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ABSTRACT: In this work, we present the modeling and numerical simulation using the explicit
dynamic finite element method for the hyperelastic behavior of a thin, transversely isotropic and
incompressible thermoplastic membrane. The Lagrangian formulation together with the assumption
of the membrane theory is used. The numerical validation is performed by comparing the theoretical
solution for the uniaxial and equibiaxial Hencky deformation with the numerical results. Moreover,
the effect of the transversely hyperelastic material on the thickness and on the stress distribution,
for the membrane inflation, are analyzed for three different fibers orientations. Finally, a simple
example of thermoforming part is presented.
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INTRODUCTION

S
EVERAL PRACTICAL APPLICATIONS in engineering are related to the thermoplastic
materials reinforced by continuous fibers. By way of example, one can quote the

sector of the material-forming processes (thermoforming processes) for man-made compo-
sites for the automobile and the aerospace applications and the sector of biomechanics for
the biological composites for soft biological tissues such as blood vessels, tendons, and
ligaments. However, the response of these materials to loads, either in pressure or flow,
depends on the mechanical and rheological properties of the polymeric matrix, the fibers,
and the fiber–polymeric matrix interactions. From this point of view, the structural
properties of such composites may be regarded as anisotropic as opposed to isotropic
materials, which exhibit no directional dependencies.
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In the past decades, it has been noticed that many research tasks have been directed
toward the use of the behavior law of the hyperelastic and viscoelastic isotropic type,
for the processes of thermoforming of thin parts. In the case of hyperelastic materials, the
constitutive laws of Mooney-Rivlin [21] and Ogden [20] are used to describe, in general,
the structural behavior of the investigated membranes [1,7,10,17,22]. In the case of visco-
elastic membranes, their constitutive behavior uses the integral models of Lodge [19],
Christensen [5] and very recently the models of K-BKZ [23] were considered to be the most
suitable to describe the polymeric membrane behavior [10,13,14,17,24] . For these models,
the finite element implementation of large strain isotropic materials are well established
and most successfully used in industrial processes, and particularly for the thermoforming
and blowing processes.

However, the studies concerning the construction of theories and numerical models to
describe the structural behavior of the anisotropic thermoplastic membranes (membranes
reinforced by continuous fibers) are very recent and the publications which are devoted
to them are quite a few. The papers by [2,3,4,15,25], describe constitutive equations for
fiber-oriented hyperelastic materials in the nonlinear stress and deformation domain and
provide computational informations for their finite element implementation. Also, works
dealing with the influence of the fibers orientation on the behavior of the hyperelastic
membranes and the applications which come under the field of thermoforming remain
relatively scarce.

The goal of the present paper is thus the study of the influence of the fiber orientation
on the behavior of the transversely isotropic hyperelastic membranes for thermoforming
applications. The strain energy which takes into account the anisotropy induced by the
presence of fibers aligned in the membrane is considered [2,18,25,26]. Mathematical
modeling and numerical simulation using the explicit finite element method are considered
for the study of hyperelastic behavior of a thin, transversely isotropic and incompressible
thermoplastic membrane. The thermoforming of the long fiber-reinforced sheet is done
under the action of a perfect gas [12]. The Lagrangian formulation together with the
assumption of the membrane theory is used. The membrane is discretized by plane finite
element [8] and time integration is performed via an explicit algorithm [9].

The numerical analysis is performed by comparing the obtained results with the
analytical results for the uniaxial and equibiaxial Henky deformation (with or without
fibers). Moreover, the influence of the orientation of the fibers on the thickness and the
stress distribution in the thermoforming sheet is analyzed.

PRELIMINARY CONSIDERATIONS

The problem of the transversely isotropic thermoplastic sheet material inflation can
be modeled by considering the large deformation of the body with finite strain. The
continuum formulation using the updated Lagrangian description is presented using a
three nodes isoparametric triangular element. Although the formulation is applicable for
three-dimensional geometry, the finite element discretization is shown for plane strain
configuration only, for the sake of simplicity.

FINITE ELEMENTS FORMULATION

For the numerical modeling of thermoplastic membrane inflation, we consider the
explicit dynamic finite element method, based on the Lagrangian formulation, with both
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space and time discretization to perform the simulation of the membrane inflation. In the
spatial discretization, we subdivide the material sheet into isoparametric triangular finite
elements using three nodes. Then the principle of virtual work is written on each of these
elements with a local finite element approximation and evaluated to yield discrete element
equations which are then assembled so as to form an approximate membrane repre-
sentation [8]. Under these conditions, the problem of thermoplastic sheet material infla-
tion can then be reduced to a system of second-order ordinary differential equations [11]:

½M � � €uuðtÞ
� �

¼ Fext:f g � Fint:f g ð1Þ

where Fext:f g and Fint:f g are global nodal external and internal force vectors experienced
by the thermoplastic membrane. ½M � is the mass matrix associated with external forces.

Using the diagonalization method of [16], matrix ½M � is transformed into a diagonal
matrix and each degree of freedom can then be handled independently.

Because of the presence of the inertial force, a time discretization is required. This is
handled here through the introduction of a centerd finite difference technique that is
conditionally stable [9].

The convergence behavior of the explicit dynamic finite element method for nonlinear
problem is controlled by the Courant–Friedrichs–Lewy criterion: the time step must be
smaller than the critical time steps �tcrit:

�t � �tcrit � h=c ð2Þ

Here c is the wave speed in the medium and h, the element size. The quantity h/c is the time
that a wave needs to propagate across an element of size h.

PRESSURE LOADING

In this work, we consider the outside pressure forces induced by the load and the airflow
responsible for the blowing of the membrane. The pressure inside the thermoplastic
membrane is closely related to the internal volume of the parison via the perfect gas
thermodynamic law by [12]:

�PðtÞ ¼ PðtÞ � P0 ¼
nðtÞRTgas � P0VðtÞ

V0 þ VðtÞ
ð3Þ

V0 is the initial volume enclosing the membrane at the initial time t0 (we assume in this
work that the forming process temperature is constant, Tgas), P0 is the initial pressure,
R is the perfect gas constant, n(t) is the number of gas moles, introduced for the inflation
of the thermoplastic membrane, P(t) is the internal pressure and V(t) is the volume
occupied by the membrane at time t.

TRANSVERSELY ISOTROPIC HYPERELASTICITY MATERIAL

In this work, we consider the assumptions of the plane stresses and the incompressibility
of the thermoplastic material. It follows that the components of the Cauchy stress tensor
have the following properties:

�13 ¼ �23 ¼ �31 ¼ �32 ¼ �33 ¼ 0 ð4Þ
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The transversely isotropic hyperelastic materials are defined by the existence of the
strain energy density function, W, from which stresses can be derived at each point. By
choosing the following form for strain energy density function for transversely isotropic
hyperelastic materials [2,25]:

W ¼ Wð ~XX; I1ðCÞ; I2ðCÞ; I3ðCÞ; I4ðC; ~AAÞ; I5ðC; ~AAÞÞ ð5Þ

the satisfaction of material frame indifference and the material symmetry restrictions
imposed by the orientation of fibers in the thermoplastic materials are assured (principal
of objectivity). I1, I2, and I3 are the isotropic standard invariants of the right Cauchy–
Green deformation tensor, C. I4 and I5 are the pseudoinvariants introduced by the fiber
family in thermoplastic material. These pseudoinvariants represent contributions to the
strain energy function from the properties of the fibers and their interaction with the
thermoplastic matrix. The vector ~AA is a material director of aligned fibers in material
configuration. The expressions of these invariants are given by the following formulas:

I1 ¼ trC ; I2 ¼ C : C; I3 ¼ detC ¼ J2 ; I4 ¼ ~AA � C � ~AA ; I5 ¼ ~AA � C2
� ~AA ð6Þ

where J is the Jacobian of deformation. The general stress–strain relationship is given by
the formula:

S ¼ 2
@W

@C
ð7Þ

where S is the Piola–Kirchhoff stress tensor. Differentiating the expressions (6) with
respect to C gives:

@I1
@C

¼ I;
@I2
@C

¼ I1I� C;
@I3
@C

¼ I3C
�1;

@I4
@C

¼ ~AA� ~AA;
@I5
@C

¼ ~AA� C ~AAþ C ~AA� ~AA

ð8Þ

where I is the identity tensor. The second Piola–Kirchhoff stress tensor, given by Equa-
tion (7), becomes:

S ¼ 2 1Iþ 2 2 I1I� Cð Þ þ 2I3 3C
�1

þ 2 4
~AA� ~AAþ 2 5 C ~AA� ~AAþ ~AA� C ~AA

� �
ð9Þ

The scalar  i denotes the derivation of W with respect to Ii:

 i ¼
@W

@Ii
; i ¼ 1; 2; 3; 4; 5 ð10Þ

Within the framework of the incompressible material, I3 ¼ J2 ¼ 1, the strain energy
function can then be written as:

W ¼ �1ðI1; I2Þ þ�2ðI4Þ þ�3ðI1; I2; I4; I5Þ ð11Þ

The function �1 represents the material response of the isotropic thermoplastic sheet,
�2 the contribution response from the fiber family in the thermoplastic material and �3 the
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contribution response from interactions between the fibers and the thermoplastic matrix.
In this case, the general incompressible transversely isotropic hyperelastic constitutive
equation can be calculated by the formula:

S ¼ �pC�1
þ 2

@W

@C
ð12Þ

where p is the hydrostatic pressure. This pressure, which enters Piola–Kirchhoff stress
tensor as a reaction to kinematic constraint on the deformation field, is determined by
using Equation (9) and the condition Szz ¼ 0:

p ¼ 2
2�1 þ�2 Cxx þ Cyy

� �
CxxCyy � CxyCyx

� �
ð13Þ

By considering formula (13), the expression of the second Piola–Kirchhoff stress tensor,
Equation (23), then becomes:

S ¼ �pC�1
þ 2 1Iþ 2 2 I1I� Cð Þ þ 2 4

~AA� ~AAþ 2 5 C ~AA� ~AAþ ~AA� C ~AA
� �

ð14Þ

In our study, for the plane stress state, the deformation matrix C, the stress matrix S, the
fiber matrix orientation Að¼ ~AA� ~AAÞ and the interaction matix Mð¼ C ~AA� ~AAþ ~AA� ~AACÞ,
between the fibers and the thermoplastic material, have respectively the following forms:

C½ � ¼

Cxx Cxy 0

Cxy Cyy 0

0 0 Czz

2
64

3
75 ð15Þ

S½ � ¼

Sxx Sxy 0

Sxy Syy 0

0 0 0

2
64

3
75 ð16Þ

A ¼ ~AA� ~AA ¼

A1A1 A1A2 0

A1A2 A2A2 0

0 0 0

2
64

3
75 ð17Þ

M ¼

2 CxxA
2
1 þ CxyA1A2

� �
A1A2 Cxx þ Cyy

� �
þ Cxy A2

1 þ A2
2

� �
0

Symmetric 2 CyyA
2
2 þ CxyA1A2

� �
0

0 0 0

2
64

3
75 ð18Þ

The term Czz in Equation (15) can be directly computed from the other components of the
deformation tensor:

Czz ¼ �23 ¼
1

CxxCyy � CxyCxy
ð19Þ
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where �3 is the principal stretch ratio in the thickness direction defined by:

�3 ¼
h

h0
ð20Þ

where h and h0 are membrane thicknesses, respectively in the deformed and undeformed
configurations.

For the adopted strategy for the computer implementation of the finite element
formulation, developed above for the computation of the nodal displacements ~uun at a
time tnþ1, see [11].

NUMERICAL VALIDATION

The dynamic finite element method outlined in the previous section was implemented
in the general purpose finite element code ThermoForm, developed by the first author.
The transversely isotropic hyperelastic material described earlier has been used. This code
was developed in order to study the stresses and deformation arising in thermoforming
sheet problems. A simple example of the use of the transversely isotropic material in this
code is presented here. All computations were performed on PC in single precision.

Validation of Piola–Kirchhoff Stress

As a validation of the formulation described earlier, we consider the uniaxial and
equibiaxial tests. For these tests, we consider a Mooney-Rivlin thermoplastic material
for �1ðI1; I2Þ and a linear function for �2ðI1; I2Þ:

�1ðI1; I2Þ ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ; �2ðI4Þ ¼ C4ðI4 � 1Þ ð21Þ

C1, C2, and C4 are the material constants.
The stress update was validated by comparing the results from uniaxial and equibiaxial

tests with a theoretical solution for a homogeneous Hencky deformation:

�ðtÞ ¼ expðatÞ ð22Þ

where �ðtÞ is the stretch deformation and a is the rate of deformation. The material
constants used for these tests are:

C1 ¼ 1;000;000Pa; C2 ¼ 1000Pa; C4 ¼ 100;000 ð23Þ

For the uniaxial Hencky deformation, the initial membrane configuration is a rect-
angular sheet (length¼ 10 units, width¼ 1 unit), while for the equibiaxial Hencky
deformation, the initial membrane configuration is a square sheet (width¼ 1 unit). The
thickness considered in these tests is h ¼ 0:1 unit. A mesh of triangular elements was used
comprising five nodes and four elements. The meshes used for the uniaxial (Mesh 1) and
the equibiaxial (Mesh 2) test are represented in Figure 1. The timestep is controlled by
a stability criterion (Courant–Friedrichs–Lewy criterion) where the distance traveled by the
viscoelastic waves over a single timestep is not greater than 75% of the smallest element
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size. For the isotropic case (without fibers), Figures 2 and 3 illustrate the excellent
agreement between the theoretical and the dynamic finite element solutions for three
different fiber directions.

For the uniaxial and equibiaxial problems, the elements were stretched to 500% of
their initial length for a deadline of 0.2 s and with equal timesteps of 0.0001 s.

ANALYSIS OF FIBERS DIRECTION EFFECT DURING

FREE MEMBRANE BLOWING

In this section, we use the dynamic finite element approach, with a linear air flow load,
to study the effect of long fibers direction the thickness and the stress distribution in the
rectangular thermoplastic sheet during its free blowing. The time of blowing in this study
is fixed at 0.5 s. The geometry of the undeformed sheet configuration used in the simu-
lation is L ¼ 25:4 cm (length), l ¼ 15:24 cm (wide) and h0 ¼ 1:5 mm (thickness). The sheet
is discretized by triangular membrane elements and its sides are fixed. Mechanical
parameters used for this study are given earlier. In Figure 4, we present the evolutions of
the deformations ð�1; �2; �3Þ in the case of free blowing of the rectangular membrane
(without fibers).

Figures 5 and 6 present, respectively, the effect of the fibers direction on the minimal
thickness distribution and the maximal von Mises stresses, �eq, distribution, induced by
the blowing pressure on the thermoplastic sheet at the end of the blowing cycle (t¼ 0.5 s).
From these figures, we observe that the thicknesses distribution reaches a minimal value,
h ¼ 0:0408mm, and the von Mises stresses distribution passes by a maximal value,
7:22MPa. These critical values are obtained for the direction � ¼ 55�, of fibers in the
thermoplastic sheet. These values are localized with the approximate position: X ’ 2L=3
and Y ’ l=2 of the reference configuration. The highest value of the minimal thickness
distribution, h ¼ 0:0507mm, and the minimal value of the von Mises stresses distribution
are obtained for � ¼ 0�.

Mesh 2

Mesh 1

1

1

1

10

Figure 1. Finite element meshes : Mesh 1 for uniaxial test and Mesh 2 for equibiaxial test.
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According to these observations, one can thus conclude that in free blowing from a
rectangular thermoplastic sheet reinforced with continuous long fibers, for a given time of
blowing and airflow, there seems to exist a relationship between the orientation of the
fibers and the stresses distribution which are developed in the material. This critical stress
function passes by a maximum for a critical value of orientation, in our case this value is
� ¼ 55�. In addition, to this critical value, there corresponds a critical minimal thickness.
Indeed, the localized thinning effect of the deformed membrane is generally accompanied
by an increase in the Cauchy stresses or the true stresses of the material.

In consequence of these remarks, for a given airflow load , the stresses induced in a part
must depend on the initial orientation of the continuous fibers in the thermoplastic sheet.
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Figure 2. Comparison of DFEM results to theoretical answer for uniaxial extension.
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The above example is devoted for a simple thermoforming of a container with three
different orientations of fibers.

EXAMPLE OF THERMOFORMING APPLICATION

In this section, we use the linear airflow, to study the thermoforming of a polymeric
container. The geometries of mold, with a grid using the triangular membrane elements,
is presented on Figure 7. We consider the same thermoplastic sheet as that used in the
previous section, as well as the mechanical parameters.
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Figure 3. Comparison of DFEM results to theoretical answer for equibiaxial extension.
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Figure 5. Effect of the orientation of fibers on the distribution critical thicknesses.
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Figure 6. Effect of the orientation of fibers on the distribution critical von Mises stress.

Figure 4. Evolution of the deformations in the case of free blowing of the membrane.
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The directions considered, in this work, for the fibers orientation in the materials are:
� ¼ 0; 30, and 45�. For the contact of the preform and the mold, we consider the
assumption of sticking contact, because it is estimated that the polymer cools and stiffens
quickly and that the pressure of working is not sufficient to deform the part of the parison
which is in contact with the mold [6].

Figure 8 presents different deformation views ð�1; �2; �3Þ, at the end of the thermo-
forming process, induced in the final shape for � ¼ 0�.

Figure 9 presents, the final thickness distribution h ¼ h0�3 on the half-planes of
symmetry XZ and YZ in the thermoformed container for the three directions of fibers.
From these figures, we observe a maximum thinning of 10.4%, reached with the respective
positions of 8.01 and 18.07 cm, while in the center of the lower part of the container,
thinning is of 32:5%.

The comparison of the numerical results obtained, for the thermoforming of the ther-
moplastic part, shows that there is a small difference in the results predicted by our calcu-
lations of modeling for the three fibers direction in the material. However, one notices
a shift in the distribution thicknesses. Indeed, in the vicinities of the edges of the part,
thinning seems to decrease with the orientation of fibers, in the symmetry plane half XZ.
On the other hand, in the medium of the central part, thinning seems to decrease with
the orientation of fibers. This phenomenon is less predictive, in the half-plane YZ, in the
case of the distribution of the stresses of von Mises. Indeed, the stresses of von Mises are
low in the areas of edges for � ¼ 0� and high in the vicinities of the critical zone (X¼

7.5 cm, y¼ 6.0 cm) for � ¼ 20�. In the central part, the von Mises stresses are low for
� ¼ 50� and high for � ¼ 0�.

Figure 7. Finite element meshes for mold.

Figure 8. Distribution of the deformations in the thermoformed container.
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In the thermoforming numerical simulation, the thickness prediction is an important
goal but the stress estimation is also helpful for part design. Indeed, the prediction of
the residual stress and the shape stability of the part are strongly related to the estimated
stress. In this section, the stress prediction obtained from the investigated constitutive
model for the three directions of fibers are discussed. Figure 10 presents the final
von Mises stresses �eq distribution, predicted by using different fibers orientations, on the
half-planes of XZ and YZ symmetry planes in the thermoformed container. The von Mises
stress �eq on the half-plane XZ exhibit the maximum at the edges of the part and the
minimum at the center of the part. A comparative study of the numerical results, obtained
from the different fibers orientations, shows that there is a significant difference between
the orientation � ¼ 20� and the other orientation of fibers in the hyperelastic material,
for the von Mises stress. In the half-plane XZ, the maximum value is obtained for � ¼ 20�

and the minimal value is obtained for � ¼ 50�. Finally, the von Mises stress distribution
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plus the localized thinning effect indicate that material failure due to large deformation
induced by inflation is most likely to occur at the edges of the container.

In the light of the results given earlier, the following remarks can be formulated:

. While the thickness distributions obtained from the different fibers directions of the
transversely isotropic hyperelastic material are similar, the stress prediction exhibits
some discrepancy. The similarity of the thickness distributions is related to the
incompressibility assumption. This observation, concerning the isotropic and incom-
pressible material thermoforming of hyperelastic type, was underlined by Lorenzi and
Nied [6] relative with the final distribution thickness in the part. More recently,
Erchiqui et al. noticed the same conclusion for viscoelastic materials [12]. According
to these authors, this distribution thickness is not very dependent on the law of behavior
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Figure 10. Thickness distribution, symmetry planes XZ and YZ.
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of material, but especially imposed by the geometry of the mold. Our study, concerning
transversely isotropic hyperelastic material, also shows that the fibers directions
influence very little the final distribution thickness of the thermoforming parts.

. The significant difference between the orientation of fibers for the transversely isotropic
hyperelastic model is observed in the stress distribution at the end of the deformation.
The maximum value is obtained for � ¼ 20�.

CONCLUSIONS

In this work, we have developed a dynamic finite element code based on the total
Lagrangian formulation for simulating the response of the transversely isotropic
hyperelastic material. The numerical analysis is performed by comparing the obtained
results with the analytical results for the uniaxial and equibiaxial Henky deformation (with
or without fibers). Then, we studied, in free blowing of a rectangular sheet, the effect of the
orientation of fibers on the distribution thicknesses and stresses. The results obtained
showed that these distributions pass by extremums. finally, we have studied the influence
of three fibers direction in the transversely isotropic hyperelastic material on the thickness
distribution in a hollow part, via air flow loading distribution. According to these results,
one notices that the fibers directions influence a little the final distributions thickness and
the von Mises stress of the thermoforming part.

These preliminary studies are essential steps toward the full achievement of our midterm
goals of performing and developing tools for modeling and simulation of thermoplastic
forming processes, as related in particular to the thermoforming processes.
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