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M O D I F I E D  A L G O R I T H M  F O R  M I N E R A L  I D E N T I F I C AT I O N  I N  
L W I R  H Y P E R S P E C T R A L  I M A G E R Y

PROJECT DESCRIPTION

The goal of this research lies on the clustering analysis for identification of the mineral grains in infrared thermal

spectroscopy (LWIR 7.7-11.8µm wavelength range). Here, there are two different strategies investigated by modifying the

clustering algorithm hierarchy before or after applying spectral comparison techniques. The proposed automatic identification

algorithm strives to identify Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz minerals

grains.

Multipolar Infrared Vision Infrarouge Multipolaire

Experimental setup and

hyperspectral image from

mineral grains samples (as an

example) are revealed in the

figure. The experiment was

conducted using an uniform

heating source, an InfraGold

plate, and a suitable macro lens

that was especially designed for

the use of the hyperspectral

camera in laboratory conditions.

Hyperspectral images with and

without heating source and the

arrangement of mineral grains

are presented in the picture

(lower-left side of the figure).

Algorithm II

Given Input data I(x,y,z) ∈ 𝑹𝑵×𝑴×𝒁 where I(x,y) ∈ 𝑹𝑵×𝑴 is

the spatial dimension selected as the Region of

Interest(RoI) and its unit is pixels, z is the spectral

resolution and depends on the hyperspectral

camera and acquisition properties.

Step 1 Calculation of the reflectance of RoI

𝑹 𝒙, 𝒚 =
𝑰𝑫𝑾𝑶𝑵

𝒙,𝒚 − 𝑰𝑫𝑾𝑶𝑭𝑭
(𝒙,𝒚)

ሖ𝑰𝑰𝑮𝑶𝑵−
ሖ𝑰𝑰𝑮𝑶𝑭𝑭

.

ሖ𝑰𝑰𝑮𝑶𝑵 ,
ሖ𝑰𝑰𝑮𝑶𝑭𝑭are the radiance of the Infragold plate

while the heating source is on and off, respectively

(they are constant spectra).

𝑰𝑫𝑾𝑶𝑵
𝒙, 𝒚 , 𝑰𝑫𝑾𝑶𝑭𝑭

(𝒙, 𝒚)are two spectral radiances

where the heating source (down-welling radiation)

is on and off in the 𝒙, 𝒚 spatial position.

Step 2 Clustering 𝑰(𝒗,𝒛) into k categories shown by 𝑪𝒌, 𝒗 ∈

𝑹𝑽 is the spatial resolution in the vector form. The 

clustering is based on the spectral difference 

among the clusters (𝟎 ≤ 𝑱 ≤ 𝒌). ሶ𝑪𝒌 is the best 

representative of the cluster applying Non-

Negative Matrix Factorization (NMF).

Step 3 Calculation of the spectral comparison techniques:

𝐌𝒊 𝒙, 𝒚 = 𝑺𝑻𝒋( ሶ𝑪𝒔𝒌, 𝚽𝒊)

𝑺𝑻𝒋 is represents the spectral techniques and j

reveals the number of techniques exploited (e.g.

𝐣 = 𝟏 → 𝐌𝐀𝐌𝟏 = 𝐍𝐂𝐂 ). s represents a sample

from the cluster k. 𝚽𝒊 ∈ 𝑹
𝒛 illustrates the reference

spectra (i.e. ASTER/JPL) and i is the number of

spectra.

Output False color generation (Ψ𝑹𝑮𝑩), is dependent on i

in𝚽𝒊. For every targeted spectrum, the amount of

(𝑹, 𝑮, 𝑩) will change. The output will be, Ψ𝑹𝑮𝑩, an

image where the materials have been marked by

different color.

Algorithm I

Given Input data I(x,y,z) ∈ 𝑹𝑵×𝑴×𝒁 where I(x,y) ∈

𝑹𝑵×𝑴 is the spatial dimension selected as the

Region of Interest(RoI) and its unit is pixels, z

is the spectral resolution and depends on

hyperspectral camera and acquisition

properties.

Step 1 Calculation of the reflectance of RoI

𝑹 𝒙, 𝒚 =
𝑰𝑫𝑾𝑶𝑵

𝒙,𝒚 − 𝑰𝑫𝑾𝑶𝑭𝑭
(𝒙,𝒚)

ሖ𝑰𝑰𝑮𝑶𝑵−
ሖ𝑰𝑰𝑮𝑶𝑭𝑭

.

ሖ𝑰𝑰𝑮𝑶𝑵 ,
ሖ𝑰𝑰𝑮𝑶𝑭𝑭are the radiance of the Infragold

plate while the heating source is on and off,

respectively (they are constant spectra).

𝑰𝑫𝑾𝑶𝑵
𝒙, 𝒚 , 𝑰𝑫𝑾𝑶𝑭𝑭

(𝒙, 𝒚) are two spectral

radiances where the heating source (down-

welling radiation) is on and off in the 𝒙, 𝒚

spatial position.

Step 2 Calculation of the spectral comparison

techniques:

𝐌𝒊 𝒙, 𝒚 = 𝑺𝑻𝒋(𝑹 𝒙, 𝒚 ,𝚽𝒊)

𝑺𝑻𝒋 represents the spectral techniques and j

reveals the number of techniques exploited.

𝚽𝒊 ∈ 𝑹
𝒛 is the reference spectra (i.e.

ASTER/JPL) and i is the number of spectra.

Step 3 False color generation (Ψ𝑹𝑮𝑩), is dependent

on i in 𝚽𝒊 . For every targeted spectrum

(𝑹, 𝑮, 𝑩), the amounts will change.

Output Clustering Ѱ𝑹𝑮𝑩 to obtain the clusters where

the identity of the mineral grains is revealed.

The output will be 𝑪𝑱. C shows the clusters

and J represents cluster (J) which is related to

the targeted mineral grains (𝟎 ≤ 𝑱 ≤ 𝒌, k is the

total number of clusters).

Two proposed algorithms are shown for Clustering of spectral comparison (Algorithm I) and The likelihood of the

Spectral clusters (Algorithm II), for automatic identification of the mineral grains. In the both algorithms Spectral Angel

Mapper (SAM) and Normalized Cross Correlation(NCC) are employed as the spectral comparison techniques.

References

[1] Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009).

The ASTER spectral library version 2.0. Remote Sensing of

Environment, 113(4), 711-715.

[2] Yousefi, B., Sojasi, S., Castanedo, C. I., Beaudoin, G., Huot, F.,

Maldague, X. P., ... & Lalonde, E. (2016, May). Emissivity retrieval

from indoor hyperspectral imaging of mineral grains. In SPIE

Commercial+ Scientific Sensing and Imaging (pp. 98611C-98611C).

International Society for Optics and Photonics.

[3] MacQueen, J. (1967, June). Some methods for classification and

analysis of multivariate observations. In Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability (Vol.

1, No. 14, pp. 281-297).

[4] Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009).

The ASTER spectral library version 2.0. Remote Sensing of

Environment, 113(4), 711-715.

[5]Rivard, B., Feng, J., Huot, F., & Chamberland, M. FIRST GEOLOGICAL

CASE STUDY OF THE AIRBORNE LONGWAVE HYPERSPECTRAL

HYPER-CAM SYSTEM, THETFORD MINES, QUEBEC.

The results of SAM and NCC for Biotite, Diopside, Epidote, Geothite, Kynite, Scheelite, Smithsonite, and

Tourmaline are shown applying the first algorithm. The arrangement of the mineral grains is also shown. The

minerals are represented in the false colors to better reveal the mineral grains.

Figure below depicts the results of clustering for the second algorithm. In the second algorithm, the spectra

directly clustered and the best representative of each group compare to the ASTER spectral library. Afterward, the

false colors generate correspond to the amount of the spectral difference. The figure shows the final false color

results and representative of the groups and ASTER spectrum equivalent to the mineral.
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The figure represents the images which

were taken by Micro x-ray fluorescence

(µXRF). µXRF can show the mineral

contamination and tracking particular

minerals among the samples. It provides a

mapping corresponding to the minerals by

having better accuracy and helps to create

a Ground Truth (GT) for our analysis.

Applying the GT considers as a vital step to

compare the computational results to GT

and finding the accuracy and reliability of

the system.

SUMMARY

RESULTS

µXRF

The application of hyperspectral infrared imagery in the different fields of research is significant. It is mainly used

in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological

applications. The geological applications of this technology mainly consist in mineral identification using airborne

or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the

laboratory condition. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite,

Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR,

7.7-11.8 μm) with a LW-marco lens having spatial resolution of 100µm, an infragold plate, and a heating source

are the instruments used in the experiment. This paper addresses a quantitative and qualitative assessment on

an algorithm for identification of minerals in the laboratory (indoor) conditions. The algorithm clusters all the pixel-

spectra to identify the minerals. Then the best representatives of each cluster are chosen and compared with the

spectral library of JPL/NASA through spectral comparison techniques. These techniques give the comparison

amount as features which converts into false colors as the results of this algorithm. Spectral techniques used are

Adaptive Matched Subspace Detector (AMSD) algorithm, PCA Local Matched Filter (PLMF), Spectral angle

mapper (SAM), and Normalized Cross Correlation (NCC). Nine different mineral grains were tested in the Long

Wave Infrared (LWIR, 7.7-11.8 μm). The results of the algorithm indicate significant computational efficiency

(more than 20 times faster than previous approach) and promising performance for mineral identification.


