtained from thresholded output maps. Equal-error-rate and area-under-
curve are obtained from a recall versus precision curve. Higher values are better.

The computing time for the complete algorithm, excluding the generation of
the binary input map, varies depending on the input map size and the image
contents. For the ten tested images, the range is from about half a minute to a
minute and a half with a Visual.NET C# implementation running on an IBM
ThinkPad with a 2.0 GHz Intel Pentium M processor and 1GB of RAM.
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4 Conclusion

The goal was to assign a weight to each CCP in a binary input map according
to its potential to be on an object boundary of proper complexity. Typically,
near 90% of the CCPs of an input map are distractors, either internal texture
primitives or external background primitives. Given that objects in tested images
have unknown shape and appearance, only generic elimination and weighting
criteria could be proposed for CCPs. The weight of each retained CCP was
computed by taking into account the coherence between a quadtree segmentation
of the original image and the input map. Five simple criteria used to combine
region and contour segmentations are the main contribution of the method.

Results obtained on images of variable complexity are significant. Even for
image b, which obtained the worst quantitative performance values, the retained
CCPs with highest final weights provide a useful starting point for an object
detection algorithm, as one may conclude by comparing the maps in Figure
5(c). In general, quality of results is as expected by the intuitive categorization
of the images as simple, complex, or difficult. Excellent results are obtained for
all simple images. Results for most complex images are at least good. Image
j did not perform well but this might partly be an artifact of the evaluation
process. Indeed, most of the longest boundary primitives are retained with a
high weight, along with a number of small distractors. A thresholded output map
provides a clear qualitative improvement with respect to the input map. Finally,
performance values for difficult images were low but the resulting weighted maps
are nevertheless an improvement, as just mentioned.

Various techniques were proposed recently for generic segmentation and ob-
ject detection with standard image datasets, e.g. the Berkeley Segmentation
Dataset and the PASCAL Visual Object Classes, used for comparison. Given
that our method is only a preprocessing step and that it considers a very generic
object category with no supervised training, it is more appropriate to compare
it to grouping methods. Unfortunately, no standard image dataset was proposed
for them. Some of our test images are from the Berkeley Dataset. Typically,
salient boundaries extracted by state-of-the-art methods are of simpler shapes.

A number of changes could be made to the proposed method in order to
improve its performance. A study of the relative importance of the five criteria
could result in a different algorithm with, for instance, a different way to combine
the criteria, the addition of new criteria, or the removal of the less useful ones. As
mentioned earlier, an improved segmentation algorithm adding color or texture
uniformity could also improve the results, especially for the difficult images.
Similarly, regions of arbitrary shapes could be better adapted to other types of
criteria. Finally, a fusion of the weighted output map with the map obtained
by a complementary perceptual grouping method [2] would likely improve the
respective performances of the two methods.
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