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Abstract

A method is proposed to detect multi-part man-made or
natural objects in complex images. It consists in first ex-
tracting simple curves and straight lines from the edge map.
Then, a search tree is expanded by selecting and ordering
the segmented primitives on the basis of generic local and
global grouping criteria. The set of partial contours pro-
vided by the parallel search are combined into more com-
plex forms. Global scores produce a sorted list of potential
object silhouettes.

1. Introduction

Multi-part objects are everywhere, from living beings to
man-made objects, rigid or deformable, articulated or not.
They can be a person, with a head, body, two legs, and two
arms, or an airplane, with its nose, body, two wings, and
tail. Current work in detection of such objects in images is
often too specific and it lacks efficiency and noise tolerance.
A new fully deterministic and generic method is proposed
whose goal is to come closer to the capacity of humans to
detect interest regions in complex images of multi-part ob-
jects. Potential interest objects are located by orderly select-
ing contour primitives on their boundary, based on a limited
set of simple grouping criteria common to all members of
the abstract category of multi-part objects.

Existing studies in the field of shape detection are nu-
merous but they fall short to satisfy our needs. Model-
based object recognition approaches match local features
to a predefined model in order to find the pose of a spe-
cific object [1]. Recently, new powerful techniques were
proposed to learn local appearance features from examplar
images and apply them to detect interest objects [3]. De-
spite some impressive results, they are still too limited in
terms of needed viewpoint-invariance and genericity. Many
techniques are based on more generic shape models but
they usually deal only with relatively simple shapes or im-

ages [7]. Approaches based on interest points are popular
and they may also bring information on the image contents
[12]. However, they are not yet applied to generic shape ex-
traction tasks. Region segmentation share similarities with
our proposed method since in both cases the image is first
segmented into pieces, before deciding which ones to fuse
in order to reconstruct interest object, just like a puzzle.
However, getting the meaningful pieces is more difficult
with regions than contours, especially in terms of under-
segmentation. Besides, shape-based grouping criteria are
easier to define on a partial contour silhouette than on a par-
tial region silhouette.

Contour-based perceptual grouping is an efficient pre-
processing step in both specific and generic shape detec-
tion methods. However, few existing methods apply it fully
up to the detection of generic shapes of a sufficient com-
plexity [2]. For instance, [6] proposes a shape detection
algorithm tolerant to missing and spurious points, but the
main criterion is the convexity of the group. Concavities
as well as convexities are essential features of multi-part
objects. Inter-line affinity is computed in [7, 5]. Proxim-
ity, continuity and closing criteria are defined on that basis.
The extracted contours are numerous, they may appear any-
where, and they may look anyhow since only local, or sim-
ple global [4], criteria are enforced. The great diversity of
multi-part objects asks for a greater set of local and global
criteria.

2. Basic concept

Figure 1(b) is a constant-curvature contour primitive
(CCP) map of Figure 1(a) obtained using a custom segmen-
tation algorithm [9]. A possible solution to our detection
problem is any ordered group of CCPs from the map. Con-
sidering an average map of 400 CCPs and solutions with 30
CCPs, the number of possible solutions is about 1086.

Figure 1(c) is the best solution as interactively selected
by a human. It is referred to as SGT, for subjective ground
truth. SGT is not know by the algorithm and will only serve



in assessing the quality of obtained results. Let us assume
that an algorithm provides a scoring function for solutions.
FGT, or formal ground truth, is the possible solution with
highest score. FGT is usually not known either as it would
require to generate all of a nearly infinite number of solu-
tions and score each of them. More practically, a subset
of the possible solutions is considered and the one with the
highest score is selected. The selected optimal solution is
only an approximation of FGT. It is referred to as FGTa.

FGTa may be the same as FGT, but this can seldom be
verified in images of typical complexity. The goal of the
proposed method is to generate, in an efficient manner, an
FGTa as close as possible to SGT, for a variety of complex
images of multi-part objects. Figure 1(d) shows an exam-
ple of a random solution with 30 CCPs (each CCP is im-
aged with a small arrow and a number). In the proposed
method, local grouping criteria help discard such a poor so-
lution early on. Best retained solutions according to global
criteria are to be similar to SGT (see Figure 6).

(a) Image (b) CCP map

(c) SGT (d) Random solution

Figure 1. Basic concept

3. Input data

Images in Figure 2 are segmented to produce contour
primitives maps shown in Figure 3. Different difficulties
may arise from the segmentation step. For instance, con-
flicting continuous primitives, discontinuous primitives, in-
complete primitives, and overlapping primitives. The pro-
posed method is meant to address all of them.

(a) Toy truck (b) Airplane (c) Stool

(d) Bike (e) Fish

Figure 2. Medium (a-c) and small (d-e) images

(a) 427 CCPs (b) 533 CCPs (c) 203 CCPs

(d) 205 CCPs (e) 640 CCPs

Figure 3. CCP maps



4. Parallel search for partial paths

Various existing techniques learn their parameters from
training images [8]. Because of the very large number of
possible objects and images falling under the scope of our
problem, proper formal training is hardly applicable here.
It was found more appropriate to define the abstract cat-
egory of multi-part objects using a limited number of local
and global grouping criteria whose definitions were selected
and validated on the basis of a new interactive methodology
[11]. Details about the selected criteria appear below.

The GraphSearch deterministic algorithm [10] is used to
build-up potential pieces of silhouettes. Due to the huge
number of possible solutions, most nodes must be removed
in order to keep the search under control. This is obtained
by rejecting paths with intersections and by applying local
grouping criteria. At the end of this procedure, a list of
nodes containing paths of fifteen CCPs is produced. This
number is typically not enough for the silhouettes of the in-
terest object to be complete. This step is followed by the
combination of nodes, as explained later. Scores are com-
puted for the obtained final paths using global criteria.

4.1. Preprocessing

Short CCPs are removed from the initial pool of data.
They are to be back in the final processing step, when small
holes are filled in the combined nodes. Next, the number of
elements is doubled by generating an oriented CCP for each
orientation of remaining CCPs.

4.2. Local criteria

A new node must be validated by two tests in order to be
added to the tree. The first and simplest is the distance be-
tween extreme points. The start point of the oriented CCP
under test must be within a fixed distance of the last point of
the current path. This threshold is currently set to 30 pixels.
This distance check is only an optimization feature that al-
lows to skip intersection checks if it is met. Further distance
conditions will be applied later, together with other criteria.
It is also to be noted that gaps larger than 30 pixels may
be present in the final silhouettes obtained after combining
partial paths.

The second test consists in intersection checks. Junctions
are accepted only at extreme points. This condition elimi-
nates a large number of possible paths. Gaps on paths are
filled with lines before testing. Some valid nodes according
to the above tests are not to be kept either. This other way
to remove tree nodes is by the application of a set of local
criteria to CCP paths. Failure to satisfy a set of conditions,
in the form of a boolean equation, results in pruning of that
node. Early removal of a node is more efficient. Hence,

conditions are typically very restrictive in the early levels,
and more permissive later on.

The ten local grouping criteria are listed in Table 1. Each
has a simple formal definition. For instance, the two con-
tinuity criteria have a linear scale. A null angular differ-
ence between tangents at extreme points of the CCPs worths
100%. A 180 degrees difference worths zero. The arith-
metic mean of scores on a path is computed. The distance
criterion is the distance from end point of the last CCP of
the path to the start point of the CCP to be added. The total
length sums up the length of the gaps between consecutive
CCPs and the length of the CCPs themselves. The num-
ber of parts criterion is computed using the number of con-
cavities. It starts by filtering angles through the silhouette
by grouping small angle variations together. Gaps on the
boundary are filled. One is added to the result to take into
consideration the main body of the multi-part object. Other
criteria are also simple to compute.

Table 1. Local criteria encoding
Number Criteria

1 Continuity
2 Unused
4 Distance
8 Number of parts
16 Surface area
32 Total length
64 Opening

128 Filled continuity
256 Obtuse angles
512 Hole proportion

1024 Early closure

Tree is generated up to level fifteen. After each level gen-
eration, the pruning process is executed. Figure 4 illustrates
the principle. White nodes are the new nodes added and ac-
cepted by the GraphSearch. Local criteria are expressed in
the form of a boolean equation, different for each level of
the tree.

In the boolean equations, operands are pairs of numbers
(criterion and its associated threshold) and operators are the
AND (*), OR (+) and the ForceAND (X). The last one is
used for optimization purpose and forces the respect of all
conditions coming before it. Table 2 present the equations
for the fifteen levels of the tree as applied to small images.
Similar equations are used for medium images.

A common pattern is used all the way down the tree. It
is continuity (#1) - distance (#4). It ensures a coherence be-
tween CCPs. Large distance asks for good continuity and
smaller distances allow more discontinuities. Notice also
the total length (#32) applied one level out of two in low
levels, and more frequently at the end. This way, a chance



Figure 4. The generation-pruning switch

Table 2. Boolean equations for small images
Level Associated equation

1 32 10
2 1 80 4 10 * 1 65 4 2 * + 4 1 +
3 1 80 4 10 * 1 65 4 4 * + 4 2 +
4 1 75 4 10 * 1 60 4 5 * + 4 2 + 512 10 * 32 50 *

1024 2 * 64 20 *
5 1 75 4 15 * 1 60 4 6 * + 512 5 + 512 12 * 128 55

* 256 2 * 1024 3 *
6 1 70 4 15 * 1 60 4 7 * + 512 5 + 128 55 * 8 1 8 2

+ * 32 80 * 512 12 * 1024 4 *
7 1 70 4 15 * 1 60 4 8 * + 1 55 4 5 * + 256 3 * 1024

5 *
8 1 65 4 18 * 1 60 4 10 * + 128 65 * 32 100 * 512

15 * 1024 6 *
9 1 65 4 20 * 1 60 4 12 * + 128 75 * 512 15 * 32

120 * 1024 7 *
10 8 2 1 65 * 128 75 * 16 0.5 * 256 3 * 8 4 1 70 128

75 * 1 65 128 65 * 512 5 * + * 16 1 * 256 4 * +
512 15 * 4 20 * 32 150 * 1024 8 *

11 to 15 4 20 128 70 512 12 X

of survival is left to short paths. By level four, hole pro-
portion, total length, early closure and opening criteria be-
come meaningful. Early closure is used until the end be-
cause every newcomer must be tested for correct position-
ing. Level six is the first time the number of parts criterion
is applied. Level ten groups are not self-sufficient. That
is, they rarely represent the entire silhouette of the interest
object. Thresholds are slackened as tree is expanded from
level ten to level fifteen. The goal is to retrieve missing
pieces so that when level fifteen groups are combined, it
could result in a nearly complete silhouette.

From level ten, elimination process changes. All nodes
are quite good because they meet tight conditions. The
slackened criteria may not be sufficient to reduce combina-
torial explosion. To help with that situation, a partial score
is computed for each node using a linear combination of
individual criteria scores. Then, only the best nodes are
kept. This elimination process arises whenever the number
of nodes at a given level exceeds 2000. It is then reduced
down to 1500.

4.3. Global criteria and scores

Associating a quality score to a node is at the heart of
the proposed method. A node is considered as either a com-
pleted or under-construction object. The former gets its
value from the main score, the latter from the partial score.

The main score has been mainly developed by Randri-
anarisoa et al. [11]. The ten global grouping criteria, with
their weights, are as follows: closure (5), visual balance (1),
compactness (1), number of parts (1), filled continuity (5),
gap distribution (1), object-image position (1), surface area
(5), border effect (1), hole proportion (1).

Only four elements are kept in the partial score, with unit
weights: number of parts, filled continuity, surface area,
hole proportion.

5. Combination of level 15 nodes

The combination procedure aims at producing complete
silhouettes from partial paths. Only the best 500 best nodes
are kept, according to partial score. 500 nodes generates
250000 pairs, which is quite enough in practice. For two
paths to combine, they need not connect perfectly end point
to start point. A partial combination is made of two paths
that do not fit perfectly. A subset of primitives at the begin-
ning of the second path is removed before adding it to the
first path (see Figure 5). The minimum number of primi-
tives to add to a node is set to 5 in experiments. Thus, the
number of CCPs in combinations ranges from 20 to 30. Be-
fore accepting a tested combination, is must be validated by
intersection checks and further application of local criteria.



In order to deal with both complete and incomplete objects,
threshold values are permissive.

(a) Node 1 (b) Node 2 (c) Combination

Figure 5. Example of a simple combination

During execution, many node lists are kept up-to-date.
One is called “End-answers”. It contains potential final
paths i.e. silhouettes. There are two conditions to be ful-
filled in order to be in the list. First, direct distance between
start and end point of path must be lower than or equal to
10% of the length of the path. Second, the line from start to
end points of path must not generate intersections.

There are many objects with a silhouette of more than 30
CCPs. An optional step takes combinations of level fifteen
and combines them again with level fifteen nodes. This way,
solutions may contain from 25 to 45 CCPs, which is now
enough for typical test images. This optional step is skipped
when the best main score of the End-answers is at least as
high as the best main score of the list of combined nodes
and the number of CCPs in path of the best main score node
of the End-answers is at least 15% of the number of CCPs
after initial filtering.

After combination and potential recombination, short
CCPs initially removed are used to complete small gaps on
the silhouette of the object.

6. Results

Results can be expressed in many ways. First of all, the
best solution found (best main score solution, or FGTa) is
compared to the human segmentation (SGT) and to other
possible solutions (good or bad). This tells how hard it
can be to discriminate good solutions from others. Next,
the most similar solution to the SGT is located in the End-
answers list. Then, the general usage of the CCP map
throughout the search steps is shown and analyzed. Finally,
evolution graphs display main score, similarity, precision,
and recall results at various algorithmic steps.

6.1. SGT/FGT comparison

Figures 6-8 show results for three typical images. The
main score of each solution appears in parentheses. The
airplane is an interesting case in which one may easily find

sub-objects, made of a subset of object parts. The image
has background clutter and internal textures and markings.
Many CCPs create bridges to go around some parts, like the
plane’s right wing. Pruning those CCPs helps converging to
correct answers faster.

(a) SGT (1635) (b) FGTa (1642) (c) B2 (1636)

(d) W1 (1288) (e) W2 (1421) (f) W3 (1473)

Figure 6. Plane SGT/FGT: 2 best, 3 worst

The toy truck is another good case in which the method
must face more than one good objects. Despite the numer-
ous possibilities, the final FGTa is quite similar to the SGT
reference. Remember that it is difficult to perfectly localize
the SGT. In fact, its main score is 1663, compared to 1721
for the FGTa. That means, the method considers FGTa as a
better multi-part object than SGT.

For the stool, many internal CCPs and holes enhance the
complexity of this case by forming a lot of cycles and par-
allel routes. The junction points allow a contour to switch
from one path to another, thus multiplying the number of
possibilities to consider. Fortunately, the proposed method
eliminates them rapidly.

6.2. Position of the most similar solution

In order to compare the obtained solutions with the SGT
references, a similarity score is computed between silhou-
ettes. This score considers common primitives on the paths
and their length.

Table 3 show the position of the most similar solution
computed by the method in the completed End-answers list.
A value greater than 50% shows a notable similarity, but
also with big differences. Greater than 70% means the dif-
ferences will be minor. A similarity greater than 90% is ob-
tained for solutions with almost invisible dissimilarities, or
mostly meaningless differences. Position is an integer be-
tween one and the number of elements in the list. That total
number of elements is in parentheses in the first column.



(a) SGT (1663) (b) FGTa (1721) (c) B2 (1697)

(d) W1 (1417) (e) W2 (1415) (f) W3 (1552)

(g) W4 (1570) (h) W5 (1605)

Figure 7. Toy truck SGT/FGT: 2 best, 5 worst

(a) SGT (1734) (b) FGTa (1741) (c) B2 (1738)

Figure 8. Stool SGT/FGT: 2 best

These numbers may be compared to the huge combinatorial
number of possible solutions, as discussed earlier.

Table 3. Position of the most similar solutions

Image (#End-answers) Position Similarity
Juice (53) 3 (96%) 93%

Airplane (449) 2 (100%) 89%
Water can (2) 1 (100%) 100%

Angel fish (35) 3 (94%) 99%
Stool (427) 13 (97%) 92%

Toy truck (1277) 49 (96%) 87%
Fish (157) 1 (100%) 85%
Bike (857) 21 (98%) 90%
Hand (7) 3 (71%) 97%

Man (158) 1 (100%) 93%

Only the toy truck, the bike, and the fish show notable
differences between their most similar solution and their
SGT. They are shown in figure 9.

(a) Fish (b) Toy truck (c) Bike

Figure 9. Most similar solutions to SGT

6.3. CCP-Usage

CCP-Usage tells how much each CCP is used in the gen-
erated solutions. In CCP-Usage maps, the darker the CCP,
the more it is used at a given step. A normalized usage
value is computed for each CCP at each algorithmic step,
by considering the number of times it appears through the
solutions of that step. CCP-Usage maps allow one to pre-
cisely and globally track when some background and tex-
ture features disappear or when some silhouette parts be-
come stronger. Figure 10 shows CCP-Usage maps for the
airplane. Background and texture noise rapidly disappear
through levels of the tree. Only remains some spots, like
the background road, due to its continuity and its very good
connection with the airplane. Still, combinations success-
fully cut through this difficult case.



(a) Level 2 (b) Level 3 (c) Level 10

(d) Level 15 (e) Combination (f) End-answers

Figure 10. CCP-Usage maps

6.4. Evolution graphs

Four types of graphs are generated: the main score (Fig-
ure 11), the similarity (Figure 12), the precision (Figure
13(a)), and the recall (Figure 13(b)). Algorithmic steps 1
to 15 correspond to the tree levels, 16 is the first combi-
nation, 17 is the optional recombination, 18 is the cleaned
End-answers list (according to similarity and main score),
and 19 is the completed End-answers.

Precision is computed as the number of CCPs in the solu-
tion that are present in the SGT, divided by the total number
of CCPs in the solution. It can be seen as the degree of
purity of a solution. Recall is the number of CCPs in the
solution that are present in the SGT, divided by the number
of CCPs in the SGT. It computes the fraction of SGT CCPs
successfully found.

At each step, a sample of one hundred solutions (the blue
points in the graphs) are obtained by sampling the available
solutions. For the main score, the solutions are obtained in
the following way: a third from the best scores, a third from
the middle ones, and the last third from the worst scores.
For the precision and recall, the one hundred best solutions
according to main score are retained. Finally, for the sim-
ilarity with SGT, the one hundred best solutions according
to similariy are selected. The red star in the graphs is the
mean value of the selected solutions.

The range of the main score, from steps 1 to 15, is about
500 points for all images. To keep solutions as bad as 800
and as good as 1300 testify of the diversity of solutions in
the tree. Combinations rapidly concentrate the scores to the
ceiling. Similarity looks at the longest common path pieces.
Its value grows linearly with tree level. The slope of this
function is dependent on the number of CCPs in the SGT
reference.
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Figure 11. Main score graph for the airplane
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Figure 12. Similarity graph for the airplane

The precision behavior is intimately linked to the crite-
ria used. In the first levels, precision takes only a few values
due to the small number of possibilities. This creates graphs
with a typically raising tendency from level 1 to 10 where
severe constraints force the selection of CCPs on the bound-
ary of the airplane. They are relaxed thereafter in order to
find missing pieces of the silhouette. That permits “bad”
CCPs to enter solutions, explaining the precision drop from
levels 11 to 15. This is necessary in order not to miss good
complete solutions. Recall also raises linearly during the
tree generation. At each step, the recall score tops at the
number of CCPs in a solution, divided by the number of
CCPs in the SGT. So, the 100% mark is attained only at
the end. Precision, however, can top 100% right at the be-
ginning, and even drop after that, if the number of CCPs in
SGT is low enough. For instance, an early good solution
may be spoiled by adding bad CCPs.

7. Conclusions

A simple set of explicit local and global grouping cri-
teria are combined to detect multi-part objects in complex
images. A deterministic generic detection method based on
parallel search tree expansion and pruning was developed
and applied to a variety of noisy contour primitive maps.
Input images show significant amounts of internal textures,
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Figure 13. Precision and recall graphs

markings, and background structure. The method is able
to target the main subject of an image as long as it corre-
sponds to a multi-part object of the proper complexity. It
first builds small silhouette pieces made of fifteen oriented
contour primitives, applying adapted local criteria at each
tree level. These pieces are then combined and completed
with small details using the remaining primitives. From the
obtained object silhouette, it is straightforward to extract the
corresponding region.

On a Pentium 4 2.0 GHz with 1024 MB of RAM, com-
putation times range from 25 seconds for a simple image
like the water can to 6.5 minutes for a complex image like
the toy truck. The airplane requires about 4 minutes and the
stool a little more. Algorithmic improvements may reside
in criteria application, removing less useful ones, and also
in the combination steps. Combination is repeated many
times and a small timing improvement may provide impor-
tant benefits. A parallel implementation is also likely to
improve computing time. For instance, tree generation can
be split by separating the first level nodes equally between
processors. Each processor would make its nodes evolve
until level 15 and communicate results to other processors
for combination.
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