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ABSTRACT

The Infrared Nondestructive Testing (IRNT) methods based on thermal contrast are strongly affected by non-
uniform heating at the surface. Hence, the results obtained from these methods considerably depend on the
chosen reference point. One of these methods is Artificial Neural Networks (ANN) that uses thermal contrast
curves as input data for training and test in order to detect and estimate defect depth.

The Differential Absolute Contrast (DAC) has been successfully used as an alternative thermal contrast to
eliminate the need of a reference point by defining the thermal contrast with respect to an ideal sound area.
The DAC technique has been proven effective to inspect materials at early times since it is based on the 1D
solution of the Fourier equation. A modified DAC version using thermal quadrupoles explicitly includes the
sample thickness in the solution, extending in this way the range of validity when the heat front approaches the
sample rear face.

We propose to use ANN to detect and quantify defects in composite materials using data extracted from the
modified DAC with thermal quadrupoles in order to decrease the non-uniform heating and plate shape impact
on the inspection.

Keywords: Artificial Neural Networks, Reference-free thermal contrast, Infrared nondestructive testing, Ther-
mal quadrupoles

1. INTRODUCTION

Infrared nondestructive testing (IRNT) is a technique in which the specimen surface is thermally stimulated to
produce a temperature difference between sound (free of defects) areas and eventual defective regions. It is well
known that thermal contrast-based quantification methods are strongly affected by the non-uniform heating, the
sample shape and the chosen sound area.

In previous works, Artificial Neural Networks (ANN) were used for defect detection and quantification.
Different kinds of data have been proposed to train and test the ANN, for instances: raw temperature and
time derivatives,1, 2 TSR (Thermal Signal Reconstruction) polynomial fitting coefficients,3 phase and phase
contrast4, 5 and thermal contrast.6–8 The thermal contrast approach allows evaluating defect visibility and
enhancing image quality. However, the ANN defect detection and quantification is strongly affected by the
selected reference sound area.

The differentiated absolute contrast (DAC) method was developed to perform a more convenient computation
of the sound area temperature through the 1D solution of the Fourier equation for homogeneous and semi-infinite
materials stimulated with a heat Dirac pulse9, 10 described by Eq.1:

∆TDAC = T (t) −
√

t′

t
T (t′) (1)
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where T is temperature, t′ is a given value of time t ranging between the time of flash pulse and the time
at which the first defect becomes visible. This model does not include the sample thickness therefore the DAC
accuracy decreases for long times after heating when the heat front reaches the sample face opposite to irradiation.
In addition, strictly speaking, this approach is only valid for the case of shallow defects and/or thick samples. A
modified DAC version in which the sample thickness is explicitly introduced by using the thermal quadrupoles
theory allows the extension of the range of validity.

This paper shows the application of ANN for the detection and characterization of defects in composite
samples affected by non-uniform heating or with complex shape. The training and validation data are theoretical
and experimental thermal curves processed with the improved DAC version.

The rest of the paper is organized as follows: Section 2 describes the modified DAC deduction by using
thermal quadrupoles. Section 3 presents the training and validation of the neural system with synthetical and
experimental data.

2. MODIFIED DAC VERSION DEFINITION

Heat Dirac
Pulse

Qδ(t)(J/m2)

L

Front face

Rear face
x

0

Figure 1. Limited thickness plate excited with a heat Dirac pulse

Figure 1 shows a plate with thickness L(m) whose front face (x = 0) is excited with a heat Dirac pulse with
energy density Q(J/m2) while its rear face (x = L) is thermically isolated.

The temperature Θ in Laplace domain on its front face is given by Equation (2)11

Θ =
Q

b

coth
√

pL2

α√
p

(2)

where b is thermal effusivity, α is thermal diffusivity and p is the Laplace variable.
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Now the modified DAC deduction will be explained. The temperature in the time domain at times t and t′

can be found by using the inverse Laplace transform12:

T (t) =
Q

b
L−1

⎡
⎣coth

√
pL2

α√
p

⎤
⎦

∣∣∣∣∣
t

(3)

T (t′) =
Q

b
L−1

⎡
⎣coth

√
pL2

α√
p

⎤
⎦

∣∣∣∣∣
t′

(4)

From Eq.4 we can derive that

Q

b
=

T (t′)

L−1

[
coth

√
pL2

α√
p

] ∣∣∣∣∣
t′

(5)

Replacing Eq. 5 in Eq. 3 we get:

T (t)
T (t′)

=

L−1

[
coth

√
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p
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] ∣∣∣∣∣
t′

(6)

∆TDACcorr = T (t) −
L−1

[
coth
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p
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] ∣∣∣∣∣
t′

T (t′) (7)

The corrected DAC in Eq. 7 explicitly contains the specimen thickness L and does not depend on the energy
density Q. In this section we explained the methodology to deduce the corrected DAC, the next section shows
the procedure followed to train and validate the neural networks in order to estimate defect depth in composite
samples affected by non-uniform heating and with complex shapes.

3. VALIDATION WITH SYNTHETIC AND EXPERIMENTAL DATA

Modified DAC data curves obtained from synthetic and experimental temperature curves will be used in this
section for training and validation of ANN. ANN are known by their ability to perform a non linear mapping
between two sets of variables,13 their low sensitivity to noise and capabilities for learning and generalization.14, 15

In this study we are only interested in multi-layer perceptron networks (MLP) which are supervised networks.
The MLP network is trained using the back propagation (Levenberg-Marquardt optimization) algorithm which
is probably the most used learning algorithm used in the recent years.
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Figure 2. Defect distribution on CFRP sample
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Figure 3. Modified DAC curves for defects A,B,C,D and E with depths 0.2,0.4,0.6,0.8 and 1.0 mm

3.1. Synthetic data

Simulated carbon fiber reinforced plastic (CFRP) samples with air delaminations were designed using Ther-
moCalc6L software from Innovations Inc16 in order to generate the synthetic temperature curves. The plate
has a thickness of 2 mm and lateral dimensions (L1 and L2) of 100 mm. There are two sizes of defects whose
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dimensions are 8 mm x 8 mm x 0.1 mm (A,D,E) and 16 mm x 16 mm x 0.1 mm (B,C). Figure 2 shows the defect
distribution on CFRP plate and Figure 3 presents the curves of the modified DAC on the center of every defect.

After several tests we settled for a 30 x 5 x 6 defect depth estimator network. This was trained with 1200
input-output pairs. In this training set 600 curves correspond to defective pixels and 600 curves to sound pixels.
The defects depths used for training ranges from 0.1 to 1.5 mm in increments of 0.1 mm so that every defect depth
is represented by 40 modified DAC curves. This training set was generated using every point in the modified
DAC curves as means of 40 normal probabilistic distributions with σ = 0.025, this value of σ was estimated
according to the procedure described in Ref. 17 to characterize IR camera noise standard deviation. In this case
the characterized camera is a Santa Barbara FPA which is used for the acquisition of the experimental data.
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Figure 4. Non uniform heating pattern applied to the validation samples
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Figure 5. (a) Result of ANN for defects (A,B,C,D,E) at depths (a) 1.5, 1.4, 1.3, 1.2, 1.1 mm (b) 1.0, 0.9, 0.8, 0.7 0.6
mm

Figure 5 shows the validation results of the trained ANN with 2 CFRP plates affected by non-uniform heating
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as indicated in Figure 4 by the surface of the first thermogram after heating. It is observed that the highest
error are presented at defect edges, this is due to the fact that thermal contrast in the pixels at defect edges is
low compare to those at the defect center therefore these pixels have a highest probability of being erroneuosly
classified by the network. However, in spite of the uneven heating the network was able to detect the defects in
every sample although it was not able to estimate its depth properly.

3.2. Experimental data

To generate training data twelve (12) experiments were carried out on a sample with 25 defects so that every
defect had twelve observations producing 300 curves from defective pixels and 300 from sound pixels to complete
600 observations for the training set. These experiments were performed using two photographic flashes (Balcar
FX 60, 6.4 kJ), with a 5 ms pulse as the excitation source. All the thermogram sequences were recorded using
a FPA infrared camera (Santa Barbara Focalplane SBF125, 3 to 5 µ m), with a 320 x 256 pixel array. The
specimens used for network training and validation are made of CFRP. The training specimen is planar as shown
in Figure 6 and the validation specimen has curved shapes as illustrated in Figure 7. In each CFRP specimen,
twenty-five (25) square TeflonTM insertions of different sizes were placed between plies at different locations as
indicated. The thickness for each specimen is 2 mm.
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Figure 6. Configuration of training CFRP sample

Figures 8 and 9 present the corrected DAC curves for inserts with diameter D = 15 mm in the training and
validation sample. For defect characterization in this case two neural networks were used. The first stage is used
to detect the defects and the second stage is used to estimate the depth of those pixels classified as defective by
the detector network. After several tests we settled for a 33 x 10 x 1 defect detection network and for 33 x 5 x
6 defect depth estimation network. Figure 10(a) shows the real defect map of the validation sample and 10(b)
presents the defect depth map estimated by the neural system after applying a 2D median filter with kernel size
4 x 4. In both cases the color scale represents the defect depth. The neural system correctly classified the 98
% of the non defective pixels and the 76% of the defective pixels. It is important to note that in spite of the
curved shape of the validation sample the neural sytem detected the defects with depth 0.8 mm. However, this
was not the case for the defects with 1 mm of depth since the thermal contrast curves for this depth resembles
the thermal contrast curves of the sound pixels.

4. CONCLUSIONS

ANN were trained with reference-free thermal contrast curves and tested with composite materials in order to
carry out depth estimation of ribbon like delaminations in CFRP. The advantage of this approach is that the
difference between sound and defective areas is enhanced and that the need of selecting a non defective area
is eliminated. Here ANN essentially perform a classification of the input patterns, which are modified DAC
profiles of the pixels in the thermographic image sequence. For the experimental data the classification is done
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Figure 8. Modified DAC curves for the five largest defects at different depths (15 mm in lateral size) in training sample

in a two step approach, first the defective pixels are detected and then they are classified in one of the possible
depths. This combined approach allows the reduction of false defect detection since every network is specialized
in a different type of data set. On the other hand, synthetical and experimental data showed that non-uniform
heating and complex shape have little impact on depth inversion results.

Finally, the disadvantage of using ANN in IRNDT is that it requires at least a specimen with a set of known
defects to provide the information required for the ANN training and it can then be only used with the same
material and acquisition system.
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Figure 9. Modified DAC curves for the five largest defects at different depths (15 mm in lateral size) in validation sample
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Figure 10. Defect depth map: (a)Real (b)Estimated
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