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Abstract
This paper studies the analytical solution of three-dimensional thermal
conduction in an anisotropic medium containing one or several plane flaws.
This problem is typical of one or several delaminations within a composite
material. The method proposed here consists in applying a Laplace transform
on the time variable followed by a Fourier integral transform on space variables
(Cartesian geometry). The numerical or semi-analytical true solutions for the
integral equations generated by this problem may be very time consuming,
especially in a three-dimensional configuration. Therefore, we suggest a
modelling reduction using a first order analytical perturbation method, which is
subsequently improved by applying Padé’s approximant approach. The latter
formalism leads to a better tracking of the true solution and increases the validity
field of the perturbed approximation.

1. Introduction

In recent years, the study of laminated composites has been of great interest in applied science
and engineering owing to their widespread use in various industrial fields (aerospace, nuclear,
microelectronics, etc). The complex processes used in the manufacture of such materials,
increase the risk of flaw appearance, whose consequences may be crucial under service
conditions. In most cases, the control has to be nondestructive in order to allow inspection
during the different stages of the part’s life. For quality control purposes, methods based
on heat transfer may be very effective [1]. Stimulated infrared thermography is one of the
alternatives that may be applied for flaw detection. In this technique, the composite slab is
radiated by a uniform heat pulse on one face while the transient temperature, either on the same
face or on the opposite one, is recorded using an infrared camera. The temperature difference,
between the pixel of interest on the infrared frame and on a reference area considered to be
sound on the same frame, represents a signature of the subsurface flaw. It is this signal, usually
called the contrast thermogram, which is commonly used to detect and quantify the flaw.
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The discontinuity characterization is carried out using the contrast as an input to an inverse
algorithm. To accurately identify the features of the discontinuity, three stages have to be
considered. The first step is to develop a forward model describing the contrast field evolution
in a mathematical formalism as accurately, simply and rapidly as possible. The following step
is to conceive a measurement procedure which outputs the most correct and less noisy signal.
The last step is to develop an inverse problem that estimates the unknown parameters in such
a way that the deviation between the experimental data and the forward problem is minimized
[2–4]. In this work, we focus only on the forward modelling of heat transfer through a two-
dimensional plane flaw. Inverse procedures are not considered here. Interested readers are
referred to reference [5] where a typical inverse treatment based on similar solutions has been
dealt with.

The simulation of heat transfer in a material containing a discontinuity of finite size
requires either a numerical approach [6–7], a semi-analytical approach [8–10] or an analytical
approach [5, 9–16]. This problem is particularly difficult to solve by numerical means since
it requires a very high density mesh near the front face and the vicinity of the discontinuity
where thermal gradients are expected to be high. Furthermore, analytical modelling may be
very effective not only in calculation time but also in identifying the discontinuity parameters
and analysing their influence on the thermal contrast.

This work emphasizes the use of a modified perturbation method to simulate the forward
problem. The perturbation approach is based on an asymptotic expansion of the physical
field (temperature or heat flux) versus a small parameter intervening in the model [17–19].
The approach has already been used to simulate heat diffusion through a one-dimensional
flaw providing the assumption of weak thermal resistance Rc (the small parameter) [5, 9–10].
When the resistance is high, a large number of terms of the expansion series are needed
for the convergence and the algorithm becomes as slow as the numerical methods. To keep
its fast calculation advantage, we suggest carrying out the perturbation expansion only up
to its first order and afterwards enhance the solution using Padé’s approximants [20, 21].
The results are simple, and valid even for high resistances. An extension of the solution to
describe the heat transfer through several superimposed flaws (e.g. a multi-delamination in an
impacted composite [9, 14]) or through a continuously non-uniform resistance Rc(x, y) (e.g.
a non-uniform adhesive film between two plates [9, 11, 12, 15]) is also presented.

In the second part of this work, we apply the perturbation method to a flaw whose thermal
resistance is very high. Now, the small parameter is the conductance (1/Rc). Following the
same methodology as the one for small resistances, we developed a simple solution which is
valid for any value of the thermal resistance and also equivalent to the solution found for small
resistances.

2. Formulation of the problem using quadrupoles

The case of a rectangular (L × l) flat slab of thickness e that contains a resistive flaw of finite
width a and finite length b, with a uniform contact resistance Rc on its whole area, is typical
of a delamination in a composite stratified material (figure 1). It is assumed that the thermal
excitation of the slab is a Dirac heat pulse characterized by a uniform absorbed energy by unit
area Q (at time t = 0) on the front face (z = 0). The slab is insulated from the outside and
the material temperature is zero before excitation. Since only the face temperatures are of
interest, the quadrupole technique is the easiest formalism to be implemented [10, 16]. The
concept is to apply a Laplace transform on the time variable and a Fourier transform (Cartesian
geometry) on the space variables [22–25]. Heat transfer modelling of multi-layer materials is
then reduced to a simple multiplication of matrices in the transformed domain.
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e1

Resistive flaw

Figure 1. Geometric sketch of a finite extent flaw within an anisotropic material: e1 = flaw depth;
e = total thickness; a = flaw length; b = flaw width; L = specimen length; l = specimen width;
z = direction of the heating radiation; x1, x2, y1, y2 = flaw border coordinates.

The Laplace transform τ(x, y, z, p) (Laplace variable p) of temperature T (x, y, z, t) in
the specimen is the solution of the following set of equations
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s(x, y) = 1 if (x, y) ∈ {[x1, x2] × [y1, y2]} and s(x, y) = 0 elsewhere; superscripts sup and
inf relate to the upper and lower side of the flaw.
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The analysis can be simultaneously performed for both isotropic and anisotropic (provided
that the slab faces are parallel to the principle directions of anisotropy) materials by using the
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ψ is the Laplace transform of the z component of the heat flux density ϕ(= −λz∂T /∂z). In
the remaining text the asterisk superscript will be omitted for simplicity reasons. The partial
differential equation (1a) then becomes

∂2τ

∂z2
+

∂2τ

∂x2
+

∂2τ

∂y2
− pτ = 0 (2)

Applying the Fourier transform to the function τ(x, y, z, p) and based on the lateral boundary
conditions [9], a cosine type is used:

θ(α, β, z, p) =
∫ L

0

∫ l

0
τ(x, y, z, p) cos(αx) cos(βy) dx dy (3)

The boundary conditions on the opposite faces, x = L and x = l, determine the discrete values
allowed for the space frequencies: αj = jπ/L, βk = kπ/l; where j and k are non-negative
integers.

Using equation (3) and the lateral boundary conditions, the heat equation (2) yields

∂2θ

∂z2
− (p + α2 + β2)θ = 0 (4)

If 
 is the Fourier transform of the Laplace heat flux density �, which is unity at z = 0 and
zero at z = 1 (equations (1d) and (1g)), we obtain

z = 0 → 
(α, β, 0, p) = sin(αL)

α

sin(βl)

β
(5)

z = 1 → 
(α, β, 1, p) = 0 (6)

The solution of equation (7) has the following form:

θ = F cosh(uz) + G sinh(uz) u =
√

p + α2 + β2 (7)

If the arguments other than z are omitted in the Laplace–Fourier transforms θ and 
, this
equation leads to a linear relationship between the two quantities on the front (z = 0) and rear
(z = 1) faces:

θ(0) = A θ(1) + B 
(1) (8a)


(0) = C θ(1) + D 
(1) (8b)

Boundary conditions (1d)–(1g) can be rewritten under the following matrix forms commonly
called quadrupoles [10, 16]:

 θ(0)

sin(αL)

α

sin(βl)

β


 =

[
A1 B1

C1 D1

] [
θ sup


(e1)

]
(9a)

[
θ sup


(e1)

]
=

[
θ inf + RcI


(e1)

]
(9b)

[
θ inf


(e1)

]
=

[
A2 B2

C2 D2

] [
θ(1)

0

]
(9c)

where

I =
∫ x2

x1

∫ y2

y1

ψ(x, y, e1, p) cos(αx) cos(βy) dx dy (9d)

Ai = Di = cosh(uei), Bi = (1/u) sinh(uei), Ci = u sinh(uei) for i = 1, 2; e1 and e2 are the
thicknesses of the two layers of the specimen.

A true solution of equations (9) can be found if the heat flux at the interface 
(e1) is known.
Fourier components of the latter are obtained by solving a linear set of equations. This set is
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generated by substituting the Laplace heat flux �(e1) in the integral I of equation (9d) by the
inverse Fourier series allowing its calculation from a given 
(e1). Details on this procedure as
well as illustration examples in a two-dimensional geometry can be found elsewhere [9, 10]. In
some cases, this method may be CPU intensive to converge, particularly in a three-dimensional
analysis. As an economic alternative, in the next paragraph, we present a more rapid method
to solve the same problem, namely, the perturbation method [17–19].

3. Formulation of the problem using perturbations

The perturbation method consists in writing asymptotic series expansions of the variables θ and

 with respect to a small parameter in the model. These series expansions are then introduced
into equations (9) and a term-by-term identification of the coefficients of the successive powers
of the small parameter leads to a coupled series of linear sets. These sets allow the calculation
of the different components θi and 
I . In the following sections, we will focus on the cases
where the thermal resistance of the flaw is very small and very high, respectively.

3.1. Flaw of small resistance

The asymptotic series expansions with respect to the small parameter Rc that will be denoted
ε (for clarity reasons) from now on are

θ(α, β, z, p) =
∞∑
i=0

θi(α, β, z, p)εi (10a)


(α, β, z, p) =
∞∑
i=0


i(α, β, z, p)εi (10b)

Term by term identification of the coefficients of εn leads to the following quadrupole equations.

3.1.1. ε0 order identification. For zero order, equations (9) result in
 θ0(0)
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α

sin(βl)

β


 =
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C1 D1
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C2 D2

] [
θ0(1)

0

]
(11)

This zero order term represents the one-dimensional heat transfer within a flawless plate. As
we will further see, the perturbation analysis requires that the zero order Laplace flux be
known within the flawless plate at the flaw depth. Therefore, the zero order Laplace flux can
be extracted from equation (11):

ψ0(e1) = sinh(
√

pe2)

sinh(
√

p)
(12)

3.1.2. ε1 order identification. For ε1 order, equations (9) yield[
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0

]
=
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C1 D1

] [
θ
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]
(13a)
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1(e1)

]
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[
θ inf

1 + I0


1(e1)

]
(13b)

[
θ inf

1


1(e1)

]
=

[
A2 B2

C2 D2

] [
θ1(1)

0

]
(13c)
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I0 has the same definition as I in equation (9d), just replacing � by �0. Substitution of �0

defined by equation (12), into this definition allows the calculation of integral I0 and therefore
the solution of set (13). The first order temperature on the rear face is given by

θ1(1) = − 4

αβ
K

sinh(ue1) sinh(
√

pe2)

sinh(
√

p) sinh(u)
(14)

where K = sin(αx/2) cos(α�x/2) sin(βx/2) cos(β�x/2), q = q2 − q1; �q = q1 + q2,
for q = (x, y).

The front face temperature can be calculated in the same way [5, 9]. The product
equation (14) and ε represents the Laplace–Fourier transform, θ = εθ1, of the contrast T .
The return to the original (t, x, y) domain can be achieved numerically by using Fast Fourier
Transform (FFT) and Stehfest [26] algorithms. The analytical formula (14) is very simple
even in this three-dimensional transient heat transfer situation. Simulations have been carried
out to assess the effectiveness of this model. For the sake of clarity, only two-dimensional
calculations have been performed. Figure 2 shows a comparison between the true contrast
and the perturbed one at three different times for a small resistance Rc = 0.01. The perturbed
contrast profiles are in excellent agreement with the true ones. However, for higher resistances
(Rc = 0.5) the approximation is not adequate, confirming the restriction of the model to weak
flaws (figure 3). Moreover, one can immediately realize that θ is linear in ε, which means
that for small ε the contrasts produced by two discontinuities, for example, of resistances
ε1 and ε2 located at distinct depths with different lateral extents (i.e. a multi-delamination
in an impacted composite [9, 14]), simply add up. Nevertheless, this is not the case for the
temperature. Indeed, this can be inferred from the Laplace temperature for two superimposed
flaws:

τ(x, y, 1, p) = cosh(
√

p)√
p sinh(

√
p)

{1 + ε1f1 + ε2f2} + O(ε) (15)
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Figure 2. Comparison between the true model and the first order perturbed solution. The
perturbation parameter is the thermal resistance, ε = Rc. Simulation parameters are ε = 0.01,
a = 4, b = ∞, e1 = 0.5, L = 20, l = ∞. The shown profiles correspond to three normalized
times t = 0.1, 0.3 and 0.5.
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Figure 3. Comparison between the true model and the first order perturbed solution. The
perturbation parameter is the thermal resistance, ε = Rc. Same parameter values as for figure 2
except that now ε = 0.5.

where fm(x, y, 1, p) is the inverse Fourier transform of θ1(1) multiplied by
√

p sinh(
√

p).
The fm function is written using the location parameters of the flaw number m (m = 1, 2).

We note here that equation (15) can also be written by substituting, on its right hand-side,
the term between braces by its [0, 1] Padé’s approximant, namely {1 − ε1f1 − ε2f2}−1. The
[N, M] Padé’s approximant of a series S(ε) = ∑∞

n=0 cnε
n is the rational fraction in ε, with a

numerator of degree N and a denominator of degree M , such that its expansion into a Taylor’s
series coincides with the series S(ε) [21]. The use of Padé’s approximant has the advantage of
‘sticking’ the solution to the true model for larger εm while being equivalent to equation (15) for
small values of these parameters. Figure 4 illustrates how this correction reduces the deviation
seen previously in figure 3 for high resistances (Rc = 0.5) between the true and perturbed
models. For small values (Rc = 0.01), there is no difference between the true model and the
Padé’s approximant.

Another distinctive application of the contrast superposition property is the case of
several flaws of very small sizes (dx dy) located at the same depth e1. This can simulate a
discontinuity of any shape, i.e. like a non-uniform adhesive layer. The coefficient K appearing
in equation (14) is in this case given by

K = αβ

4
cos(αx) cos(βy) dx dy (16)

Substitution of K into the equation leading to the resulting contrast yields

θ(α, β, 1, p) =
∫ L

0

∫ l

0
ε(x, y)

sinh(ue1) sinh(
√

pe2)

sinh(
√

p) sinh(u)
cos(αx) cos(βy) dx dy

= ρ(α, β)
sinh(ue1) sinh(

√
pe2)

sinh(
√

p) sinh(u)
(17)

where ρ(αβ) is the cosine spectrum of the contact resistance ε(x, y). Equation (17) has been
confirmed with a more general two-dimensional model valid for any value of a continuously
non-uniform resistance Rc(x) [9, 11–13, 15].
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Figure 4. Comparison between the true model and the first order perturbed solution improved using
Padé’s approximant approach. The perturbation parameter is still the thermal resistance ε = Rc.
Same parameter values as for figure 3.

3.2. Flaw of high resistance

The small parameter this time is the inverse of the contact resistance:

η = 1

Rc
(18)

The new expansion series with respect to η are:

θ(α, β, z, p) =
∞∑
i=0

θi(α, β, z, p)ηi (19)


(α, β, z, p) =
∞∑
i=0


i(α, β, z, p)ηi (20)

Introducing the new parameter η, the interface condition can be expressed in the Laplace
domain as follows:

• temperature jump above the flaw,

η(τ sup − τ inf) = ψ(e1) (21)

• same temperature outside the flaw,

τ sup = τ inf (22)

On the other hand, quadrupole equations (9a) and (9c) which describe heat diffusion in the
upper and lower layers, keep the same structure. Hence, the formulation of the successive
terms of the perturbation can be done the same way as for low resistances.

3.2.1. η0 order identification. The perturbation of the interface condition leads to

• the first order heat flux is zero above the flaw, ψ0(e1) = 0
• same temperature outside the flaw, τ

sup
0 = τ inf

0 .
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This is the typical case of a homogeneous material containing a flaw of infinite resistance
value. To solve the problem, we may assume that the heat flux is piecewise constantly
distributed. The flux is zero above the flaw and is approximated by the flux in a flawless
material elsewhere. This does not correspond to reality since at the flaw’s edge, the interface
flux is infinite and farther from it, it catches up to the level of a sound material. In spite of this,
the η0 order solution is determined taking into account this approximation, by adding up two
new simpler problems:

(a) A sound medium subjected to a Dirac heat pulse
 θ0s(0)

sin(αL)

α

sin(βl)

β


 =

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

] [
θ0s(1)

0

]
(23)

The rear face temperature of the sound material is calculated as

θ0s(1) = 1

u sinh(u)

sin(αL)

α

sin(βl)

β
(24)

where the subscript ‘s’ indicates the sound specimen.
(b) A source of heat flux set at the interface cancels the flux generated in a sound material

above the flaw and keeps it unchanged elsewhere:

ψ0s(e1) = − sinh(
√

pe2)

sinh(
√

p)
above the flaw(area �af) (25)

ψ0s(e1) = 0 outside the flaw (area �of) (26)

Two fully independent quadrupole relationships are thus obtained for the upper and lower
layer:

[
θ0h(0)

0

]
=

[
A1 B1

C1 D1

] 
 θ

sup
0h∫ ∫

�af

�0s(e1) cos(αx) cos(βy) dx dy


 (27)


 θ inf

0h∫ ∫
�af

�0s(e1) cos(αx) cos(βy) dx dy


 =

[
A2 B2

C2 D2

] [
θ0h(1)

0

]
(28)

where the subscript ‘h’ corresponds to the heat flux set at the depth flaw.
The combination of the two last equations yields the rear face temperature:

θ0h(1) = − sinh(
√

pe2)

sinh(
√

p)

1

u sinh(ue2)

4K

αβ
(29)

K is given by equation (14). The η0 order component of the rear face temperature is then
determined by adding θ0s(1) and θ0h(1).

3.2.2. η1 order identification. The quadrupole relationships in this case are[
θ1(0)

0

]
=

[
A1 B1

C1 D1

] [
θ

sup
1


1(e1)

]
for the upper layer (30)

[
θ inf

1

φ1(e1)

]
=

[
A2 B2

C2 D2

] [
θ1(1)

0

]
for the lower layer (31)
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Starting from equation (21), we can calculate the first order Fourier flux at the flaw depth using
equations (27) and (28) by

φ1(e1) = θ
sup
0h (e1) − θ inf

0h (e1) (32)

Then, based on equations (31) and (32), the first order component of the rear face temperature
is obtained by

θ1(1) = sinh(u) sinh(
√

pe2)

u2 sinh(ue1) sinh2(ue2) sinh(
√

p)

4K

αβ
(33)

The rear face temperature can be approximated as follows:

θ(α, β, 1, p) = [θ0s(1) + θ0h(1)] + ηθ1(1) + O(η) (34)

Finally, the η1 order contrast is obtained by subtracting the sound material temperature θ0s(1)
from the rear temperature θ(α, β, 1, p):

θ(α, β, 1, p) = − sinh(
√

pe2)

sinh(
√

p)u sinh(ue2)

(
1 − η

sinh(u)

u sinh(ue1) sinh(ue2)

)
4K

αβ
+ O(η) (35)

Similarly to the perturbation carried out for the case of small resistances, approximation (33)
can be modified using a [0, 1] Padé’s approximant to widen its validity field to medium
resistances:

θ(α, β, 1, p) = − sinh(
√

pe2)

sinh(
√

p)u sinh(ue2)

1

1 + η(sinh(u)/u sinh(ue1) sinh(ue2))

4K

αβ
+ O(η)

(36)

By substituting η by ε in the above equation, we can observe that it is equivalent to equation (14)
corresponding to the ε first order perturbation when the resistance is very small. This formula is,
therefore, very practical since it is useful for both high and weak contact resistances. However,
it does not show how accurate the approximation is for medium values of Rc. For that reason,
simulations have been performed for many values of the resistance. Figure 5 shows the

0

0.1

0.2

0.3

0 2 4 6

true model
?

1 
Padé's approximate model

t=0.5

t=0.3

t=0.1

location from the flaw center

n
or

m
al

iz
ed

 t
h

er
m

al
 c

on
tr

as
t

Figure 5. Comparison between the true model and the first order perturbed solution improved using
Padé’s approximant approach. The perturbation parameter is the thermal conductance, η = 1/Rc.
Same parameter values as for figure 4.
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robustness of the approximation for medium Rc values (Rc = 0.5). This model identifies the
shape of the true contrast profiles better than the one illustrated in figure 4, in particular for
short times (t = 0.1). Computational simulations showed that the true and the approximate
curves never coincide, even for higher resistances. This was expected since in the model, we
have assumed that the heat flux is piecewise constantly distributed (equations (23)–(26)). On
the other hand, calculations for low resistances led to perfectly superimposed profiles. This
new approach is, therefore, very practical for carrying out fast computational trials, since it
gives a good approximation to real three-dimensional cases.

4. Conclusions

Unsteady three-dimensional heat diffusion within an anisotropic material containing a finite
flaw has been solved, using a perturbation expansion and integral transforms. The perturbation
method (first order only) has been used to achieve a simple and fast approximation. The
two first order perturbations developed here are only valid when the resistance (ε = Rc)
or the conductance (η = 1/Rc) are very small. For higher values of these parameters, many
components in the perturbed series are needed for the algorithm to converge. Consequently, the
analytical formulation becomes very complex and the calculation time too long. Furthermore,
the perturbation method loses its advantages when compared to the traditional numerical
methods approach. An improvement of the first order solutions has been obtained by using
the Padé’s approximant method. This formalism allows to widen the validity of the first
order perturbed solution for higher values of the perturbing parameter. Simulations have
shown that the reduced models are in a good agreement with the true solution for any value
of the thermal resistance. The true solution is obtained by solving a linear set of equations
whose unknowns are the Fourier components of the heat flux density at the flaw depth. The
perturbation formalism has also led to simple analytical solutions that describe heat diffusion
throughout superimposed flaws and a continuously non-uniform interface.

In conclusion, the results obtained in this work show the usefulness of the perturbation
approach in the solution of problems that are difficult to solve by traditional means. The
simplicity of the formulation, the short processing times and the possibility to perform an
effortless sensitivity analysis of the parameters of interest, speak in favour of this approach.
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