PROJECT DESCRIPTION

The goal of this research lies on the clustering analysis for identification of the mineral grains in infrared thermal imagery (LWIR, 7.7-11.8 μm wavelength range). Here, there are two different strategies investigated by modifying the clustering algorithm hierarchy before or after applying spectral comparison techniques. The proposed automatic identification algorithm strives to identify Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, and Tourmaline are shown applying the first algorithm. The arrangement of the mineral grains is also shown. The minerals are represented in the false colors to better reveal the mineral grains.

EXPERIMENTAL SETUP

Experimental setup and hyperspectral image from mineral grains samples (as an example) are revealed in the figure. The experiment was conducted using an infrared imaging source, an InfraRed plate, and a suitable macro lens that was especially designed for the use of the hyperspectral camera in laboratory conditions. Hyperspectral images with and without heating source and the arrangement of mineral grains are presented in the picture (lower-left side of the figure).

Algorithm I

Given input data $\mathbf{R}(x, y) \in \mathbb{R}^{m \times n}$ where $\mathbf{R}(x, y) \in \mathbb{R}_{\text{IR}}$ is the spatial dimension selected as the Region of Interest (RoI) and its unit is pixels, \mathbf{S} is the spectral resolution and depends on hyperspectral camera and acquisition properties.

Step 1 Calculation of the reflectance of RoI $\mathbf{R}(x, y)$

$\mathbf{R}(x, y) = \mathbf{M}(x, y) \cdot \mathbf{S}(x, y) \cdot \mathbf{P}(x, y)$

$\mathbf{M}(x, y)$ are the radiance of the InfraRed plate while the heating source is on and off, respectively (they are constant spectra). $\mathbf{S}(x, y)$ and $\mathbf{P}(x, y)$ are two spectral radiacements where the heating source (down-welling radiation) is on and off in the x, y spatial position.

Algorithm II

Given input data $\mathbf{R}(x, y) \in \mathbb{R}^{m \times n}$ where $\mathbf{R}(x, y) \in \mathbb{R}_{\text{IR}}$ is the spatial dimension selected as the Region of Interest (RoI) and its unit is pixels, \mathbf{S} is the spectral resolution and depends on hyperspectral camera and acquisition properties.

Step 1 Calculation of the reflectance of RoI $\mathbf{R}(x, y)$

$\mathbf{R}(x, y) = \mathbf{M}(x, y) \cdot \mathbf{S}(x, y) \cdot \mathbf{P}(x, y)$

$\mathbf{M}(x, y)$ are the radiance of the InfraRed plate while the heating source is on and off, respectively (they are constant spectra). $\mathbf{S}(x, y)$ and $\mathbf{P}(x, y)$ are two spectral radiacements where the heating source (down-welling radiation) is on and off in the x, y spatial position.

Step 2 Calculation of the spectral comparison techniques $\mathbf{M}(x, y) = \mathbf{S}_l(x, y) \cdot \mathbf{P}(x, y)$

$\mathbf{S}_l(\mathbf{x}, \mathbf{y})$ is the spectral resolution in the vector form. The clustering is based on the spectral difference among the clusters $(\mathbf{P} \approx \mathbf{P}_l)$. \mathbf{C}_l is the best representative of the cluster applying Non-Negative Matrix Factorization (NMF).

Step 3 Calculation of the spectral comparison techniques $\mathbf{M}(x, y) = \mathbf{S}(x, y) \cdot \mathbf{P}(x, y)$

$\mathbf{S}(x, y)$ is the spectral techniques and $\mathbf{P}(x, y)$ the amounts of spectral features. For every targeted spectrum $(\mathbf{R}_l, \mathbf{R}_l)$, the amounts change.

RESULTS

The results of SAM and NCC for Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, and Tourmaline are shown applying the first algorithm. The arrangement of the mineral grains is also shown. The minerals are represented in the false colors to better reveal the mineral grains.

Figure below depicts the results of clustering for the second algorithm. In the second algorithm, the spectra directly clustered and the best representative of each group compare to the ASTER spectral library. Afterward, the false colors generate correspond to the amount of the spectral difference. The figure shows the final false color results and representative of the groups and ASTER spectrum equivalent to the mineral.

SUMMARY

The application of hyperspectral infrared imagery in the different fields of research is significant. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory condition. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 μm) with a LiV-marsen lens having spatial resolution of 100μm, an infrared plate, and a heating source are the instruments used in the experiment. This paper addresses a quantitative and qualitative assessment on an algorithm for identification of minerals in the laboratory conditions. The algorithm clusters all the pixel-spectra to identify the minerals. Then the best representatives of each cluster are chosen and compared with the spectral library of JPL/RNAS through spectral comparison techniques. These techniques give the comparison amount as features which converts into false colors as the results of this algorithm. Spectral techniques used are Adaptive Matched Subspace Detector (AMSD) algorithm, PCA Local Matched Filter (LMMF), Spectral angle mapper (SAM), and Normalized Cross Correlation (NCC). Nine different mineral grains were tested in the Long Wave Infrared (LWIR, 7.7-11.8 μm). The results of the algorithm indicate significant computational efficiency (more than 20 times faster than previous approach) and promising performance for mineral identification.

References