Unsupervised Automatic tracking of Thermal changes in Human Body

Bardia Yousefi¹, Julien Fleuret¹, Seyed Alireza Ghaffari¹, Simon Fréchet¹, Félix Labrie Larrivée¹, Marcelo Sung Ma Jo¹, Matthieu Klein³,

Xavier Maldague¹, Raymon Watts²

¹Department of Electrical and Computer Engineering, Laval University, Québec, QC G1V 0A6, Canada

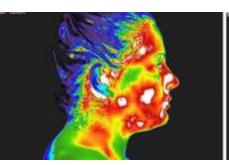
²RT thermal Inc., 7167 Elkhorn Dr., West Palm Beach, FL. 33411 USA

³Visiooimage Inc., 2560, Rue Lapointe, Sainte-Foy, G1W 1A8, Quebec City, Canada

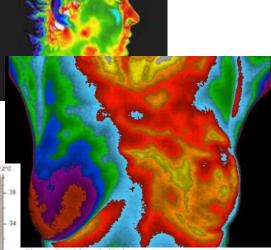
Presenter: Xavier Maldague Canada Research Chair in Multipolar Infrared Vision

September 2015

Outline


- Introduction
- Problem statement
- Finding the fabric which has good transmissivity
- Experimental setup
- Simulation results
- Conclusion

Introduction

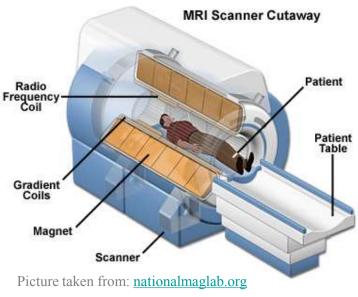

- Some thermography medical applications:
 - Breast cancer
 - Dermatology
 - Avian flu
 - Dentistry
 - Psychology
 - Prevention

Picture adopted from: cimwellness.com

Picture taken from: <u>www.alternavox.net</u> study conducted at the University of Granada Department of Experimental Psychology

22 Picture adopted from: docblock.com

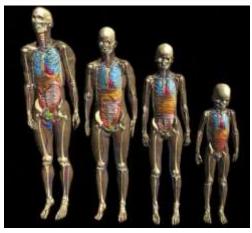
Over heating in Medical Rediology


Nuclear Magnetic Resonance Imaging(NMR)

Picture adopted from: nablude dentists.blogspot.com

- Magnetic Resonance Imaging(MRI)
- Positron Emission Tomography (PET)

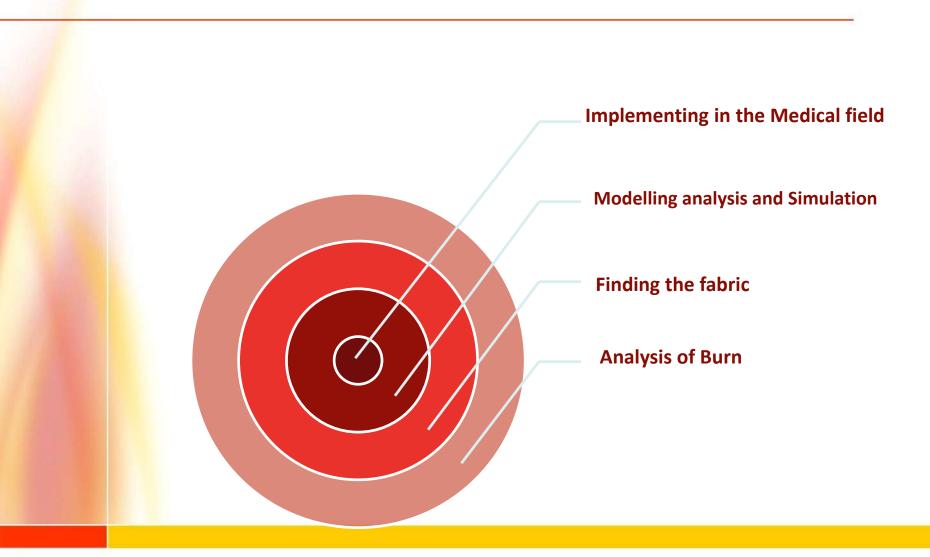

Picture taken from: science.howstuffworks.com



Why Over heating Occurs

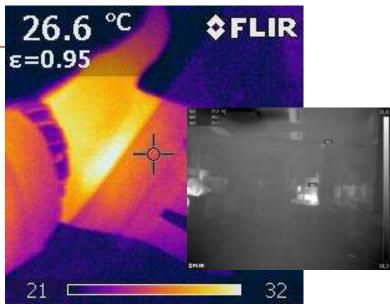
- Disparity in SAR (un-intentionally)
- High frequency of out patients (Intentionally)
- Having
 - Tattoo
 - Pierce
 - ...

Picture taken from: www.microwavejournal.com


Figure depicts burning after MRI scanning;(A) Lesion of the right hand immediately after the examination. (B) Lesion of the right hand and the skin of the right lateral pelvis 1 week after the examination.(from: Eising, EG, Hughes, J, Nolte, F, Jentzen, W, Bockisch, A (2010)Burn injury by nuclear magnetic resonance imaging, Clinical imaging 34(4), 293-297).

Objective

Finding the fabric

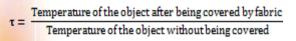

• We can thermally see the human patient body unless we can have good gown material.

• For finding suitable fabric regarding the radiology gown, many experiments with lots of different kinds of materials have been conducted.

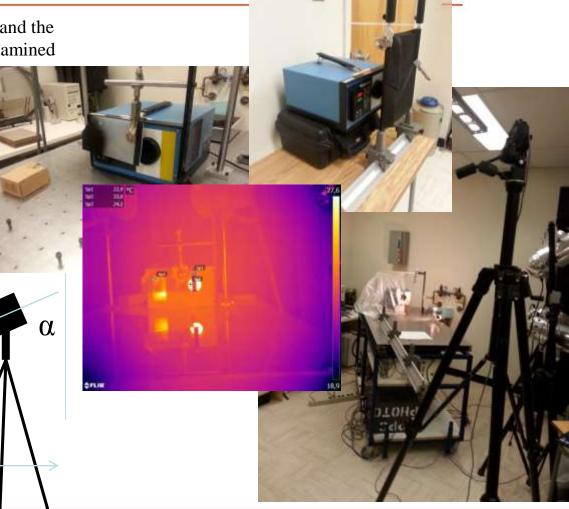
• The target was finding the material which have these conditions:

- Not very expensive: disposable
- Good transmissivity: thermally can be seen through it

• **Comfortable for the patients:** keep the patient warm and good in appearance



Experimental setup-Fabric


• Several different setups have been tested and the transmissivity of the fabrics have been examined even in the angular form.

 $\alpha = \arctan(495/96) * 180 / \pi = 79.02 \circ$

Transmissivity(
$$\tau$$
) = $\frac{28.3}{34.04}$ = 0.83

Distance

Fabric experiments

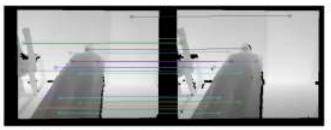
- We have tested more than 50 different possible materials to find the gown.
- The IR cameras we have used in the experiments were:

27,8-22,1 25,4

- A65
- JEOPTIK
 I60

	Fabric name	Temperature before being covered	Temperature after being covered	Transmissivity of the fabric
	1	31.3•C	24.7•C	0.789
	2	31.3•C	24.5°C	0.783
	3	31.3•C	24.5°C	0.783
	4	31.3•C	24.6•C	0.786
	5	31.3•C	24.4•C	0.779
	6	31.3•C	24.8•C	0.792
	7	31.3°C	24.4°C	0.779
	8	31.3°C	23.7°C	0.757
64,1	9	31.3°C	23.8°C	0.7603
	10	31.3°C	24.0°C	0.767
	11	31.3•C	24.7•C	0.789
	13	31.3•C	24.6°C	0.786
	14	31.3•C	24.5°C	0.783
	15	31.3•C	27.0•C	0.862
	16	31.3•C	26.4°C	0.843
	17	31.3•C	26.1°C	0.834
	18	31.3°C	25.5°C	0.815
	19	31.3•C	25.3°C	0.808
	20	31.3•C	24.6°C	0.786
	21	31.3•C	25.0•C	0.799
	22	31.3•C	28.3°C	0.904
	23	31.3•C	25.2°C	0.805
	24	31.3•C	25.0°C	0.798
38,0	25	31.3•C	24.6°C	0.786
	26	31.3•C	24.5°C	0.783
	27	31.3•C	25.2°C	0.805
	28	31.3•C	24.9°C	0.795
	29	31.3•C	24.9°C	0.795
	30	31.3•C	24.9°C	0.795
	31	31.3•C	24.6°C	0.786
	32	31.3•C	25.0°C	0.798
	33	31.3•C	24.8°C	0.792
	Targeted Fabric	31.3•C	26.9°C	0.85943

Only the results of very last experiment


Modelling analysis and Simulation

There was two system pursued:

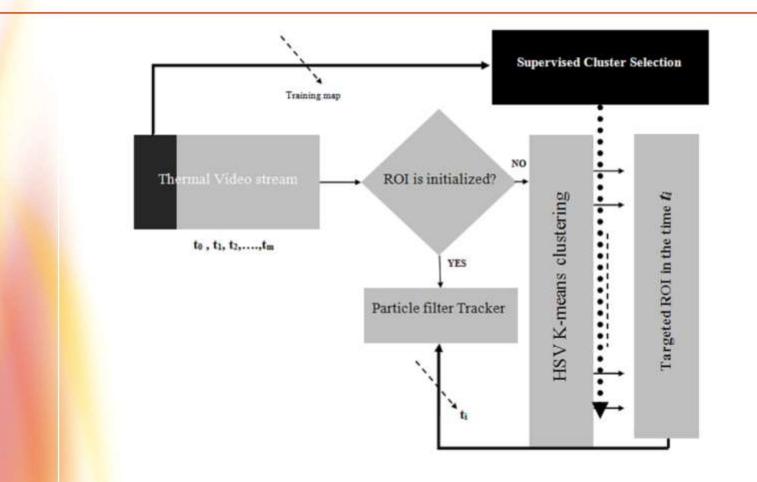
Not related to this paper

- Making 3D model of human patient: (Kinect utilization, Applying SURF, Find most similar keypoints, Applying ICP, Accumulating point clouds and Visualization using PCL converting thermal image into it)
- Making the overheating tracker

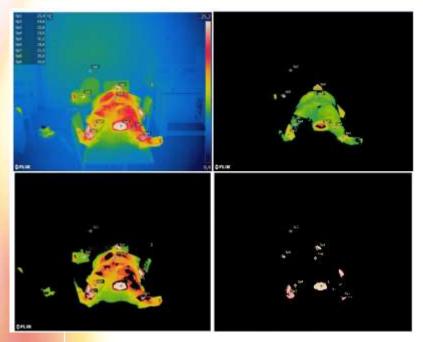
3D model of the human patient

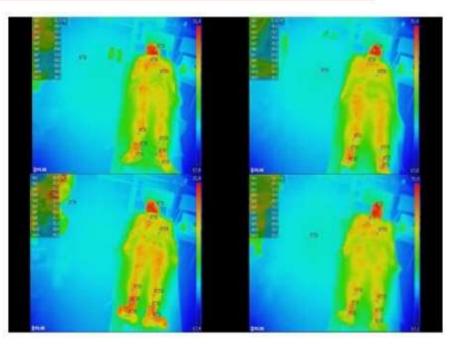
Making the radiology environment

- We have created one room where strived to simulate the radiology environment i.e. Cold room, uncomfortable bed, etc.
- Six participants (co-authors) wore gown(only) and lied down on the bed for 15min.
- Then they passed comfortable test, by answering to the questionnaire prepared for them to report any uncomfortably.


Making the overheating tracker

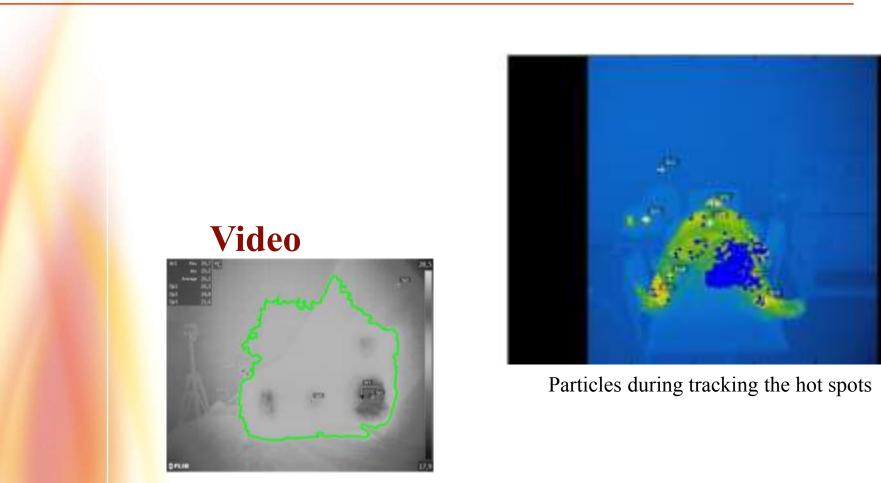
- Finding the thermal changes during the IR video is performing.
- For thermal changes we have used a plate that its temperature can be changed during the time.
- Gathering the thermal video from the subject while the temperature increases as input for the proposed system to track the overheating points.


Tracking Mechanism



Results

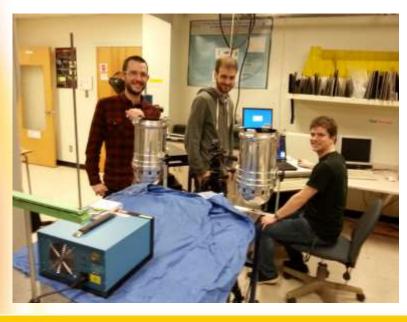
Results of the clustering, different clusters showing different temperature

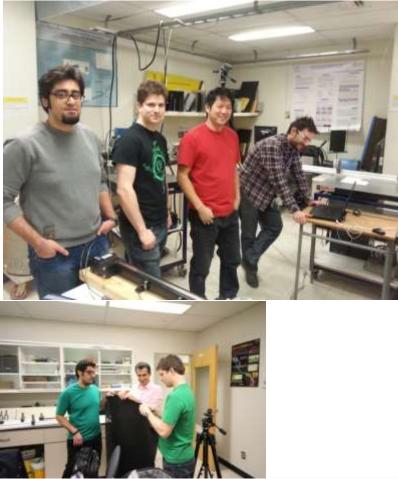


Subjects samples whom participated in the experiment

Results

Even we have used Active contour




Conclusion

- Series of experiments for finding the thermal suitable fabric (for candidate radiological gown) have been conducted.
- Based on information gathered from the experiments suitable fabric has been selected by having following conditions:
 - Has significant thermal property (*i.e.* **Transmissivity**);
 - Cheaper as compare with other fabric materials;
 - Easily available;
 - Has good comfort factors for the patients during the MRI;
 - It does **not easily foldable** so gives good property that we show not be worry about the several layer transmittance;
 - It is warm while has good transmittance so the necessity of blanket will be eliminated.
- A system for tracking the hot spots have been made and performed significant and robust.

Thank you

