

Quantitative assessment in thermal image segmentation for artistic objects

Bardia Yousefi Stefano Sfarra* Xavier P. V. Maldague Canada Research Chair in Multipolar Infrared : MiViM Computer vision and systems laboratory, Department of Electrical and Computer Engineering, Laval University, Quebec city, Canada

*University of L'Aquila - Las.E.R. Laboratory - Department of Industrial and Information Engineering and Economics (DIIIE), Piazzale E. Pontieri no. 1, I-67100, Monteluco di Roio, Roio Poggio - L'Aquila (AQ), Italy, European Union

OUTLINE

INTRODUCTION

DETECTING DEFECT

RESULTS

CONCLUSION

INTRODUCTION

-- Thermography

Infrared Non-Destructive Testing (IRNDT) provides thermographic images in the region of interest which usually involves defects.

Active thermography is a vast field including nondestructive and non-contact inspection techniques which have many applications in different industries

Applications

- Non-destructive Testing (NDT)
- Medical analysis (Computer Aid Diagnosis/Detection-CAD)
- Arts and Archaeology
- Geology
- Target detection
- etc

INTRODUCTION

- Segmentation by clustering

Segmentation approaches have been proposed for countless applications in different research areas such as NDT, thermal image analysis, etc.

Here the application of clustering in segmentation of defects is investigated.

Automatic defect detection helps to make our IRNDT system works:

- Faster
- More accurate
- More robust

INTRODUCTION

- Real examples of Segmentation

MIVIM - LAVAL UNIVERSITY - University of L'Aquila

RESULTS - Artistic objects

Location of the camera and heating sources

hild polychromatic wooden statue

The test conducted to gather the infrared images in the laboratory environment and the infrared vision experimental set up is shown in Figure. The infrared camera used was a long wave infrared camera (LWIR - 7.5–13 µm) having the spatial resolution of 240 *320 pixels. There were two radiation sources, i.e., two 250 W SICCATHERM E27 lamps that gave a wide radiation spectrum for thermography testing.

As the overheating is always a concern in artworks, the temperature of specimens were monitored during the test using a laser pyrometer. The temperature of the room was approximately 292K (19°C) at the starting of the thermographic inspection. During the test, the infrared thermography acquisition process was controlled using the spot function and the lamps were located far from the specimens (24 cm) to provide an adequate heating up phase. The distance lamp - lamp was 40 cm, while the thermal camera was put at 46 cm from the left cheek of the Child. The relative humidity(RH) was 47.5 % and the emissivity value was set at 0.90. The six hundred thermograms were reorded during 180 seconds of heating and seven minutes of cooling (420 thermograms).

Real Fresc

In the experiment of the real fresco, the inspection by infrared reflectography (IRT) and the heating up phase lasted 360 seconds.. The camera located at \$295 cm\$ far from the sample and 1 lamp (2kW) at the distance of \$235 cm\$. The ambient temperature recorded was 16.2 °C, while the relative humidity was equal to \$40.1 \%\$. Also in this case, the emissivity value was set at 0.90, although the new technique applied minimize the emissivity variation due to the pigments. The cooling down phase lasted 780 seconds, and 1 thermogram per second was recorded during the entire inspection procedure.

- Results of Child polychromatic wooden statue

SNMF2

RESULTS - Results o

- Results of real Fresco

MIVIM - LAVAL UNIVERSITY - University of L'Aquila

- Final segmentation

Automatic Detection of Defect in Art and Archaeology specimens

- Quantitative Results of Child polychromatic wooden statue

Child polychromatic wooden statue

The quantitative accuracy of our approach for the polychromatic statue is shown while we consider only one detected defect on the specimen surface.

	Accuracy				
Methods	Pixels corrected	Accuracy (%)	False-positive	False-positive	
	correctly			(%)	
РСТ	1292	100	387	29.9536	
NMF	386	98.13	39	10.4558	
CCIPCT	1445	100	10	0.6920	
SNMF	551	99.81	0	0	
SNMF2	983	100	70	7.12	

The quantitative accuracy of our approach for the polychromatic statue is shown while we consider both defects on the specimen surface.

	Accuracy					
Methods	Pixels detected	Accuracy (%)	False	False	False-positive	False-positive
	correctly		Negative	Negative(%)		(%)
РСТ	2178	42.35	1841	35.79	17	0.3305
NMF	3627	70.52	423	8.2248	12	0.23
CCIPCT	1899	36.9240	3244	63.08	1536	29.87
SNMF	1355	26.3465	3538	68.7925	42	0.8166
SNMF2	3702	71.9813	718	13.9607	1050	20.4161

- Quantitative Results of real fresco

Real Fresco

The quantitative accuracy of our approach for the fresco is shown.

	Accuracy					
Methods	Pixels detected	Accuracy	False	False	False-	False-
	correctly	(%)	Negative	Negative(%	positive	positive (%)
)		
РСТ	3140	57.1013	42.8987	2359	3187	57.9560
NMF	3007	54.6827	45.3173	2492	2217	40.3164
CCIPCT	2890	52.5550	47.4450	2609	1770	32.1877
SNMF	3007	54.6827	45.3173	2492	2217	40.3164
SNMF2	2919	53.0824	46.9176	2580	1318	23.9680
Sparse PCT	2092	38.0433	61.9567	3407	936	17.0213

Computational time

Computational load

Table of computational cost for the proposed methods.

	Computational load				
Methods	Factor analysis (s)	Clustering (s)	Wavelet fusion (s)		
РСТ	1.570819	0.92	0.022		
NMF	4.267770	0.72	0.02		
CCIPCT	0.024910	1.19	0.021		
SNMF	(for 1000 Iteration) 30.994544	0.84	0.018		
SNMF2	(for 200 Iteration) 53.151630	0.722	0.032		

Table of computational cost for the proposed methods for Fresco.

	Computational load				
Methods	Factor analysis (s)	Clustering (s)	Wavelet fusion (s)		
РСТ	9.678299	0.484188	0.011242		
NMF	7.290876	2.285472	0.013743		
CCIPCT	0.204019	0.112533	0.007896		
SNMF	(for 1000 Iteration)	0.169409	0.007228		
	119.111053				
SNMF2	(for 200 Iteration) 227.278529	0.092327	0.094902		

$\mathsf{C} \ \mathsf{O} \ \mathsf{N} \ \mathsf{C} \ \mathsf{L} \ \mathsf{U} \ \mathsf{S} \ \mathsf{I} \ \mathsf{O} \ \mathsf{N} \ \mathsf{S}$

- An algorithm for automatic detection of defect has been described.
- Two NDT for artistic samples (Child polychromatic wooden statue and real fresco) were used for benchmarking.
- Results of both samples have been shown.
- Computational complexity of the proposed algorithm has been estimated and quantitatively presented.

Future Work:

- Further investigate to test the approach for more samples and applications to verify its performance
- Further analysis to use more studies on clustering methods

THANK YOU

This research is done under Canada Research Chair in Multipolar Infrared : MiViM at Computer vision and systems laboratory (CVSL), Department of Electrical and Computer Engineering, Laval University, Quebec city, Canada

