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Abstract

This paper describes a new method for the temporal segmentation of periodic human activities from continuous real-world indoor

video sequences acquired with a static camera. The proposed approach is based on the concept of inter-frame similarity matrix.

Indeed, this matrix contains relevant information for the analysis of cyclic and symmetric human activities, where the motion

performed during the first semi-cycle is repeated in the opposite direction during the second semi-cycle. Thus, the pattern associated

with a periodic activity in the similarity matrix is rectangular and decomposable into elementary units. We propose a morphology-

based approach for the detection and analysis of activity patterns. Pattern extraction is further used for the detection of the temporal

boundaries of the cyclic symmetric activities. The approach for experimental evaluation is based on a statistical estimation of the

ground truth segmentation and on a confidence ratio for temporal segmentations.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Human motion analysis plays a central role in
surveillance systems designed to observe uncontrolled
environments by using a non-intrusive camera network.
As outlined in several recent surveys [1,2], the real-time
detection and tracking of human subjects in the scene is
focused on the non-rigid motion analysis of the human
body and it aims to provide robust solutions with
respect to shadowing, occlusion, and pose change.
In the context of human motion analysis, the cyclic

feature is mainly used as a cue for detecting activities such
as walking, running, and subject identification through
gait recognition. Tsai et al. [3] detect walking cycles using
the spatio-temporal curvature function of trajectories
corresponding to nine specific points on the human subject
in motion. Their technique uses a stick-model and is
designed for motion-based recognition, namely for identi-
fying the tracked subject from his motion.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Polana and Nelson [4,5] introduce the concept of
temporal texture for the detection of periodic activities
such as walk, exercise, swing, and rotation. A low-level
technique for recognizing repetitive human activities is
proposed in [5]. This technique, based on bottom-up
processing, does not require a prior segmentation of the
human subject into body parts. Using the fundamental
frequency of the repetitive action, a feature vector of
spatio-temporal motion magnitudes is built. The experi-
mental database in [4,5] consists of video sequences
containing one activity per sequence and a cluttered
background.
Seitz and Dyer [6] define the notion of period trace

which allows a relaxation of the assumption that a
motion should be perfectly even from one cycle to the
next. The period trace is recovered using affine-invariant
image matching and is useful to describe motions, like
an athlete running, that are not strictly cyclic but have a
cyclic component. As in [4,5], the database in [6] consists
in video sequences dedicated to one specific activity.
While the study of sequences containing a single

periodic activity has led to interesting results in human
motion modeling and representation, there is little
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Fig. 1. Modular decomposition of the proposed approach.
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research about video sequences where the activity
pattern changes over time. Recent work by Bobick
and Davis [7] deals with the temporal segmentation of
video sequences into coherent actions based on a
backward-looking temporal time window. A low-level
representation of motion is created from motion-energy
images (MEI) and motion-history images (MHI). The
temporal segmentation is performed by using three
parameters corresponding to the minimum and max-
imum duration of an action and to the maximum
number of temporal integration windows, respectively.
Since the parameter values are computed with respect to
a prior manual temporal segmentation of the entire
database, the temporal video segmentation in [7] is very
sensitive with respect to the speed of performing actions.
In addition, this method is only able to handle human
actions specified during the off-line training phase,
which builds reference templates for every action of
interest.
To address such current limitations in human activity

analysis, we propose a new method for the temporal
segmentation of video sequences containing both cyclic
and non-cyclic activities. Our method uses the 2D inter-
frame similarity plot, a concept introduced by Cutler
and Davis in [8]. As shown in BenAbdelkader et al. [9],
the matrix of inter-frame similarity can be successfully
used for gait-based person identification. In the context
of our research, we investigated the relevance of the 2D
inter-frame similarity plot for the detection of cyclic and
symmetric actions from video sequences containing
multiple human activities. Preliminary results of our
study appeared in Yazdi et al. [10]. The present paper
contains a detailed description of the proposed method,
as well as a complete experimental evaluation.
The rest of the paper is organized as follows. Section 2

consists of an overview of the approach. The experi-
mental results are presented and discussed in Section 3.
Section 4 contains the conclusions and describes the
future work directions.
2. An overview of the proposed approach

The modular decomposition of the proposed tempor-
al segmentation approach is shown in Fig. 1. The pre-
processing phase contains three steps: background
subtraction, shadow removal, and silhouette rescaling.
After pre-processing, the initial sequence is transformed
into a sequence of binary images containing human
silhouettes in bounding boxes of standard size. The
inter-frame similarity matrix computed by cross-correla-
tion is displayed as an image. This type of image
represents input data for our morphology-based ap-
proach designed for the detection and analysis of spatio-
temporal patterns corresponding to periodic human
activities. This approach represents a main contribution
of the study reported in this paper.

2.1. Pre-processing

Pre-processing is always a critical step and usually
consists of probabilistic methods for handling complex
outdoor scenes, as proposed by Stauffer and Grimson
[11]. The pre-processing approach presented in this
paper consists of a sequence of three rather simple
algorithms for background subtraction, shadow re-
moval, and silhouette normalization. This sequential
approach obtains good results for sequences acquired
with a static camera in a typical office environment.
However, the design of the main module performing the
activity detection and analysis task (see Section 2.2) is
flexible enough to accept data from any pre-processing
module performing the three previously mentioned
tasks. Therefore, the proposed temporal segmentation
approach might be generalized for the analysis of
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outdoor scenes if used in conjunction with a more
sophisticated, real-time background subtraction algo-
rithm.

2.1.1. Background subtraction

The background subtraction, also known as the
figure-ground segmentation problem, consists in classi-
fying the pixels in each frame of the sequence as
belonging to either background or foreground objects.
Since the database for this study is acquired with a static
camera in a typical indoor laboratory environment, the
assumption of a static background is valid and allows
for a reference background image to be defined.
For each frame in the sequence, the difference image

between the given frame and the reference image is
computed as follows:

Dði; jÞ ¼ jRði; jÞ � R0ði; jÞj þ jGði; jÞ � G0ði; jÞj

þ jBði; jÞ � B0ði; jÞj, ð1Þ

where R, G, B and R0, G0, B0 are the colour components
of the considered frame and of the reference image,
respectively. The difference image is then binarized
using Otsu’s automatic threshold selection method [12].
Isolated pixels in the binary image due to noise,
specularities, or to a small amount of background
motion are filtered out using a median filter of size 3� 3.
A visualization of the background subtraction step is
presented in Fig. 2.

2.1.2. Shadow removal

The shadow of a human silhouette introduces
morphological artefacts in the binary blob resulting
from background subtraction. As shown in Fig. 2d,
background subtraction does not eliminate shadows in a
real-world environment with uncontrolled lighting.
Without shadow removal, the inter-frame self-similarity
measure is sensitive with respect to variable depth,
changes in the direction of motion and environmental
lighting conditions. For these reasons, a shadow
removal technique is used in the pre-processing phase.
As shown in Horprasert et al. [13], the semi-

transparency of the shadowing phenomenon allows the
texture and colour distribution of the underlying surface
Fig. 2. Background subtraction algorithm: (a) reference image, (b) a gi
to be preserved. Therefore, the shadow of a moving
person exhibits a similar chromaticity but lower bright-
ness than the corresponding background region. While
our approach is based on this above-mentioned
observation, it is significantly different from the
technique described in [13]. Thus, we first perform
background subtraction, followed by shadow removal.
Moreover, the proposed approach is region-based and it
does not work on a pixel-by-pixel basis. Therefore, it is
more robust with respect to noise and partial occlusions.
In addition, our approach works with the HSV colour
space, which is considered to be more appropriate than
the RGB colour space used in [13] for separating
brightness from chromatic information.
A two-step shadow removal algorithm is proposed as

shown in Fig. 3. While the first step performs a partition
of the silhouette into subregions, the second step decides
which subregions correspond to shadow and shall be
removed from the foreground.
First, the foreground silhouette is partitioned into a

set of sub-regions using automatic mode identification in
the intensity histogram. Prior to peak detection, the
histogram is smoothed with a 1� 3 median filter. The
distinct modes in the histogram are automatically
separated by finding the local minima with standard
signal analysis techniques, e.g. sign changes of the first
derivatives. After partition, every subregion in the
foreground silhouette contains only pixels with their
intensity value belonging to the same histogram mode.
However, there is no pairwise correspondence between
histogram modes and silhouette subregions. Since a
moving human might cast distinct shadows on the floor
and walls, one histogram mode can be represented by
several disjoint subregions.
The second step is to determine which subregions in

the silhouette correspond to shadow. The chromaticity
analysis is performed in the Hue-Saturation-Value
(HSV) colour space. The chromatic appearance of a
given region is described with a feature vector
½mH ;sH ;mS;sS	 where mHand mSare the average values
of the hue and saturation, and sHand sS are the
standard deviations.
Since the shadow regions preserve the chromatic

appearance of the background, each subregion in the
ven frame, (c) difference image, (d) final smoothed binary image.
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Fig. 3. Outline of the shadow removal algorithm: (a) the foreground region after background subtraction; (b) normalized bi-modal intensity

histogram; (c) colour-coded foreground segmentation into several regions; (d) final binary template after shadow removal.
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silhouette is compared with its corresponding subregion
in the background reference image by computing the
Euclidian distance between the feature vectors. The
method involves a threshold which decides the accep-
table level of similarity between a subregion of the
silhouette and the corresponding background. Any
subregion exceeding this similarity level is considered
to be a shadow and it is removed from the silhouette.
Fig. 3d shows the result of the proposed shadow
removal algorithm for the silhouette in Fig. 3a. The
threshold value is not adjustable from one frame to
another and is constant for a given sequence.

2.1.3. Binary blob rescaling

Background subtraction and shadow removal result
in sequences of binary blobs describing the motion of
the human subject. The bounding box associated with
the binary blob in motion is of variable size according to
the location and posture of the subject in the field of
view of the camera. To compensate for depth changes
occurring between successive cycles of the same periodic
activity, the bounding boxes corresponding to the
binary blobs are to be rescaled to a constant size
through the entire sequence. Cutler and Davis [8] use
uniform height rescaling, based on the assumption that
the height of a moving person should be an invariant.
While this assumption works well for activities such as
walking, it fails in a more generic context, involving
activities such as arm swing, torso bending, etc. Thus,
we propose a 2D height- and width-rescaling process
using the nearest-neighbour interpolation method. Fig.
4 shows the rescaling result for a sequence of binary
images corresponding to one semi-cycle of a periodic
arm swing.
As shown in Fig. 5, the binary sequences resulting

from the preprocessing step contain a fair amount of
noise, resulting in morphological distortions of the
binary blob. These distortions are due to the limited
performance of the background subtraction and shadow
removal algorithms and to light reflections. Such
artefacts do not significantly affect the primary structure
(see Fig. 7) of the inter-frame similarity matrix for
periodic human activities.
2.2. Activity detection, description, and analysis

2.2.1. The inter-frame similarity matrix

Cutler and Davis [8] have introduced the notion of 2D
inter-frame similarity plot for the time–frequency
analysis of periodic motion. Proposing a new spatio-
temporal perspective, we redefine the previous concept
as follows. Given a sequence of N normalized binary
frames of standard height H and width W, the inter-
frame similarity matrix is ½rij 	1pi;jpN , where rij is the
cross-correlation of frames i and j. The similarity
measure between two frames i and j is defined as

rij ¼

PH
m¼1

PW
n¼1ðimn � īÞðjmn � j̄ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPH

m¼1

PW
n¼1ðimn � īÞ2ðjmn � j̄Þ2

q ,

i ¼ meanðiÞ and j ¼ meanðjÞ. ð2Þ

This similarity measure takes values from �1 to 1
according to the Cauchy–Schwarz inequality. A max-
imum value of 1 is reached only when comparing
identical frames, while the �1 value is obtained when
comparing frames where there is no overlap between the
binary silhouettes.
While cross-correlation is a standard method for

identifying similar grey-level images, it is less used for
the comparison of binary images. In our case, inter-
frame cross-correlation based on brightness information
does not yield robust results with respect to specular
effects due to the scene lighting pattern. Therefore, we
have successfully redefined the inter-frame similarity
matrix based on cross-correlation between binary
images.
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Fig. 4. One semi-cycle of a periodic arm swing.
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Fig. 6a shows a 1D cross-correlation plot for a
sequence containing four periodic activities. This plot is
computed with respect to a reference, namely the first
frame in the sequence. The peaks with values near 1
correspond to similar frames with respect to the
reference. The plot shown in Fig. 6a corresponds to
the first line of the inter-frame similarity matrix (see Fig.
6b) computed for the same sequence. The display of this
matrix maps the [�1,1] range of the correlation
coefficients towards a discrete set of 256 grey levels.
Since the main diagonal consists entirely of self-
correlation coefficients, it represents a white line for
any analysed sequence.
The inter-frame similarity matrix exhibits some

relevant properties for the analysis of a particular
category of human activities. Specifically, we are
interested in detecting periodic and symmetric activities,
where the motion performed during the first semi-
cycle is repeated in the opposite direction during the
second semi-cycle. In a cyclic symmetric activity,
consecutive frames belonging to the first semi-cycle
and similar to the reference frame (i.e. the first frame in
the row) form bright segments parallel to the main
diagonal (see Fig. 7a, center). In addition, bright
segments orthogonal to the main diagonal represent
the second semi-cycle. A periodic and symmetric activity
is represented by a zigzag pattern where the primitive is
a V shape corresponding to one cycle (see Fig. 7a, left).
As shown in Fig. 7a, the pattern associated with a
periodic activity in the inter-frame similarity matrix is
rectangular, and can be further decomposed into
elementary units.
2.2.2. Detection and analysis of patterns in the inter-

frame similarity matrix

To obtain an accurate temporal segmentation of
cyclic symmetric activities, the first goal is to isolate the
activity patterns in the inter-frame similarity matrix.
First, the bright regions are extracted by thresholding at
60% of the maximum brightness (see Fig. 7c). Numer-
ous tests performed on the similarity matrices in the
database of our study demonstrated that this empirical
threshold value preserves a sufficient amount of relevant
morphological information in the resulting binary
images. It was also found that the threshold value
depends on the speed of performing cyclic and
symmetric actions. Indeed, a pattern in the similarity
matrix corresponding to a low-speed action exhibits a
higher average brightness compared to a pattern
corresponding to a high-speed action. Experiments
demonstrated that thresholding at 60% of the maximum
brightness is effective for cyclic activities with a
fundamental period ranging from 25 to 35 frames, at a
30 fps acquisition rate.
A sequence of morphological operators is used for

pattern extraction. Thus, two iterative dilations with a
standard 5 pixel-sized cross-shaped structuring element
remove possible line disconnections due to the fixed
60% threshold. The number of iterative dilations is fixed
and it was set according to the variability in the period
of the analyzed actions (25–35 frames at 30 fps
acquisition rate).
Next, a shrinking operator based on conditional

erosion reshapes the dilated image edges into one-pixel
thin sets of linear segments without disconnecting the
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Fig. 5. Morphological distortions introduced by the pre-processing step.

A.B. Albu et al. / Real-Time Imaging 11 (2005) 219–232224
lines. Finally, image cleaning is performed by re-
moving isolated pixels. The final result of morpho-
logical processing (see Fig. 7d) contains separable
patterns corresponding to cyclic symmetric activities
respectively.
As shown in Fig. 7a, an ideal cyclic and symmetric

activity is represented by a regular pattern which can be
further decomposed into rectangular elementary closed
contours. The number of elementary closed contours is
related to the number of cycles in the activity. To extract
the activity pattern, we implement a region growing
technique which fills the spaces enclosed by the
elementary contours and produces elementary regions
(see Fig. 7e). Global patterns in a pairwise correspon-
dence to cyclic symmetric activities are obtained by
merging adjacent elementary regions. A typical example
of segmenting the inter-frame similarity matrix into
activity patterns is shown in Fig. 7f.
Once the pattern extraction phase is completed, the

amount of motion information captured within these
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Fig. 6. (a) Sequential 1D cross-correlation plot for a sequence containing four periodic activities with respect to the reference frame no.1; (b) inter-

frame similarity matrix computed for the same sequence.
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patterns is assessed. The analysis of activity patterns is
based on the following observations:
(a)
 Every cyclic and symmetric activity in the video
sequence has a corresponding pattern aligned on the
main diagonal of the inter-frame similarity matrix.
Therefore, the upper-left and lower-right corners of
the bounding box enclosing the pattern correspond
to the first and last frames of the activity,
respectively. This observation is fundamental for
the accurate temporal detection of cyclic symmetric
activities in a video sequence. Experimental results
on temporal segmentation will be presented and
discussed in the next section.
(b)
 Counting the elementary regions in the activity
pattern allows for the computation of the number of
complete cycles in the activity. As shown in Fig. 7a,
a perfect four-cycle symmetric activity is represented
by a pattern containing 24 elementary rectangular
regions. The previous statement remains true for
activities where the motion speed varies slightly from
one cycle to the next.
(c)
 Patterns not aligned on the main diagonal corre-
spond to similar activities performed at different
moments during the same sequence. Fig. 8a shows
the inter-frame similarity matrix for a sequence
where a human subject alternates two cyclic sym-
metric activities, namely arm waving and squatting.
The detected activity patterns shown in Fig. 8b form
a specific configuration. Thus, for arm waving, we
detect two main patterns aligned on the main
diagonal and two additional patterns centred at
the intersection of the Cartesian axes drawn from
the main patterns’ centres. The same reasoning
applies for the patterns associated to squatting. This
specific configuration of the activity patterns may
allow for the detection of similar activities per-
formed during the same sequence.
3. Experimental results

The database for this study contains real-world video
sequences acquired with a monocular camera in an indoor
office environment at a frame rate of 30 frames/s. The
frame size is 480� 640 pixels, while the length of the video
sequences varies between 170 and 670 frames. Our
technique was tested on two types of cyclic and symmetric
human activities: (A) controlled motion, such as swinging,
squatting, bending etc.; (B) uncontrolled, natural motion,
such as walking on quasi-linear paths with different
orientations with respect to the camera.

3.1. Temporal segmentation of sequences containing

human activities of type A

Activities belonging to type A produce clearly defined
patterns in the inter-frame similarity matrix, mainly due
to the absence of partial self-occlusion. Eight video
sequences in the database correspond to scenarios in
which one human subject performs type A activities,
such as cyclic aerobic exercises (arm swinging, arm
waving, leg bending, and combinations of arm and leg
motions) in alternation with walking or standing. Fig. 9a
contains a collection of relevant frame samples belonging
to a video sequence where four cyclic and symmetric
actions occur. The inter-frame similarity matrix corre-
sponding to this sequence is shown in Fig. 9b.
We aim at an accurate temporal extraction of the

cyclic and symmetric human activities in each input
sequence. The proposed approach successfully detected
every cyclic symmetric activity in the database, as well as
its temporal boundaries. To evaluate our temporal
segmentation approach, ground truth segmentation is
to be estimated, since there is a non-negligible inter-
observer variability in human segmentation. A statistical
estimation of the ground truth was built from ten
human segmentations, which independently marked the
activity boundaries in the database sequences. The
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Fig. 7. (a) Pattern forming in the similarity matrix; (b) similarity matrix of a sequence containing four cyclic and symmetric activities; (c) binary

image after thresholding; (d) morphological processing; (e) pattern extraction with region growing; (f) bounding boxes for patterns centred on the

main diagonal.
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distribution of human segmentations for a given
sequence is outlined as a histogram of action boundaries
versus the frame index. The histograms of action
boundaries detected by the human observers for the
sequence in Fig. 9a is shown in Fig. 10a. The left and
right histogram maxima provide a statistical ground
truth estimate for the boundaries of every detected
activity.
Next, the performance of our approach with respect

to the estimated ground truth (EGT) segmentation is
evaluated. In order to provide a quantitative evaluation
for a given automatic temporal segmentation S, a
confidence ratio is defined as follows:

Cði;SÞ ¼
NðiÞ=10 if SðiÞ ¼ true;

1� NðiÞ=10 otherwise;

(
(3)

where S(i) is true if and only if frame i is detected by the
evaluated automatic segmentation S as part of the
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activity, N(i) is the number of human observers that
have also detected frame i as belonging to the activity.
The normalization coefficient is set to 10 since 10

human manual segmentations were used in the estima-
tion. The confidence ratio C takes values in the interval
[0, 1]. Low values of C(i, S) mean that few observers
have made the same decision for frame i as S.
Conversely, high values of C(i, S) mean that the
majority of observers agree with S. The previously
defined evaluation measure allows for comparing the
automatic segmentation performed by the proposed
algorithm with the EGT segmentation. Fig. 10b shows
the plot of the confidence ratio corresponding to the
four activities shown in Fig. 9a.
Since the confidence ratio C performs a frame-by-

frame evaluation, it conveys interesting information
about local errors and about the global robustness of the
segmentation as well. Thus, for both considered
Fig. 9. (a) Relevant frame samples in a sequence containing four cyclic and s

torso bending; (b) inter-frame similarity matrix for the sequence.

Fig. 8. (a) Inter-frame similarity matrix for a sequence containing two

cyclic symmetric activities (arm waving and squatting) performed in

alternation. (b) Pattern configuration: squatting patterns are in blue,

while arm waving patterns are in pink. Centres of some squatting

patterns are shown in yellow. Yellow curves show the relationship

between the centres on the main diagonal and those found elsewhere in

the image.
segmentations (automatic and EGT), there are transi-
tory phases at the beginning and the end of each action.
Since the transitory phases are highly similar for both
segmentations in the case of every considered action (see
Fig. 10b), one may conclude that our algorithm yields
an excellent performance for the segmentation of cyclic
and symmetric human activities. More results for the
evaluation of the proposed method are summarized in
Table 1.
The performance evaluation over the experimental

database leads to the following conclusions:
(a)
ymm
The global average boundary detection error is 4.76
frames, which is rather encouraging at a 30 frames/s
rate;
(b)
 Maximal errors (14 frames) were obtained for
activities finishing with an incomplete cycle. While
the human visual system is able to accurately detect
an activity where the last cycle is incomplete, our
algorithm does not consider an incomplete cycle as
part of the activity.
3.2. Temporal segmentation of walking sequences

(activities of type B)

Sequences containing uncontrolled, natural human
activities (type B) are also present in the experimental
database for this study. This paper reports the results
obtained from the analysis of two such typical
sequences, where human subjects walk along a piecewise
linear trajectory path. Each sequence contains a
different human subject following approximately the
same trajectory, and inter-subject variability did not
affect the performance of the temporal segmentation
approach in a significant manner.
etric activities: (1) arm waving; (2) arm rotation; (3) leg flexing; (4)
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Fig. 10. (a) Histograms of the human boundary detections (i is the frame index) for the activities shown in Fig. 9a; (b) confidence ratio versus frame

index for automatic and EGT segmentations ( (green) ¼ confounded auto and EGT; (red) ¼ EGT; (blue) ¼ auto).
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The trajectory is comprised of the following segments:
(a) perpendicular motion to the camera axis from right
to left; (b) the subject moves towards the camera at a 451
angle; (c) perpendicular motion to the camera axis, from
right to left; (d) the subject moves away from the camera
at a 451 angle; (e) the subject walks towards the camera
along the camera axis. The choice of this particular
trajectory enables us to identify different walking
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patterns with respect to the changing point of view and
distance to the camera. Due to self-occlusion and
artefacts in the pre-processing phase, the walking
direction plays a central role in the description of the
motion pattern. Fig. 11 contains relevant frame
samples corresponding to each linear segment of the
trajectory.
The analysis of the inter-frame similarity matrix of the

walking sequences led to somehow surprising results
with respect to previous work on this topic [5]. Indeed,
the walking pattern is cyclic and symmetric only when
the person is approaching the camera along the camera
axis. Several possible explanations are following:
(a)
Tab

Com

Acti

Wav

Wav

Wav

Wav

Arm

Wav

Squa

Squa

One

Leg

Late

Hea

Upf

Left

Righ
In previous studies [8], the walking pattern was
acquired and analysed using a treadmill. Natural
walking is obviously different from treadmill walk-
le 1

parison of the automatic activity segmentation with the corresponding EGT

vity EGT boundaries start frame-end

frame (no. of sequence)

ing-1 14–92 (1)

ing-2 4–114 (2)

ing-3 3–94 (3)

ing-4 9–81 (4)

swing 93–165 (1)

ing and leg lifting 7–77 (5)

t-1 10–270 (6)

t-2 126–235 (2)

leg flexing 170–244 (1)

splitting 147–218 (8)

ral head rotation 5–97 (7)

d bending 123–229 (7)

ront torso bending 244–376 (1)

side torso bending 135–220 (6)

t side torso bending 270–344 (6)

Fig. 11. (a)–(e) Key-frames from a walking sequenc
ing, since the speed is not controlled by the motor
that provides constant power to the drive belt.
(b)
 The amount of self-occlusion depends on the
walking direction. Due to self-occlusion, walking
at a 451 angle with respect to the camera (see
Fig. 11b,d) is a cyclic, but not a symmetric motion.
(c)
 Self-occlusion is symmetric for a person walking
perpendicular to the camera axis (see Fig. 11a,c),
and therefore it does not interfere with the symmetry
of the walking cycle. However, a symmetric
pattern was not obtained for this direction. The
main reason for this result is the continuously
changing angle between the camera axis and the
walking subject.
Fig. 12 illustrates the acquisition set-up as well as the
maximum angle variation for the perpendicular walking
segmentation

Automated boundary detection Overlap error (in

frames)

14–92 0

6–113 2

6–94 3

9–81 0

94–161 4

9–76 2

10–269 1

125–234 1

168–245 2

148–218 1

18–87 13

137–220 14

248–372 4

134–217 3

271–339 5

e along a piecewise linear trajectory.
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direction in Fig. 11a. Since the relative angle variation is
Da ¼ 
19:63%, the initial assumption of a linear
walking trajectory is not perfectly verified and therefore
the motion pattern is not symmetric. For the third part
of the piecewise linear trajectory shown in Fig. 11c, the
relative angle variation is even stronger.
The only cyclic and symmetric pattern detected in the

two analysed walking sequences corresponds to the
frontal walking towards the camera (see Fig. 11e). This
result is coherent with the human perception of frontal
walking, since there is no self-occlusion in this view, and
the walking cycle is symmetric with respect to the
alternate limb motion. The detection process of the
rectangular pattern corresponding to the frontal walk-
ing is detailed in Fig. 13.
The spatio-temporal pattern corresponding to the

frontal walking was detected with high accuracy, as
shown in Table 2 containing the validation of the
automatic segmentation with respect to the EGT
segmentation. The EGT segmentation was computed
from ten human manual segmentations using the same
protocol as in Section 3.1.
3.3. Computation speed

The proposed approach for temporal segmentation
was implemented on a 2.66GHz Pentium IV personal
computer with 1024MB RAM. The total time required
for the temporal segmentation of each sequence in the
experimental database is shown in Table 3.
The frame size after normalization is uniquely

determined for every sequence, since the normalized
size of the bounding box is chosen to be the size of the
bounding box in the first frame of the given sequence.
Thus, the computation time depends both on the length
Fig. 12. The geometry of the acquisition set-up. Angle measures for

extreme positions of the subject walking perpendicular to the camera

axis.
of the sequence and on the normalized frame size. Most
of the computation time is spent on the generation of the
inter-frame similarity matrix. Ongoing work focuses on
algorithmic optimization, as well as on the implementa-
tion of a fixed-size (300 frames) sliding temporal window
which will allow the real-time implementation of our
approach. After optimization, a five- to ten-fold
reduction is expected in the maximal computation time,
which will result in a reasonable delay in the response of
a real-time system.
4. Conclusions and future work

This paper deals with segmenting cyclic symmetric
human actions from continuous real-world indoor video
sequences acquired with a static camera. Specifically, we
perform the accurate detection of temporal boundaries
for activities such as aerobic exercises and frontal
walking. We redefine the concept of inter-frame
similarity matrix introduced in [8] and propose a new
morphology-based method for extracting relevant mo-
tion information from this spatio-temporal template.
We have tested our approach on a variety of periodic
and cyclic human activities, and provided robust
statistical ground truth estimation for the validation of
our results. The quantitative evaluation of the proposed
approach is based on a new measure, called the
confidence ratio, which allows for a precise performance
assessment. This confidence ratio will be appropriate for
future comparisons of our approach with other tempor-
al segmentation methods.
Ongoing work in our project deals with implementing

the concept of inter-frame similarity matrix in real-time.
Specifically, we are testing a sliding window of a given
frame length to detect any cyclic and symmetric human
activities that have just occurred during the currently
analysed video sequence. Moreover, we are searching
for ways to relax the symmetry constraint, which will
allow the analysis of walking or running from several
views.
Our research group is also currently working on the

integration of robust background subtraction and
shadow removal techniques based on Gaussian Mixture
Models [14] with our proposed temporal segmentation
method.
One of the main practical contributions of our

approach is the accurate detection of frontal walking.
The extraction of the spatio-temporal pattern corre-
sponding to a human subject walking towards the
camera may be embedded in real-time surveillance
applications. Since face detection is feasible in this
particular view, the real-time detection of frontal
walking may be used as a trigger for a face identification
system.
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Fig. 13. (a) Inter-frame similarity matrix for the sequence shown in Fig. 11; (b) binary result of thresholding; (c) morphological processing and region

growing; (d) red bounding box for the extracted pattern.

Table 2

Comparison of the automatic activity segmentation with the corresponding EGT segmentation

Activity EGT boundaries start frame–end frame Automatic boundary detection Overlap error (in frames)

Walking sequences

Frontal walking-1 552–660 553–660 1

Frontal walking-2 530–644 533–644 3

Table 3

Computation time for the sequences in the experimental database

Sequence no. (type) Total number of frames Frame size after normalization Computation time (s)

1. (A) 174 73� 177 5.92

2. (A) 105 77� 184 2.27

3. (A) 444 75� 217 45.12

4. (A) 227 79� 246 13.54

5. (A) 273 38� 114 7.84

6. (A) 360 67� 192 25.53

7. (A) 237 216� 187 25.97

8. (A) 311 105� 299 37.38

9. (B) 511 40� 149 34.97

10. (B) 471 68� 160 38.55
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