
Computer Vision and Systems Laboratory

Faculty of Sciences and Engineering Laval University

Vertex Project

IRIS-III
November 1997

Denis Laurendeau & Denis Poussart
Vertex - Project Coordinators

White Paper on Vertex

Revised, March 1998

2 IRIS Networks of Center of Excellence, Vertex Project

Vertex

IRIS Networks of Center of Excellence, Vertex Project 3

Vertex
Preamble Organization of the document .. 5
CHAPTER 1 Overview of Vertex .. 7
CHAPTER 2 Technical Issues.. 15

2.1 Software engineering approach (overall project) .. 15
2.1.1 Analysis and design... 17
2.1.1.1 Global architecture for Vertex ... 17
2.1.1.2 Research issues .. 17
2.1.2 Prototyping .. 18
2.1.3 Implementation.. 18
2.1.4 Integration ... 18
2.1.5 Reuse ... 19
2.1.6 Documentation .. 19
2.1.7 Object-Oriented issues and Human-Machine Interfaces................................... 19
2.1.7.1 Requirements Engineering: Task Analysis in HMI Design 21
2.2 Analysis and Design Tools.. 24
2.3 Simulation environment and standards ... 24
2.3.1 Software platforms .. 24
2.3.2 Hardware platforms... 25
2.4 Staffing .. 25

CHAPTER 3 Management Issues... 27
3.1 Team management structure ... 27
3.1.1 Steering Committee... 27
3.1.2 Technical Committee .. 27
3.1.3 Technical Staff .. 28
3.1.4 List of members... 28
3.2 Communication ... 28
3.3 Reports... 28
3.4 Bibliography.. 28
3.5 Meetings .. 29
3.6 Technology transfer... 29
3.7 Intellectual property .. 29
3.8 Actions to be undertaken by team members ... 29

CHAPTER 4 Vertex Use Cases.. 31
4.1 Generic Use Cases... 32
4.2 Create Use cases.. 33
4.3 Abort Use Cases .. 34
4.4 Visualization Use Cases .. 35
4.5 Design Use Cases .. 36
4.6 Modify Use Cases ... 37
4.7 Save Use Cases.. 38
4.8 Load Use Cases ... 39
4.9 Delete Use Cases ... 40

4 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.10 Analyse Use Cases .. 41
4.11 Error Use Cases ... 42
4.12 Generic Use Cases - Complete and detailed description................................... 43
4.13 Create Use cases - Complete and Detailed Description 51
4.14 Abort Use Cases - Complete and Detailed Description 62
4.15 Visualization Use Cases - Complete and Detailed Description 73
4.16 Design Use Cases - Complete and Detailed Description 91
4.17 Modify Use Cases - Complete and Detailed description 105
4.18 Save Use Cases - Complete and Detailed Description.................................... 116
4.19 Load Use Cases - Complete and Detailed Description 127
4.20 Delete Use Cases - Complete ande detailed Description 137
4.21 Analyse Use Cases - Complete and Detailed Description 147
4.22 Error Use Cases - Complete and Detailed Descitption 152

CHAPTER 5 References... 157

IRIS Networks of Center of Excellence, Vertex Project 5

Vertex
Preamble Organization of the

document

Vertex involves a large number of people located at different places and
participating in a complex project. In preparation for what may be
envisioned as a very interesting challenge, it is imperative to present a set
of guidelines that all team member should follow at both the technical
and management levels.

This White Paper attempts to present a set of guidelines that, in our
opinion, will help the Vertex team to i) meet its objectives, ii) allow a
smooth integration of the different modules and iii) ease technology
transfer between the universities and the industrial partners.

CHAPTER 1 presents a quick overview of Vertex’s modules and sub-
systems. This chapter is a basis for discussion and will certainly undergo
major changes in the initial phases of the project. CHAPTER 2 presents
guidelines relative to the technical aspects of Vertex while CHAPTER 3
covers management issues. The suggestions of team members are
welcome on both these topics and on other matters that might have been
overlooked. CHAPTER 4 disucsses the use cases for Vertex and is open
for discussion by all team members.

6 IRIS Networks of Center of Excellence, Vertex Project

Vertex

IRIS Networks of Center of Excellence, Vertex Project 7

Vertex
CHAPTER 1 Overview of Vertex

Vertex stands for Virtual Environments: from 3D Representations to Task
Planning and Execution.

The overall goal of Vertex is to design a system that allows to:

1. simulate complex interactions between a site and a group of actors
(tools, etc);

2. plan the optimal sequence of operations in the complex interaction
mentioned in 1.

3. implements the interactions in real-time on an actual site and with
actual actors using the plan mentioned in 2.

Vertex is a complex system that brings together several fields in computer
vision, robotics, human-machine interface and software/systems
engineering. The design of a system of this complexity requires careful
planning and sound engineering practices and methodology. CHAPTER
1 and CHAPTER 1 provide guidelines that should be followed through
the duration of Vertex for the implementations of the various Vertex sub-
systems.

From its user stand point, Vertex is designed to operate in two major
modes:

8 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Planning: where the environment provides resources which support a
strategic view of the targeted task. Alternative scenarios can be explored,
with tools for decision support, leading to the selection an a priori
optimized scenario. This mode, which executes in a simulation context,
operates with soft real-time constraints in order to provide effective
human-machine interaction and realism.

Execution: where Vertex has direct physical linkage to the actual task
undertaking, with a metaphor of teleoperation. Simulation resources are
again put to task, but with hard real-time response and accurate physical
modeling. This phase exploits tools for tactical decision support as well
as “hands-on” telerobotics control.

The primary task which is targeted as a Vertex test case is the
maintenance of underwater facilities, such as hydroelectric dams.
However, the architecture of Vertex is to be as generic as feasible, so as to
be applicable to a range of tasks where a sensitive context - hazard,
danger, cost ... - requires detail strategic, tactical and execution
integration.

Vertex is a large project within the IRIS-3 NCE programme, with a focus
on the development of virtual environments to support both planning and
execution of difficult tasks by remote systems. The tasks will form the
large class of procedures required for the inspection and maintenance of
large underwater facilities. This represents a very large socio-economic
problem, especially when one considers the importance and cost of
maintaining the thousands of hydroelectric facilities and related dams
situated throughout Canada, and especially in the province of Quebec.
Many of these facilities are critically in need of maintenance, yet their
original plans and blueprints may be inaccurate (modifications may not
have been fully documented) or they may be missing completely.
Hydroelectric dams are extremely large and fairly complex structures.
Some of them are now very old, and have begun to take on a life of their
own, with sedimentary and biological deposits, base shifting, crack
propagation, and fractures all occurring continuously.

Inspection and maintenance tasks need to be performed in fairly harsh
environments, where it is not feasible to send humans to the site. Not
only can the operations be dangerous; they can be quite costly. Shutting
down a dam, or even a single large turbine can cost on the order of one
million dollars per day in lost production of energy (and so minutes
spared in procedural efficiencies can translate into thousands of dollars of

IRIS Networks of Center of Excellence, Vertex Project 9

Vertex
savings). Task rehersal and planning using the virtual environments
provided by Vertex will have a very high payback.

We will be integrating tools from phase I and II of IRIS to build virtual
environments (and virtualized interfaces) to support task execution and
planning. In the early stages of IRIS, there was a clear segmentation of
projects into Perception, Reasoning, and Action themes. They serve, not
only as an architecture for autonomous systems, but also as a
symmetrical model for the capacities of a human operator who typically
will be at the heart of the loop of control. This provides a starting point
for considering the design of HMI systems for teleoperative control.

Data will have to be integrated from several different sensing modalities,
and presented in a way that can be easily understood by the human
operator. Underwater vehicles can report their position and attitude, and
can relay back images and sonar range data. Long core samples can be
drilled into the concrete structures to examine the propagation of cracks
by interpolating the cross-sections. Other telemetric sensors (position,
vibration, geothermal) are routinely installed. As data is gathered over
long periods of time, the models of the scene should also support the
construction of behavioural descriptions of the structures and
components, ranging from very long time scales to periods of short
duration.

As these models are gathered over the thousands of sites that need to be
monitored, there will also emerge a need to prioritize and schedule the
inspection and maintenance activities. Concise and informative
presentation of data will be needed to support this administrative burden.

Physical, Mechanical, and Behavioural descriptions need to be
maintained at thousands of sites, and so it will be necessary to prioritize
and schedule the activities at these locations. Concise and informative
presentation of data will be needed to support this administrative burden.
Indeed, this is also true for modeling, development of procedures, and
execution of maintenance operations.

Once tasks have been scheduled, we will enter the phase of execution of
remote procedures. For example, cracks may need to be followed while
epoxy is injected or sediment and other deposits may need to be removed.
These operations will be conducted through various Tele-Operative
modes. Tasks will need to be analysed and decomposed into feasible
blocks, then scheduled and executed. Each of these will be facilitated
through the use of interactive virtual environments. We want to be able to

10 IRIS Networks of Center of Excellence, Vertex Project

Vertex
simultaneously display the current situation (from sensor data, images,
and internal models) as well as predictive outcomes which might arise
from certain actions. This is especially important for time-critical
applications when the communications channel has limited bandwidth
and therefore the network latency is high.

Scenario generation can be conducted within the simulated world before
it is executed in real-time with its associated costs and hazards.
Predictive displays will form the basis of interaction and planning with
the simulated environment; in order to generate operational scenarios and
evaluate their consequences as best as can be modeled (not just at the
level of robot and tool modeling, but also at a high level where the
coupling and interaction among various subtasks in an overall operational
schedule). This will borrow heavily on work from operations research as
well as modeling, simulation, visualization, and efficient human-machine
interaction methods.

For complex tasks, there will be several types of users involved, people
planning the operations, people performing the work, people supervising
the work, and making strategic decisions. Each role may require different
presentations of the information pertaining to the same field situation,
and so it will be important to continually evaluate and refine the way that
this information is being presented to the various users. It is critically
important that we consider the perceptual, perceptual-motor, and
cognitive capacities and constraints of the human operator when we
design Human-Machine Interfaces.

Considering the above context, Figure 1 is an attempt to describe the
Vertex architecture in terms of modules and sub-systems. This description
is by no means definite and should serve as the basis for discussion
among team members.

Some of the important keywords in the Figure include:

Definition 1: site

collection of the objects of interest in a simulation or
intervention. For instance, a dam, a control room. a
penstock are sites which may be of interest for Vertex. As a
class, it is a subset of the world.

IRIS Networks of Center of Excellence, Vertex Project 11

Vertex

Definition 2: user

FIGURE 1 Overview of Vertex architecture

HMI

Site
Construction

Module

Site

Scenario
Authoring
Module

Scenario
Database

Virtual
Representation

Engine

Actor
Authoring
Module

Actors

Actors
Database

Site
Components

Models

Behavior
Authoring
Module

Behaviors
Database

Tools &
Sensors

Database

Simulation Engine

Planning Module

Action Engine

Actual Site Actual ActorsReal-Time
Task

Interaction

12 IRIS Networks of Center of Excellence, Vertex Project

Vertex
individual or collective thereof using the system. For
instance this entity encompasses a strategic planner, or an
“officer-on-the-deck” tactician, or an operator who is
telepiloting a robot through telepresence or exploiting
Vertex in order to train for the task.

Definition 3: object

a component of a site. A site typically contains several
components. Example of components may be a dam, or a
Remotely Operated Vehicle (ROV) which includes tools
which acts upon the dam. General (but not comprehensive)
categories of entities include the scene, tools (“brawn”),
computing engines (“brain”) and human-machine interfaces
(“beauty”).

Definition 4: tool

resource used by a component to interact upon other
components. For instance a drill can be used by the ROV to
drill a hole in a dam.

Definition 5: sensor

a resource is used by a component to extract information
which is relevant to its state, behavior or interaction with its
surround. Such information may be external, for instance
the distance of the ROV with respect to another object
through sonar ranging or about its pose through inertia
sensing. It may be internal, for instance the status of its
battery charge.

Definition 6: model

IRIS Networks of Center of Excellence, Vertex Project 13

Vertex
a software construct that is used to describe properties of
an object of a site. For instance geometry is described by a
3D model; colorimetric appearance is represented by a
colorimetric / texture model.

Definition 7: behavior

A behavior is attached to an object. It models the action of
an object in response to an intervention by another entity
(tool, object, etc). For instance, a behavior can describe a
mechanical or physical property (heat conduction, strength
of material, elasticity, etc). One or more behavior can be
attached to a model. Depending on the Vertex operating
mode, behavior may have to be playable in “soft real-time”,
“hard real-time”, or “faster than real-time (predictive)”.

Definition 8: actor

object or a tool that initiates a behavior on another object.

Definition 9: scenario

sequence of actions and behaviors that are triggered by
actors. A scenario can also respond to probabilistic events
under the control of the user.

A short description of the components in FIGURE 1 is as follows:

1. HMI (Human-Machine Interface): the HMI is responsible for all
interactions between the user and Vertex. The HMI is equipped with a
multimodal interface (visual, haptic, auditory...) which enhances a
realistic and effective interaction with the system.

2. Actors: actors are the components of the simulation that interact on
the site. Actors can be equipped with tools and sensors stored in a
Tools and Sensors Database.

14 IRIS Networks of Center of Excellence, Vertex Project

Vertex
3. Actor Authoring Module: the Actor Authoring Module allows to

create actors that will interact with the Site. The edited actors are
stored in an Actors Database.

4. Site: the component upon which the actors perform their interactions.
The site can be a dam, a ship, a room, etc. An important characteristic
of a site is that it can demonstrate a behavior of some sort.

5. Site construction module: this module is responsible for the
construction of the virtual site through the HMI. The module chooses
scene components from the Models database1 and places these
components in the scene. A behavior can be assigned to scene
components

6. Scenario Authoring Module: this module allows the editing of
scenarios based on the behavior of each scene component and the
behavior of the actors. The edited scenarios are stored in a Scenario
Database.

7. Behavior Authoring Module: this module is responsible for assigning
behaviors to scene components and actors. The available behaviors are
obtained from the Behavior Database.

8. Planning Module: the planning module is responsible for optimal
sequencing of operations in an interaction between the actors and the
site. It uses the outcome of scenarios for the estimation of the best
approach for performing a task on the site.

All the components described above form what is called the Simulation
Engine.

Vertex also contains the Action Engine which is responsible, through the
HMI and with the help of the planning module, to conduct the actual
interaction between the actual actors and the site of interest according to
the plan that was established during the simulation phase.

The above description is incomplete and other utility modules will have
to be added to Vertex in order to ensure its full functionality. The input of
team members is welcome on this topic.

1. Such models are, in part, the output of VRES, an on-going Project at Laval (1997 - 1999)
which targets tools and methods for the rapid production of Virtual Representations of Existing
Sites. This Project deals with (mostly) static 3D geometrical modeling and also involves NRC,
IREQ and Innovemetric Inc.

IRIS Networks of Center of Excellence, Vertex Project 15

Vertex
CHAPTER 2 Technical Issues

2.1 Software engineering approach (overall project)

Vertex involves the development and the integration of large software
modules in each area covered by the Project. It seems that only a sound
Object-Oriented software development process will allow a smooth
integration of the research work performed by each sub-team. We thus
propose to adopt the Booch OOA/OOD development process for the
software implementation of Vertex [1]. In this approach, a project is
divided in four steps at the macro-level:

1. establish core requirements;

2. model the behavior of the system (analysis);

3. create the architecture of the system (design);

4. evolve the implementation;

5. manage evolution (maintenance);

Steps 1 through 4 must be covered in Vertex. Step 5 is less significant
since it applies to commercial software products.

A central tenet of Vertex is that its design and implementation adheres to
a user-centric approach, i.e. that the user needs play a key role at all of
the steps above.

In the start-up phase of Vertex, the team will have to establish clearly
what Vertex should do and what it should not do. The proposal that was

16 IRIS Networks of Center of Excellence, Vertex Project

Vertex
submitted to IRIS (and the diagram shown in FIGURE 1 of CHAPTER
1) will serve as a starting point for this definition but it is clear that it is
not a detailed enough document on which the project should be based. A
Class Dictionary and Functional Points Dictionary is currently being
developed and will be accessible for all team member to comment and
improve.

Definition 10: Class dictionary

list of abstractions that are relevant to a problem and that
can be described by a category in an object oriented
language.

Definition 11: Functional points (or

Use-case) dictionary

a functional point of a a system is a visible and verifiable
behavior of the system when used by either a human
operator or another software component. The overall
behavior of the system is the collection of its functional
points.

Once the requirements for Vertex are established, the strategy is to plan
the architecture and design of the global system and to organize these
modeling and design steps into a set of releases for the system, each
release being an iterative and incremental improvement on functionality
and structure of the previous one.

It is intended to schedule a new release every 6 months. Each release will
serve as a constantly evolving demo of Vertex and will allow to detect the
flaws in the architecture of the system and in the underlying algorithms.
A 6 month deadline for each release may seem a difficult milestone to
reach. It must be understood that early releases of the system will have
very limited functionality (if any functionality at all) but will nevertheless
demonstrate the actual status of the project. Such a release schedule is
also a strong incentive for adopting sound software engineering practices
in order to ensure smooth integration of new functionality to the existing
system. It is also a good method to stimulate team members to keep focus

IRIS Networks of Center of Excellence, Vertex Project 17

Vertex
on their respective tasks as well as on the impact of these tasks over the
entire project. Finally, the latest release can always serve as a demo.

Such a process of staged demos will help everyone involved maintain a
focused view on the “big picture”. Demos will also be a key driving force
in the feedback loop of iterative design.

2.1.1 Analysis and design

The analysis and design of the system are two very important activities of
Vertex. It is thus important to define guidelines describing each activity.

2.1.1.1 Global architecture for Vertex

Vertex software will be implemented using an Object Oriented approach.
The architecture of the system including its class hierarchy, class
diagrams, object diagrams, scenarios, and module diagrams will be
designed using a top-down approach in order to define the global
architecture of the system.

By global architecture, we imply the macroscopic behavior of the Vertex
system and its basic (and essential) functional points. These functional
points are closely related to the core system requirements mentioned at
the beginning of Section 2.1.

The structure of the global architecture of Vertex will guide the
researchers in their implementation of the functional points that will be
integrated in the different releases of the system. Of course, these
functional points will be implemented through active research on the
scientific problems specific to Vertex. It is important to stress the fact that
the design of a system such as Vertex is a research problem in itself and it
is of utmost importance that the design of this architecture should not be
“exploded” among team members. We thus propose that the global
architecture of Vertex be designed by a limited number of individuals.
This does not mean that the suggestions of team members will not be
taken into account. Quite the opposite! After all, team work is all Vertex
is all about. It simply means that the software architecture should be
maintained by a limited number of persons who take into account the
input of each team member but who also have to make the trade-off
between possibly conflicting suggestions.

2.1.1.2 Research issues

As mentioned in Section 2.1.1.1 above, the functional points of Vertex
will be the result of the fundamental research pursued in the specific

18 IRIS Networks of Center of Excellence, Vertex Project

Vertex
areas explored by team members. Research on this specific topics
fundamentally adopts a bottom-up approach since paradigms, algorithms,
etc..., must be tested separately in order to evaluate their performance and
robustness as well as their capacity to meet Vertex’s requirements.
Research results should be integrated in a Vertex release only when these
important characteristics of reliability, robustness, and functionality are
met1 up to a level that is satisfactory for planning the next release. Testing
will be performed by the system users and the test engineer2. The testing
will be performed by reviewing the functional points and by verifying
that the system’s behavior meet the desired behavior for each functional
point. By keeping in mind the global architecture of Vertex, bottom-up
solutions will be easier to integrate since they will have to adopt this
architecture from the start3.

2.1.2 Prototyping

The validity of an approach or idea is better evaluated through rapid
prototyping of solutions. These prototypes should be implemented in the
form and with the tools that are the best suited for the problem4.
However, such prototypes should never be (and will never be) integrated
in Vertex as such. It is thus important that team members keep in mind
that prototyping should be a vehicle to test ideas and should not be
considered as the end product of Vertex. Vertex will not be the integration
of separate prototypes.

2.1.3 Implementation

The algorithms validated through prototyping will have to be
implemented according to the guidelines provided by the global
architecture of Vertex. A set of programming standards will be
established once the software platforms are chosen (see Section 2.3).

2.1.4 Integration

The integration of the various functional points will be performed by
research engineers under the guidance of the team members. The

1. We could also mention computational tractability as an important characteristic.

2. Who must be different from the software architect and designer.

3. Of course, the architecture will have to evolve in the development process. However, if this
architecture is well thought right from the start, only incremental changes should be brought to the
basic structure of Vertex.

4. For instance, Matlab is sometimes a very good tool for prototyping parts of algorithms.

IRIS Networks of Center of Excellence, Vertex Project 19

Vertex
integrated releases of Vertex will be available to all team members for
demos and as a basis for discussion for the next releases.

2.1.5 Reuse

Vertex classes should be designed with a constant concern for their
potential for reuse. The effort (and money!) that will be put into Vertex
should be used optimally since we all hope to get the 3-year extension(!)
and that the work in this last three years will be easier if code can be
reused.

2.1.6 Documentation

The class hierarchy, class diagrams, class library, object diagrams,
module diagrams and scenarios will have to be clearly documented. We
have been evaluating several CASE tools for OO-development and OO-
documentation. Among these tools, Rational Rose 4.0 appears to be a
very interesting OO development tool since it produces coherent
documentation on all diagram that are built during the analysis / design
phase. It also allows round-trip software engineering, a very interesting
feature1.

We will also build a class library with a class browser so team members
will be able to check whether they could reuse classes designed by other
members.

The most crucial information should be available through a Web-based
repository, so that network-wide development can take place throughout
the Vertex community. We are currently evaluating ways to make this, as
well as other Vertex material, available in this way.

2.1.7 Object-Oriented issues and Human-Machine Interfaces

In a long-term project as large and geographically distributed as is Vertex,
Software Engineering methodologies are critical for success. These
techniques support the design and evolution of each component as well as
the integration into a complete system. We would like to begin by
focussing on how Object-Oriented design methods can be extended to
incorporate the user-centred constraints imposed by the task and the
system user. We wish to embrace this approach, in particular, for the

1. Round-trip engineering implies that the documentation and code can be produced from Rose
diagrams and that the diagrams can be updated from code that has been developed.

20 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Human-Machine Interface layer of each of these components. As Vertex
project participants develop systems and software, the UWO role will be
to coordinate the user interface components. We wish to address a
critical tension between the user-centred design constraints, and the
system-centric constraints imposed by the technology of the interface and
the target systems. Furthermore, we need to have a systematic approach
in order to channel the results of each interdependent project activity into
an integrated system. To do otherwise would be to risk the possibility
that, at the end of the day, our efforts come across like a set of
disconnected demos. The design of the HMI components of the Vertex
project need to be managed within a Software Engineering process which
complements the design of all other system components.

This idea is consonant with formal methods which are emerging in the
literature on UI design (cf. Harmelen et. al., 1997) which encompass the
entire process that is required in order to design a user interface. This is
an activity which involves the designers, users, evaluators, supervisors,
and programmers. Each of these individuals have distinct roles, and the
information that each of them deals with will certainly have different
formats and procedures; yet each plays an important part in shaping a
description which leads to the design and implementation of the system
and its user interface.

Consider some of the basic entities that are central to the design process
for a simple Human-Machine Interface. One way is to begin with the
user (in the spirit of user-centred design, which will be stressed
throughout the process). The role of the user is to accomplish tasks
within some problem domain. To do so, they will make use of abstract
tools -- things which are relevant to the task -- and because this
methodology is suitable for a wide variety of applications, these entities
will be labelled quite generically as ’Referents’.

In the user interface, the referents will be represented by objects that must
be implemented by the UI and supporting system. The user-centred
process for UI design begins with the UI designer meeting with typical
users of the system through a process of formal enquiry. The goal is to
produce formal descriptions of the abstract entities in the problem
domain. The formal descriptions are a high level (abstract class) type of
information about the overall system. The Object Model is a subtype of
information, whose contents inherit their structure from the abstract
descriptions, but which carry more concrete details leading towards an
implementation in a computational system. Through aggregation, the
Object Model is composed of classical ‘Objects’ (the abstract entities that

IRIS Networks of Center of Excellence, Vertex Project 21

Vertex
get implemented and supported by the UI system). It is a feature of this
Object-Oriented approach that these entities will be sufficiently abstract
so as to include: things within the physical world, things existing in the
user interface, things about the task itself, and things involving the users
themselves. These are representations of the ‘Referents’, which allows
us to close the design loop back to the user.

2.1.7.1 Requirements Engineering: Task Analysis in HMI Design

We have chosen to focus on two methods which have been proposed to
elicit formal descriptions of entities and objects of the task through an
active process between the user and the designer; namely, Use Cases and
Usage Scenarios.

2.1.7.1.1 Use Cases

One way to characterize the overall functionality of a system is to
exhaustively list the set of all interactions between each agent and the
system itself. Each action or transaction can be described by a ‘‘use
case’’ (cf. Jacobson et al., 1992). In the initial phase of a design process,
the overall system does not exist, and so its entire functionality cannot be
fully appreciated. However; it is often possible to bootstrap the
implementation of a system prototype by carefully itemizing an initial set
of typical use cases. As the system evolves, the goal is to expand the list
of use cases to account for all functional roles which may be invoked by
any particular actor or system component. As an example, consider the
follwing initial use cases which describe the functionality of a very
simple system prototype.

Identifying the ‘requirements model’ is only the initial stage of a process
of iterative specification and refinement of the analysis model for the
system. As the overall structure of use cases begins to take shape, some
use cases can be split into more specific instances and then elabourated.
A good example of this (modified from Jacobson et al, p.164) would be
the situation in which any robot motion is blocked by an obstacle. This
becomes a use case which extends the Explore Environment description.
When the robot path is blocked and the obstacle cannot be avoided
automatically, and alarm should be sent to the Operator. The Operator
can then control the robot manually to move it to a free point in the
configuration space (by having switched to a real-time control mode).
Control can then be passed back to the automated environment
exploration mode. In the Use Case model, an extension association

22 IRIS Networks of Center of Excellence, Vertex Project

Vertex
(drawn with a dashed arrow) is setup, and the use case description for
‘‘Robot Blocked by Obstacle’’ may be specified.

For each use case, the descriptions should be expanded until the basic
course of action emerges with a clear flow (alternative courses of action
can also be specified for certain error conditions). A feature of this
approach is that if the initial requirements were underspecified initially,
critical details will be noticeably missing at this point, and automatically
call for tightening up. This is an efficient design method, since only the
critical functions will present themselves first to be fleshed out in more
detail.

2.1.7.1.2 Usage Scenarios

Mary Beth Rosson (1997) suggests the adoption of a related approach to
Use Cases, called ‘‘Usage Scenarios’’ as a method for integrating task
analysis with object-oriented Software Engineering. At the heart of the
method is the itemization of a list of scenarios, taken from a process of
formal enquiry with current and future users of the system. The
scenarios initially have a functional characteristic. They are meant to
capture basic actions, goals, and tasks within the problem domain,
without capturing any details about the look-and-feel of the user interface
or the system being controlled. Example scenarios within the Vertex
domain might include:

2.1.7.1.3 ‘Noun Analysis’ and Object Models

Abbott (1983) was one of the first to suggest that, in an object-based
approach to programming, the critical entities could be identified by first
writing a textual description of the problem, and then identifying the
nouns and verbs in the text. The nouns would correspond to the salient
objects in the system, and the verbs would correspond to the actions to be
performed on those objects.

 Sample Usage Scenarios for Vertex Problem Domain

GOAL Move robot to specified viewpoint.

GOAL Move robot-2 to location relative to robot-1.

DISCOVERY New feature seen in view-2.

GOAL Initialize sweep of area with robot-2 and robot-3.

EVENT Operator requests help with recognizing feature X.

TASK Launch sensory-motor procedure ABC at relative loca-
tion P.

IRIS Networks of Center of Excellence, Vertex Project 23

Vertex
Once a collection of Use Cases or Usage Scenarios has been established
and refined, the next step is to identify the entities within the problem
domain. This can be done by picking the nouns from the scenarios.
These entities becom the potential objects that need to be supported in the
user interface. From the scenarios listed above, these would form a list
that could evolve along the following initial entities:

• Robot_i

• Operator_j

• WorldFeature_K

• ImageFeature_k

• Location(x,y,z)

• Location (relative (Point W))

The Wirfs-Brock (1989) approach to Object-Oriented design is then
applied in Rosson’s ‘Scenario Browser’ technique (called ‘Point-of-
View’ analysis) which establishes an anthropomorphic vantage point for
the distinct entities that arise from the object-based analysis. To be more
specific, each entity is considered in turn, and a description of ‘what it
would be like to be that object’ is articulated. In essence, this can consist
of descriptive text such as,

 ‘‘I am robot(i). I am inactive until I awake to event(y). I receive my
commands from operator(j). My task is to move according to the
specified direction. If I depart from my prescribed threshold by more
than Q metres, I will stop and signal an alert. I will relay a stream of
images using the communications link’’

This allows us to identify the processes and functions embodied by each
of the entities. Each of these object points-of-view can make reference to
previously undiscovered entities, which should then be added to the list
of objects. As these are added, a network of collaborating objects can be
constructed, which establishes the foundation for the object-based
method. Through further analysis, different uses for the same object can
emerge and/or multiple related instances can be merged and abstracted
into appropriate class hierarchies. In addition to the associations setup
between each of the objects, their individual roles are identified. This is a
critical step which leads to the identification of the functions and
methods which will need to be implemented.

24 IRIS Networks of Center of Excellence, Vertex Project

Vertex
2.2 Analysis and Design Tools

The different models, diagrams, as well as the documentation mentioned
in earlier Sections will have to be designed and maintained with proper
OO Software development tools. Rational Rose 4.0 has been chosen as
the OO Software design and analysis tool. This software is currently
being used at Laval1 and has proved to be very promising. Rose allows
for the design and documentation of Use-Cases, class diagrams, object
diagrams, interaction diagrams, etc. It allows code generation and round-
trip engineering. Furthermore, it runs on Windows 95/NT-4 and Unix
platforms. Under educational discount, the NT version can be bought for
800$ and the Unix version (1 token) for ~2500$. Each team member is
encouraged to buy the software early in the project and use it for all
software design/analysis of Vertex’s modules.

2.3 Simulation environment and standards

2.3.1 Software platforms

We have also been investigating several Virtual Reality authoring
software modules. Among others 3D Studio Max has been tested for the
construction of 3D scenes with texture mapping and found to be quite
attractive. Plug-ins have been developed within LVSN and its VRES
Project for intelligent user-guided stereo matching and 3D scene graph
generation. Additional plug-ins are being developed for the simulation of
range finders. World Toolkit and the distributed WorldtoWorld
environment by Sense 8 are currently being tested for similar issues.

The overall software platform should encompass a number of qualities,
including

• extensible architecture

• capable of supporting distributed processing, with effective
communication semantics

• supportive of and supported by open standards

• capable of supporting soft real time and linking to hard real-time
resources.

1. Rational Rose C++ Version 4.0

IRIS Networks of Center of Excellence, Vertex Project 25

Vertex
We have been in contact with researchers in the community who have
suggested other platforms that will have to be investigated1. It should be
stressed that these qualities do not have to be fully available in the
prototyping phases. They rather have to be kept as requirements for the
ultimate implementation of Vertex and therefore considered right from
the beginning of the Project.

At some point, the team will probably have to consider to use ORB
technology (and related HLA technologies) for simulations that will
require intensive computing resources.

2.3.2 Hardware platforms

Even though it seems premature to discuss hardware platforms at this
stage, the team will have to consider this issue early on since early
releases of Vertex will certainly demonstrate the limitations of current
hardware. While Unix (Sun, SGI, Linux) are highly relevant platforms,
the emerging importance of WinNT - with its rapid growth in OpenGL
graphics - will also have to recognized. Furthermore, since Vertex has a
real-time component, real-time OS will also be involved. At LVSN we
have had extensive experience with QNX and IREQ and CRIM are also
using it. Vertex will require a careful analysis of hardware requirements,
including special components ranging from HMI interface to ROV
sensing and communication.

2.4 Staffing

The research work and prototype development will be performed by
graduate students and team members. However, it is doubtful that an
integrated system can be assembled by graduate students. Experience has
shown that it is difficult top accomplish a complete product by using
prototypes. For this reason, a software engineer will be responsible for
integrating the research results for each release of Vertex. This justifies
even more the requirements for the use of a sound software engineering
approach by each team member.

1. For instance the Bamboo system being developed at the Naval Postgraduate School is an
attractive candidate. See http://npsnet.nps.navy.mil/Bamboo/papers.html. The ACE environment
for communications among distributed components is also relevant. See http://www.cs.wustl.edu/
~schmidt/ACE.html.

26 IRIS Networks of Center of Excellence, Vertex Project

Vertex

IRIS Networks of Center of Excellence, Vertex Project 27

Vertex
CHAPTER 3 Management Issues

The size of the Vertex team and the level of complexity of the scientific
problems that are tackled impose the adoption of a flexible yet efficient
management structure as well as clearly defined responsibilities.

3.1 Team management structure

Vertex is not a business and should not be run as such. However, the
importance of the project and the mode into which all team members
must learn to operate is new and we must make sure that all members are
constantly informed of the orientation of the project.

3.1.1 Steering Committee

The strategic orientations of Vertex, the budget, and other general
management issues should be discussed by a steering committee
composed of Vertex Principal Investigators, Vertex industrial partners and
Vertex staff.

3.1.2 Technical Committee

The responsibilities of the technical committee will focus on scientific,
engineering, and technical issues on all aspects of Vertex.

28 IRIS Networks of Center of Excellence, Vertex Project

Vertex
3.1.3 Technical Staff

Vertex Project Leaders and Principal Investigators will be responsible for
supervising major Vertex activities, permanent technical staff will be
responsible for the follow-up of daily activities. An important task that
Project leaders will have to carry on as Vertex officially starts will be to
hire this technical staff.

3.1.4 List of members

A list of Vertex member will be kept and updated regularly. Principal
Investigators should communicate staff changes to the Project Leaders.

3.2 Communication

Important issues will have to be discussed during team meetings.
However, taking into account that the team members are located all
across the country and that it is almost impossible to schedule frequent
meetings, issues of less importance will have to be taken care of by usual
communications techniques such as e-mail (for exchanging ideas and
opinions as well as objections!) and electronic transfers (for code,
documentation, web pages, etc...). We should exploit video conferencing
as it becomes more readily available. Phone seems to be the worst
communication system ...

3.3 Reports

Vertex will have to maintain a repository for “corporate” as well as
technical information. An electronic repository seems to be the most
appropriate since the team is distributed in several locations.
Consequently, all theses, reports, and other documents should be made
available to the team in electronic format (preferably PDF files). A Vertex
web site, with a public area as well as sections which are restricted to
Vextex members will be available. Copyright issues will have to be
discussed prior to the disclosure of any document.

3.4 Bibliography

As for reports, Vertex should keep a record of all pertinent references to
papers, reports, theses that are used in the development of the functional
points. This will be important for writing reports, papers, quarterly
progress reports and so on. It is not yet clear how this database of

IRIS Networks of Center of Excellence, Vertex Project 29

Vertex
references will be implemented but it should be accessible (for deposit
and retrieval of data) by all team members.

3.5 Meetings

To be completed

3.6 Technology transfer

To be completed

3.7 Intellectual property

To be completed

3.8 Actions to be undertaken by team members

After reading this draft the Vertex Principle Investigators are expected to
take the following actions:

1. Return comments, suggestions, additions, corrections to this docu-
ment, which should be understood as a work-in-progress to be
enhanced after this initial release.

2. Prepare a description of the technical problems that they will
addressed based on the basis of the area of contribution listed in the
original Vertex proposal, the contents of the White Paper and the
generic problem description that is outlined in FIGURE 1.

3. Provide a list of students that are expected to work on Vertex so we can
prepare a complete list of members.

4. Return the information above to laurend@gel.ulaval.ca, poussart
@gel.ulaval.ca and cedras@gel.ulaval.ca.

5. A meeting of the PI’s will be arranged at the IRIS Conference in June
1998. Other meetings will take place in the meantime.

Denis Laurendeau and Denis Poussart

March 1998

30 IRIS Networks of Center of Excellence, Vertex Project

Vertex

IRIS Networks of Center of Excellence, Vertex Project 31

Vertex
CHAPTER 4 Vertex Use Cases

The following is an attempt to define a set of Use-cases in UML format
for Vertex. Major use-case diagrams of the main functionalities of Vertex
are illustrated and their preliminary specifications are given.

The UML diagrams are given along with general comments. The
complete description of the use cases can be found at the end of the
chapter.

32 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.1 Generic Use Cases

The General Use case diagram shows the most important functionalities
that Vertex should address. Each Use-case in this diagram is covered in
more details in the following sections.

In the above diagram, all major generic interactions between the user and
the Vertex system are shown:

1. CreateGeneric: use case for the creation of any instance in Vertex;

2. DesignGeneric: use case for the design of any instance in Vertex;

3. ModifyGeneric: use case for the modification of a previously created
and designed instance in Vertex;

4. AbortGeneric: use case for the abortion of any interaction between the
user and Vertex. Restores the previous state of the system prior to any
modification.

5. DeleteGeneric: use case for deleting any instance previously cretated-
designed-modified in Vertex.

ModifyGeneric

AnalyseGeneric

DeleteGeneric

DesignGeneric

AbortGeneric

User

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

CreateGeneric<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 33

Vertex
4.2 Create Use cases

These use cases are concerned with the creation of instances of Vertex
elements.

CreateModel

CreateScenario CreateDemo

Create

Visualisation

CreatePlan

CreateWorkSession

CreateSimulation

CreateBehavior

User CreateGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

34 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.3 Abort Use Cases

These use cases are concerned with the abortion of interactions between
the user and the Vertex system.

AbortModelCreation

AbortScenario
Creation

AbortSimulation

Creation

AbortDemoCreation

AbortVisualisation
Creation

ABortPlanCreation
AbortWorkSession

Creation

AbortBehavior
Creation

User

AbortGeneric

<<extends>><<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>><<extends>>

<<extends>>

<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 35

Vertex
4.4 Visualization Use Cases

These use cases deal with the visualization of elements in Vertex.

Visualize2DSequence

Visualize3DSequence

Visualize2DModel

Visualize3DModel

Visualize2DImage

Visualize3DImage

VisualizeScene

VisualizeObject

VisualizeSequence

<<extends>>

<<extends>>

VisualizeDataBase

VisualizePlan
VisualizeModel

<<extends>>

<<extends>>

VisualizeImage

<<extends>>

VisualizeDemo

VisualizeBehavior

<<extends>>
VisualizeGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

User

<<uses>>

36 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.5 Design Use Cases

These use cases are concerned with the design of elements in Vertex

DesignScenario

DesignModel

DesignScene

DesignSequence

DesignWorkSession

DesignBehavior

DesignPlan

DesignDemo

DesignSimulation

User
DesignGeneric

<<extends>>

<<extends>> <<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>><<uses>>

IRIS Networks of Center of Excellence, Vertex Project 37

Vertex
4.6 Modify Use Cases

These use cases are concerned with the modification of elements that
were created-designed in Vertex

DesignModel

ModifyModel

<<uses>>
DesignScenario

ModifyScenario

<<uses>>

DesignScene

ModifyScene

<<uses>>

DesignSequence

ModifySequence

<<uses>>

DesignBehavior

ModifyBehavior

<<uses>>

DesignDemo

ModifyDemo <<uses>>

DesignPlan

ModifyPlan

<<uses>>

DesignWorkSession

ModifyWorkSession

<<uses>>

User ModifyGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

38 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.7 Save Use Cases

These use cases deal with the action of saving work performed during a
Vertex Session.

SaveScenario

SaveModel

SaveSequence

SaveBehavior

SaveDemo

SavePlan

SaveWorkSession

User

SaveGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 39

Vertex
4.8 Load Use Cases

These use cases are concerned with the action of loading previously
saved operations in Vertex.

LoadScenario

LoadModel

LoadSequence

LoadBehavior

LoadDemo

LoadPlan

LoadWorkSession

User LoadGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

40 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.9 Delete Use Cases

These use cases are coincerned with the deletion of elements that were
previously created-designed-modified in Vertex.

DeleteScenario DeleteModel

DeleteSequence

DeleteBehavior

DeleteDemo
DeletePlan

DeleteWorkSession

User DeleteGeneric

<<exten ds>>

<<extends>>

<<extends>><<extends>>

<<extends>>

<<extends>>
<<extends>>

<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 41

Vertex
4.10 Analyse Use Cases

These use cases are concerned with the analysis of asequence of
operations in Vertex.

AnalyseSimulation

AnalyseWorkSession

User

AnalyseGeneric

<<extends>>

<<extends>>

<<uses>>

42 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.11 Error Use Cases

These use cases are concerned with the processing of errors / exceptions
in the course of a Vertex manipulation.

ErrorProcess

User

<<uses>>

ErrorThrow<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 43

Vertex

Use Cases - Complete and Detailed Description

4.12 Generic Use Cases - Complete and detailed
description

ModifyGeneric

AnalyseGeneric

DeleteGeneric

DesignGeneric

AbortGeneric

User

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

CreateGeneric<<uses>>

44 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 45

Vertex
 Use Case name:
 DesignGeneric

 Category: Use Case View
 Documentation:
 Generic use case for designing VRES/Vertex elements.
 In design mode, the user wants to use raw data in
 order to build components of the world into which a
 simulated intervention will take place. Most of the
 specific use cases in the Design category are still
 vague and need more interaction with team members in
 order to get a more precise description.They will be
 discussed and documented in the upcoming months

 Flow of events
 A- Preconditions
 The execution of the appropriate Create use case must
 have been executed prior the related Design use case.
 B- Main flow of events
 This use case begins when the user selects the Design
 mode in VRES/Vertex. The system enters the generic
 Design mode and prompts the user for the element he
 wants to design. A list of "designable" elements could
 be provided in a browsing window in order to assist
 the user in his choice. The user chooses an element.
 The system enters in the appropriate design mode for
 this element (design modes may be different for
 models, behaviors, etc. See corresponding use cases
 for the design of each element category). The user
 performs the required design operations on the data
 and exits the design mode (he can save his work with
 the Save use cases).
 C- Subflows
 None
 D- Alternative flows
 The user should be allowed to exit the design mode if
 he changes his mind and return to the environment.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

46 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 CreateGeneric

 Category: Use Case View
 Documentation:
 Generic use case for the creation of an element in
 VRES/Vertex. It is a very general and abstract use
 case that should capture the general operations that
 are relevant to the creation of an element in
 VRES/Vertex.

 Flow of events
 A- Preconditions
 The VRES/Vertex environment must be running and
 waiting for user input.
 B. Main flow of events
 The use case begins when the user wants to create a new
 element in VRES/Vertex. An element is a generic
 component of the system. See specific use cases for
 the enumeration of the elements.The user should input
 the "create element" command in the HMI in order to
 initiate the CreateGeneric use case.The VRES/Vertex
 environment then enters the mode for the creation of
 elements. The commands he can enter while in this mode
 depend on the element that is created. See specific
 use cases for a description of these commands.
 C. Subflows
 None
 D. Alternative flows
 a-The user should be able to exit the "create mode"
 without having to create anything if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 47

Vertex
 Use Case name:
 AbortGeneric

 Category: Use Case View
 Documentation:
 Generic use case for aborting a task in VRES/Vertex.
 It is a very general and abstract use case that should
 capture the general operations that are relevant to
 aborting a task in VRES/Vertex.

 Flow of events
 A- Preconditions
 The VRES/Vertex environment must be running and
 waiting for user input.
 B. Main flow of events
 The use case begins when the user wants to abort a
 task he has begun without saving his work. A task is a
 generic task (see all other use cases) that is
 executed by the system. See specific use cases for the
 enumeration of the elements.The user should input the
 "abort" command in the HMI in order to initiate the
 AbortGeneric use case.The VRES/Vertex environment then
 enters the mode for the interruption of tasks without
 saving. The events that occur while aborting a task
 depend on the task at hand and is a subject that is
 discussed in the specific Abort use cases.
 C. Subflows
 None
 D. Alternative flows
 None

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

48 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AnalyseGeneric

 Category: Use Case View
 Documentation:
 Use case for the analysis of actions/results/etc in
 VRES/VERTEX.
 To be defined...

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 49

Vertex
 Use Case name:
 DeleteGeneric

 Category: Use Case View
 Documentation:
 Generic use case for deleting previously
 created/modified VRES/VERTEX elements.

 It is a very general and abstract use case that should
 capture the general operations that are relevant to
 the deletion of an element into a VRES/Vertex
 database. The element is deleted from the current
 environment. A special use case described the
 procedure for deleting an element from a database.

 Flow of events
 A- Preconditions
 An element should have been previously loaded in the
 environment before it can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, the user selects
 (through the HMI) the element he wants to delete. A
 browsing window also displays a list of the elements
 that can be deleted at this moment. The user selects
 one element or type the name of the element he wants
 to delete. The element is deleted by the system and
 informs the user that the element has been deleted
 correctly.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the element he
 wished to delete is not available or that the name
 given in a text field is incorrect (assuming the user
 can choose objects with the mouse or with menus and
 textfields). It would be interesting to allow the user
 to select several elements simultaneously and to have
 them deleted in sequence.
 External Documents:
 Abstract: No
 State machine: No
 Associations:
 <no rolename> : User in association <unnamed> (uses)

50 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ModifyGeneric

 Category: Use Case View
 Documentation:
 Generic use case for modification of
 actions/operations in VRES/VERTEX.

 This use case is very general and should be used for
 modifying existing elements of the environment. See
 specific use cases for details on each different type
 of modification.

 Flow of events

 A- Preconditions
 In order to be modified, an element must have been
 created and designed. It can be loaded in the
 environment or may be stored in the appropriate
 database. If it is stored in the database, the element
 must be loaded into the environment before being
 modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Generic mode in the HMI. The element is brought into
 the environment and displayed on the screen. After
 this step, the remaining operations are the same as
 the ones that are encountered in the DesigGeneric use
 case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 51

Vertex
4.13 Create Use cases - Complete and Detailed

Description

User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor

CreateModel

CreateScenario CreateDemo

Create

Visualisation

CreatePlan

CreateWorkSession

CreateSimulation

CreateBehavior

User CreateGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

52 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 53

Vertex
 Use Case name:
 CreateModel

 Category: Use Case View
 Documentation:
 Use case for creation of a model in VRES/Vertex.
 A model is taken in a very general sense and is
 inherited by mode specific use cases for the creation
 of different models associated with different
 components of VRES/Vertex. For instance a model can
 be a geometric model (e.g. triangulation) that is
 built from raw 3D data.

 Flow of events
 A-Preconditions
 Raw data should be available for creating a model.
 Since the use case deals with the creation of a model,
 the model should not exist before its creation. See
 the "Modify Model" , " DeleteModel", "LoadModel", Save
 Model, or DesignModel" use cases for the manipulation
 of already existing models.
 B-Main flow of events
 The user selects the "CreateModel" command in the HMI
 and the enters the mode for creating a model.
 The user is prompted for the type of model (geometric,
 photometric, ...), for the name of the model and the
 database into which the model should be stored.
 C-Subflows
 None
 D- Alternative flows
 a-The user should be able to exit the "CreateModel"
 use case without having to create anything if he
 wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

54 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 CreateScenario

 Category: Use Case View
 Documentation:
 Use case for the creation of a scenario for a
 simulation in VRES/Vertex. A scenario is used for
 describing the evolution of a simulation in time.

 Flow of events
 A- Preconditions
 a-Models should be available for describing the
 simulation scene.
 b-Behaviors should be available for allowing the user
 to chose from and associate with each model involved
 in the simulation (a "no behavior" behavior could be
 attached to passive objects in the simulation).
 B- Main flow of events
 The user selects the "CreateScenario" command in the
 HMI and the enters the mode for creating a scenario
 The user is asked for the type of scenario (this
 should be refined) , for the name of the scenario and
 the database into which scenario should be stored.
 C- Subflows
 None
 D- Alternative flows

 a-The user should be able to exit the "Create
 Scenario" use case without having to create anything
 if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 C:\laurend\Atop\Recherche\Subventions\Iris_iii\ModelesVRESVertex\use-
Cases.txt
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 55

Vertex
 Use Case name:
 CreateDemo

 Category: Use Case View
 Documentation:
 Use case for creating a demo in VRES/Vertex. A demo is
 a sample simulation run that gathers elements of
 VRES/Vertex and put them at work.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

56 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 CreateVisualisation

 Category: Use Case View
 Documentation:
 This use case is concerned with the visualization of
 an environment/simulation in VRES/Vertex.

 Flow of events
 A-Preconditions
 Since the use case deals with the creation of a
 visualization the visualization should not exist
 before its creation. See the "ModifyVisualization, "
 DeleteVisualization", "LoadVisualization", Save
 Visualizationl, or DesignVisualization" use cases for
 the manipulation of already existing visualizations
 B-Main flow of events
 The user selects the "CreateVisualization" command in
 the HMI and the enters the mode for creating a
 visualization.
 The user is prompted for the name of the visualization
 he wants to create.
 C-Subflows
 None
 D- Alternative flows
 a-The user should be able to exit the "Create
 Visualization" use case without having to create
 anything if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 57

Vertex
 Use Case name:
 CreatePlan

 Category: Use Case View
 Documentation:
 Use case for creating a plan (planning phase) in
 VRES/Vertex. A plan is concerned with the optimization
 of steps in an intervention simulated/executed in
 VRES/Vertex.

 Flow of events
 A- Preconditions
 Since the use case deals with the creation of a plan
 the plan should not exist before its creation. See the
 "Modify Plan, " DeletePlan", "LoadPlan", SavePlan, or
 DesignPlan" use cases for the manipulation of already
 existing plans.
 B-Main flow of events
 The user selects the "CreatePlan" command in the HMI
 and the enters the mode for creating a plan.
 The user is prompted for entering the name of the plan
 and the database into which the plan should be stored.
 C-Subflows
 None
 D- Alternative flows
 a-The user should be able to exit the "CreatePlan"
 use case without having to create anything if he
 wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.
 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

58 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 CreateWorkSession

 Category: Use Case View
 Documentation:
 Use case for initiating a work session in Vertex. This
 use case is concerned with the initialization of the
 VRES/Vertex environment prior to the execution of any
 other use case.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 59

Vertex
 Use Case name:
 CreateSimulation

 Category: Use Case View
 Documentation:
 This use case is interested in the creation of a
 simulation in VRES/Vertex. A simulation encompasses
 several other use cases that are detailed in each
 specific use case.

 Flow of events
 A- Preconditions
 Since the use case deals with the creation of a
 simulation the simulation should not exist before its
 creation. See the "Modify Simulation" Delete
 Simulation", "LoadSimualtion", SaveSimulation, or
 DesignSimulation" use cases for the manipulation of
 simulations.
 B-Main flow of events
 The user selects the "CreateSimulation" command in
 the HMI and the enters the mode for creating a
 simulation
 The user is prompted for entering the name of the
 simulation. It is still to be decided whether a
 simulation will be stored in a database or not.
 C-Subflows
 None
 D- Alternative flows
 a-The user should be able to exit the "Create
 Simulation" use case without having to create
 anything if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 CreateGeneric (extends)

60 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 CreateBehavior

 Category: Use Case View
 Documentation:
 Use case for the creation of a behavior for a model in
 VRES/Vertex. This use case is more specific to Vertex.

 Flow of events
 A-Preconditions
 Since the use case deals with the creation of a
 behavior, the behavior should not exist before its
 creation. See the "ModifyBehavior, "DeleteBehavior",
 "LoadBehavior", SaveBehavior, or DesignBehavior" use
 cases for the manipulation of already existing
 behaviors.
 B-Main flow of events
 The user selects the "CreateBehavior" command in the
 HMI and the enters the mode for creating a behavior.
 The user is prompted for the type of model (physical,
 thermal, ...), for the name of the behavior and the
 database into which the behavior should be stored.
 C-Subflows
 None
 D- Alternative flows
 a-The user should be able to exit the "Create
 Behavior" use case without having to create anything
 if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:

 CreateGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 61

Vertex
 Use Case name:
 CreateGeneric

 Category: Use Case View
 Documentation:
 Generic use case for the creation of an element in
 VRES/Vertex. It is a very general and abstract use
 case that should capture the general operations that
 are relevant to the creation of an element in
 VRES/Vertex.

 Flow of events
 A- Preconditions
 The VRES/Vertex environment must be running and
 waiting for user input.
 B. Main flow of events
 The use case begins when the user wants to create a new
 element in VRES/Vertex. An element is a generic
 component of the system. See specific use cases for
 the enumeration of the elements.The user should input
 the "create element" command in the HMI in order to
 initiate the CreateGeneric use case.The VRES/Vertex
 environment then enters the mode for the creation of
 elements. The commands he can enter while in this mode
 depend on the element that is created. See specific
 use cases for a description of these commands.
 C. Subflows
 None
 D. Alternative flows
 a-The user should be able to exit the "create mode"
 without having to create anything if he wishes.
 b-The user should be able to use the undo command in
 the history of the manipulations for restoring the
 previous context he was in.

 External Documents:
 Abstract: No
 State machine: No

62 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.14 Abort Use Cases - Complete and Detailed

Description

These use cases are concerned with the abortion of interactions between
the user and the Vertex system

AbortModelCreation

AbortScenario
Creation

AbortSimulation

Creation

AbortDemoCreation

AbortVisualisation
Creation

ABortPlanCreation
AbortWorkSession

Creation

AbortBehavior
Creation

User

AbortGeneric

<<extends>><<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>><<extends>>

<<extends>>

<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 63

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

64 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AbortModelCreation

 Category: Use Case View
 Documentation:
 This use case is concerned with the task of cancelling
 the creation of a model in the CreateModel use case.
 A model is taken in a very general sense and is
 inherited by mode specific use cases for the creation
 of different models associated with different
 components of VRES/Vertex. For instance a model can
 be a geometric model (e.g. triangulation) that is
 built from raw 3D data.

 Flow of events
 A- Preconditions
 The use case for creating a model must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 model. This aborts the command that initiated the
 CreateModel use case and return the user to the HMI.
 The model will not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 model and should return to where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 65

Vertex
 Use Case name:
 AbortScenarioCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the operations of the
 creation of a scenario in the CreateScenario use case.

 Flow of events
 A- Preconditions
 The use case for creating a scenario must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 scenario. This aborts the commands that initiated the
 CreateScenario use case and return the user to the
 HMI. The scenario is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 scenario and should return to where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

66 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AbortSimulationCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the CreateSimulation
 use case.

 Flow of events
 A- Preconditions
 The use case for creating a simulation must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 simulation. This aborts the commands that initiated
 the CreateSimulation use case and return the user to
 the HMI. The simulation is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 simulation and should return where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 67

Vertex
 Use Case name:
 AbortDemoCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the CreateDemo use
 case.

 Flow of events
 A- Preconditions
 The use case for creating a demo must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 demo. This aborts the commands that initiated the
 CreateDemo use case and return the user to the HMI.
 The demo is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 demo and should return where he was prior to choosing
 the Abort command of the HMI.

 External Documents:

 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

68 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AbortVisualisationCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the Create
 Visualisation use case.

 Flow of events
 A- Preconditions
 The use case for creating a visualization must have
 been initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 visualization. This aborts the commands that initiated
 the CreateVisualization use case and return the user
 to the HMI. The visualization is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 visualization and should return where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 69

Vertex
 Use Case name:
 ABortPlanCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the CreatePlan use
 case.

 Flow of events
 A- Preconditions
 The use case for creating a plan must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 plan. This aborts the commands that initiated the
 CreatePlan use case and return the user to the HMI.
 The plan is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 plan and should return where he was prior to choosing
 the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

70 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AbortWorkSessionCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the CreateWorkSession
 use case.

 Flow of events
 A- Preconditions
 The use case for creating a session must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 session This aborts the commands that initiated the
 CreateWorkSession use case and return the user to the
 HMI. The Worksession is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 worksession and should return where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 71

Vertex
 Use Case name:
 AbortBehaviorCreation

 Category: Use Case View
 Documentation:
 This use case is for cancelling the CreateBehavior use
 case.

 Flow of events
 A- Preconditions
 The use case for creating a behavior must have been
 initiated.
 B- Main flow of events
 The user chooses the Abort command while creating a
 behavior. This aborts the commands that initiated the
 CreateBehavior use case and return the user to the
 HMI. The behavior is not be created.
 C- Subflows
 None
 D- Alternative flow
 The user may decide not to abort the creation of the
 behavior and should return where he was prior to
 choosing the Abort command of the HMI.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AbortGeneric (extends)

72 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AbortGeneric

 Category: Use Case View
 Documentation:
 Generic use case for aborting a task in VRES/Vertex.
 It is a very general and abstract use case that should
 capture the general operations that are relevant to
 aborting a task in VRES/Vertex.

 Flow of events
 A- Preconditions
 The VRES/Vertex environment must be running and
 waiting for user input.
 B. Main flow of events
 The use case begins when the user wants to abort a
 task he has begun without saving his work. A task is a
 generic task (see all other use cases) that is
 executed by the system. See specific use cases for the
 enumeration of the elements.The user should input the
 "abort" command in the HMI in order to initiate the
 AbortGeneric use case.The VRES/Vertex environment then
 enters the mode for the interruption of tasks without
 saving. The events that occur while aborting a task
 depend on the task at hand and is a subject that is
 discussed in the specific Abort use cases.
 C. Subflows
 None
 D. Alternative flows
 None

 External Documents:

IRIS Networks of Center of Excellence, Vertex Project 73

Vertex
4.15 Visualization Use Cases - Complete and Detailed

Description

These use cases deal with the visualization of elements in Vertex.

Visualize2DSequence

Visualize3DSequence

Visualize2DModel

Visualize3DModel

Visualize2DImage

Visualize3DImage

VisualizeScene

VisualizeObject

VisualizeSequence

<<extends>>

<<extends>>

VisualizeDataBase

VisualizePlan
VisualizeModel

<<extends>>

<<extends>>

VisualizeImage

<<extends>>

VisualizeDemo

VisualizeBehavior

<<extends>>
VisualizeGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

User

<<uses>>

74 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 75

Vertex
 Use Case name:
 Visualize2DSequence

 Category: Use Case View
 Documentation:
 Use case for the visualisation of a sequence of
 2DImages

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeSequence (extends)

76 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 Visualize3DSequence

 Category: Use Case View
 Documentation:
 Use case for the visualisation of a 3DImage

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeSequence (extends)

IRIS Networks of Center of Excellence, Vertex Project 77

Vertex
 Use Case name:
 Visualize2DModel

 Category: Use Case View
 Documentation:
 Use case for the visualization of a 2D model

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeModel (extends)

78 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 Visualize3DModel

 Category: Use Case View
 Documentation:
 Use case for the visualization of a 3D Model.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeModel (extends)

IRIS Networks of Center of Excellence, Vertex Project 79

Vertex
 Use Case name:
 Visualize2DImage

 Category: Use Case View
 Documentation:
 Use case for visualizing a 2D color image.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeImage (extends)

80 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 Visualize3DImage

 Category: Use Case View
 Documentation:
 Use case for the visualization of a 3D image

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeImage (extends)

IRIS Networks of Center of Excellence, Vertex Project 81

Vertex
 Use Case name:
 VisualizeScene

 Category: Use Case View
 Documentation:
 Use case for scene visualisation.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

82 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 VisualizeObject

 Category: Use Case View
 Documentation:
 Use case for visualising an object.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 83

Vertex
 Use Case name:
 VisualizeSequence

 Category: Use Case View
 Documentation:
 Generic use case for visualising a sequence of images.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

84 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 VisualizeDataBase

 Category: Use Case View
 Documentation:
 Use case for database visualization.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 85

Vertex
 Use Case name:
 VisualizePlan

 Category: Use Case View
 Documentation:
 Use case for the visualization of a plan.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

86 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 VisualizeModel

 Category: Use Case View
 Documentation:
 Generic use case for model visualization

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric

IRIS Networks of Center of Excellence, Vertex Project 87

Vertex
 Use Case name:
 VisualizeImage
 Category: Use Case View
 Documentation:
 Generic use case for image visualization

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric

88 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 VisualizeDemo

 Category: Use Case View
 Documentation:
 Use case for the visualization of a demo

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 89

Vertex
 Use Case name:
 VisualizeBehavior

 Category: Use Case View
 Documentation:
 This use case allows to visualize a behavior created
 by the CreateBehavior use case.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 VisualizeGeneric (extends)

90 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 VisualizeGeneric

 Category: Use Case View
 Documentation:
 Generic use case for visualizing elements in
 VRES/Vertex.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

IRIS Networks of Center of Excellence, Vertex Project 91

Vertex
4.16 Design Use Cases - Complete and Detailed

Description

These use cases are concerned with the design of elements in Vertex

DesignScenario

DesignModel

DesignScene

DesignSequence

DesignWorkSession

DesignBehavior

DesignPlan

DesignDemo

DesignSimulation

User
DesignGeneric

<<extends>>

<<extends>> <<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>><<uses>>

92 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 93

Vertex
 Use Case name:
 DesignScenario

 Category: Use Case View
 Documentation:
 This use case is for designing scenarios in
 VRES/Vertex.

 To be discussed with team.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyScenario in association <unnamed> (uses)

94 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DesignModel

 Category: Use Case View
 Documentation:
 This use case is for designing models in VRES/Vertex.

 In design mode, the user wants to use raw data in
 order to build models of the world into which a
 simulation intervention will take place.

 Feedback from Dion, Cote, Bernier, Houde, Poussart,
 Bergevin, Laurendeau, Ferrie, Simoneau, Borgeat,
 Vromet and Frey will be useful in this use case (as well as other team

 members

 Flow of events
 A- Preconditions
 The execution of the appropriate Create use case must
 have been executed prior the related Design use case.
 B- Main flow of events
 This use case begins when the user selects the Design
 mode in VRES/Vertex. The systems enters the Model
 Design mode and prompts the user for the model he
 wants to design. A list of "designable" models could
 be provided in a browsing window in order to assist
 the user in his choice, or the user could select a
 previously created model with the mouse. The user
 chooses a model. The system enters in the appropriate
 design mode for this model. The user performs the
 required design operations on the data and exits the
 design mode (he can save his work with the Save use
 cases). The operations in designing a model include:
 build geometric structure (for objects and tools), map
 texture on model, associate behavior with model,
 etc...To develop more deeply with team members as
 research progresses in each area. The use cases for
 each different type of operations in the design mode
 for models will have to be defined and documented when
 the research has reached more accurate results (under
 the form of prototypes).
 C- Subflows
 None
 D- Alternative flows
 The user should be allowed to exit the design mode if
 he changes his mind and return to the environment.

IRIS Networks of Center of Excellence, Vertex Project 95

Vertex
Use Case name:

 DesignScene

 Category: Use Case View
 Documentation:
 This use case is for designing a scene in VRES/Vertex.
 It is more relevant to VRES.

 Feedback from Dion, Cote, Bernier, Houde, Poussart,
 Bergevin, Laurendeau, Ferrie, Simoneau, Borgeat,
 Vromet and Frey will be useful in this use case.
 Flow of events
 A- Preconditions
 The execution of the appropriate Create use case must
 have been executed prior the related Design use case.
 Furthermore, since a scene is composed of several
 models (with associated behaviors), the
 Create/Design/Modify use cases for models and
 behaviors should have been executed previously.
 B- Main flow of events
 This use case begins when the user selects the Design
 mode in VRES/Vertex. The systems enters the Scene
 Design mode and prompts the user for the scene he
 wants to design. The user enters the name of the scene
 he wants to design. The system displays the set of
 elements that can compose a scene (list of models,
 behaviors, tools, etc) so the user can chose elements
 from these lists and associate them to include them in
 the scene. The user performs the required design
 operations on the data and exits the design mode (he
 can save his work with the Save use cases). The
 operations in designing a scene include: choose a
 geometic model and associate a behavior and position /
 orientation in the scene, choose tools and add them to
 models, etc...This DesignScene use case should be
 developed more deeply with team members as research
 progresses in each area. The use cases for each
 different type of operations in the design mode for
 scenes will have to be defined and documented when the
 research has reached more accurate results (under the
 form of prototypes).
 C- Subflows
 None
 D- Alternative flows
 The user should be allowed to exit the design mode if
 he changes his mind and return to the environment.

 External Documents:
 Abstract: No
 State machine: No

96 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyScene in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 97

Vertex
 Use Case name:
 DesignSequence

 Category: Use Case View
 Documentation:
 This use case is for designing a sequence in
 VRES/Vertex.
 To be discussed with team members. Feedback from
 Zaccarin and Mehran will be useful in this use case.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifySequence in association <unnamed> (uses)

98 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DesignWorkSession

 Category: Use Case View
 Documentation:
 Allows the user to design a work session in
 VRES/Vertex.

 To be discussed with team.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyWorkSession in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 99

Vertex
 Use Case name:
 DesignBehavior

 Category: Use Case View
 Documentation:
 Allows the user to design a behavior in VRES/Vertex.
 In design mode, the user wants to use available
 physical models stored in a database of behaviors in
 order to build complex composite behaviors that can be
 linked to geometric models. These models will then be
 included in a scene for running a simulation.

 Feedback from Frey and Laurendeau will be useful in
 this use case.

 Flow of events
 A- Preconditions
 The execution of the appropriate Create use case must
 have been executed prior the related Design use case.
 B- Main flow of events
 This use case begins when the user selects the Design
 mode in VRES/Vertex. The systems enters the Design
 Behavior mode and prompts the user for the behavior he
 wants to design. A list of available behaviors could
 be provided in a browsing window in order to assist
 the user in his choice. The user chooses behaviors in
 the list of available behaviors (stored in the
 database) and combines them into a mode complex
 behavior. He sets the different parameters for the
 complex behavior using the HMI. The system checks
 whether the chosen parameters are valid or not and
 verify that the behaviors that are coupled are
 compatible.When his work is completed, the user exits
 the design mode (he can save his work with the Save
 use cases). This use case should be developed more
 deeply with team members as research progresses in
 each area. The use cases for each different type of
 operations in the design mode for behaviors will have
 to be defined and documented when the research has
 reached more accurate results (under the form of
 prototypes).
 C- Subflows
 None
 D- Alternative flows
 The user should be allowed to exit the design mode if
 he changes his mind and return to the environment.

 External Documents:
 Abstract: No

100 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyBehavior in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 101

Vertex
 Use Case name:
 DesignPlan

 Category: Use Case View
 Documentation:
 This use case allows the user to design a plan in
 VRES/Vertex.

 To be discussed with team. Feedback from Montreuil
 will be useful.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyPlan in association <unnamed> (uses)

102 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DesignDemo

 Category: Use Case View
 Documentation:
 This use case allows the user to design a demo in
 VRES/Vertex.

 To be discussed with team.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)
 Associations:

 <no rolename> : ModifyDemo in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 103

Vertex
 Use Case name:
 DesignSimulation

 Category: Use Case View
 Documentation:
 This use case allows the user to design a simulation
 in VRES/Vertex.

 To be discussed with team.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DesignGeneric (extends)

104 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DesignGeneric

 Category: Use Case View
 Documentation:
 Generic use case for designing VRES/Vertex elements.
 In design mode, the user wants to use raw data in
 order to build components of the world into which a
 simulated intervention will take place. Most of the
 specific use cases in the Design category are still
 vague and need more interaction with team members in
 order to get a more precise description.They will be
 discussed and documented in the upcoming months

 Flow of events
 A- Preconditions
 The execution of the appropriate Create use case must
 have been executed prior the related Design use case.
 B- Main flow of events
 This use case begins when the user selects the Design
 mode in VRES/Vertex. The system enters the generic
 Design mode and prompts the user for the element he
 wants to design. A list of "designable" elements could
 be provided in a browsing window in order to assist
 the user in his choice. The user chooses an element.
 The system enters in the appropriate design mode for
 this element (design modes may be different for
 models, behaviors, etc. See corresponding use cases
 for the design of each element category). The user
 performs the required design operations on the data
 and exits the design mode (he can save his work with

 the Save use cases).
 C- Subflows
 None
 D- Alternative flows
 The user should be allowed to exit the design mode if
 he changes his mind and return to the environment.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses}

IRIS Networks of Center of Excellence, Vertex Project 105

Vertex
4.17 Modify Use Cases - Complete and Detailed

description

These use cases are concerned with the modification of elements that
were created-designed in Vertex

DesignModel

ModifyModel

<<uses>>
DesignScenario

ModifyScenario

<<uses>>

DesignScene

ModifyScene

<<uses>>

DesignSequence

ModifySequence

<<uses>>

DesignBehavior

ModifyBehavior

<<uses>>

DesignDemo

ModifyDemo <<uses>>

DesignPlan

ModifyPlan

<<uses>>

DesignWorkSession

ModifyWorkSession

<<uses>>

User ModifyGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

106 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 107

Vertex
 Use Case name:
 ModifyGeneric

 Category: Use Case View
 Documentation:
 Generic use case for modification of
 actions/operations in VRES/VERTEX.

 This use case is very general and should be used for
 modifying existing elements of the environment. See
 specific use cases for details on each different type
 of modification.

 Flow of events
 A- Preconditions
 In order to be modified, an element must have been
 created and designed. It can be loaded in the
 environment or may be stored in the appropriate
 database. If it is stored in the database, the element
 must be loaded into the environment before being
 modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Generic mode in the HMI. The element is brought into
 the environment and displayed on the screen. After
 this step, the remaining operations are the same as
 the ones that are encountered in the DesigGeneric use
 case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

108 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ModifyModel

 Category: Use Case View
 Documentation:
 Use case for modifying a model created / designed /
 saved by another use case.

 Flow of events

 A- Preconditions
 In order to be modified, a model must have been
 created and designed. It can be loaded in the
 environment or may be stored in the models database.
 If it is stored in the database, the model must be
 loaded into the environment before being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Model mode in the HMI. The model is brought into the
 environment and displayed on the screen. After this
 step, the remaining operations are the same as the
 ones that are encountered in the DesignModel use case.
 C- Subflows
 D- Alternative flows
 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignModel in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 109

Vertex
 Use Case name:
 ModifyScenario

 Category: Use Case View
 Documentation:
 Use case for modifying a scenario created by another
 use case.

 Flow of events

 A- Preconditions
 In order to be modified, a scenario must have been
 created and designed. It can be loaded in the
 environment or may be stored in the scenarios
 database. If it is stored in the database, the
 scenario must be loaded into the environment before
 being modified.
 B- Main flow of events
 To be discussed by team. Uses the DesignScenario use
 case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignScenario in association <unnamed> (uses)

110 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ModifyScene

 Category: Use Case View
 Documentation:
 Use case for modifying a scene created by another use
 case.

 Flow of events

 A- Preconditions
 In order to be modified, a scenbe must have been
 created and designed. It can be loaded in the
 environment or may be stored in the scenes database.
 If it is stored in the database, the scene must be
 loaded into the environment before being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Scene mode in the HMI. The scene is brought into the
 environment and displayed on the screen. After this
 step, the remaining operations are the same as the
 ones that are encountered in the DesignScene use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignScene in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 111

Vertex
 Use Case name:
 ModifySequence

 Category: Use Case View
 Documentation:
 Use case for modifying a sequence (see generic
 sequence generation use case) created by another use
 case.

 Flow of events

 A- Preconditions
 In order to be modified, a sequence must have been
 created and designed. It can be loaded in the
 environment or may be stored in the sequences
 database. If it is stored in the database, the
 sequence must be loaded into the environment before
 being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Sequence mode in the HMI. The sequence is brought into
 the environment and displayed on the screen. After
 this step, the remaining operations are the same as
 the ones that are encountered in the DesignSequence
 use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignSequence in association <unnamed> (uses)

112 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ModifyBehavior

 Category: Use Case View
 Documentation:
 Use case for modifying a behavior created by another
 use case.

 Flow of events

 A- Preconditions
 In order to be modified, a behavior must have been
 created and designed. It can be loaded in the
 environment or may be stored in the behaviors
 database. If it is stored in the database, the
 behavior must be loaded into the environment before
 being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Behavior mode in the HMI. The behavior is brought into
 the environment and displayed on the screen. After
 this step, the remaining operations are the same as
 the ones that are encountered in the DesignBehavior
 use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignBehavior in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 113

Vertex
 Use Case name:
 ModifyDemo

 Category: Use Case View
 Documentation:
 Use case for the modification of a demo created by
 another use case.

 To be discussed by team.

 Flow of events

 A- Preconditions
 In order to be modified, a Demo must have been created
 and designed. It can be loaded in the environment or
 may be stored in the demos database. If it is stored
 in the database, the demo must be loaded into the
 environment before being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Demo mode in the HMI. The demo is brought into the
 environment and displayed on the screen. After this
 step, the remaining operations are the same as the
 ones that are encountered in the DesignDemo use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignDemo in association <unnamed> (uses)

114 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ModifyPlan

 Category: Use Case View
 Documentation:
 Use case for the modification of a plan created by
 another use case.

 Flow of events

 A- Preconditions
 In order to be modified, a plan must have been created
 and designed. It can be loaded in the environment or
 may be stored in the plans database. If it is stored
 in the database, the plan must be loaded into the
 environment before being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 Plan mode in the HMI. The plan is brought into the
 environment and displayed on the screen. After this
 step, the remaining operations are the same as the
 ones that are encountered in the DesignPlan use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignPlan in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 115

Vertex
 Use Case name:
 ModifyWorkSession

 Category: Use Case View
 Documentation:
 Use case for the modification of a work session
 created by another use case.

 To be discussed by team.

 Flow of events

 A- Preconditions
 In order to be modified, a WorkSession must have been
 created and designed. It can be loaded in the
 environment or may be stored in the Worksession of the
 user. If it is stored in the user's account the
 worksession must be loaded into the environment before
 being modified.
 B- Main Flow of events
 This use case begins when the user selects the Modify
 WorkSession mode in the HMI. The Worksession is
 brought into the environment and displayed on the
 screen. After this step, the remaining operations are
 the same as the ones that are encountered in the Design
 WorkSession use case.
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 ModifyGeneric (extends)
 Associations:

 <no rolename> : DesignWorkSession in

association <unnamed> (uses)

116 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.18 Save Use Cases - Complete and Detailed

Description

These use cases deal with the action of saving work performedduring a
Vertex Session.

SaveScenario

SaveModel

SaveSequence

SaveBehavior

SaveDemo

SavePlan

SaveWorkSession

User

SaveGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 117

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

118 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 SaveScenario

 Category: Use Case View
 Documentation:
 Use case for saving a scenario for further use.
 Flow of events
 A- Preconditions
 An scenario should reside in the VRES/Vertex
 environment before it can be saved into the scenario
 database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the scenario he wants to save and the
 database into which the scenario should be saved. A
 browsing window then displays all the available
 databases for saving the scenarios. A new database
 could be created (see the CreateDatabase use case).
 The user selects the database and scenario he wants to
 save. The scenario is saved by the system and informs
 the user that the scenario has been saved correctly.
 The systems checks whether a scenario with the same
 name is already saved in the database and asks the
 user to confirm that the scenario should be replaced
 by the current one.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the scenario
 he wished to save has been processed correctly.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 119

Vertex
 Use Case name:
 SaveModel

 Category: Use Case View
 Documentation:
 Use case for saving a model created/modified by
 another use case.

 Flow of events
 A- Preconditions
 An model should reside in the VRES/Vertex environment
 before it can be saved into the models database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the model he wants to save and the
 database into which the model should be saved. A
 browsing window then displays all the available
 databases for saving the models. A new database could
 be created (see the CreateDatabase use case). The user
 selects the database and model he wants to save. The
 model is saved by the system and informs the user that
 the model has been saved correctly. The systems checks
 whether a model with the same name is already saved in
 the database and asks the user to confirm that the
 model should be replaced by the current one.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the model he
 wished to save has been processed correctly.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

120 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 SaveSequence

 Category: Use Case View
 Documentation:
 Use case for saving a sequence created/modified by
 another use case.

 Flow of events
 A- Preconditions
 An sequence should reside in the VRES/Vertex
 environment before it can be saved into the sequence
 database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the sequence he wants to save and the
 database into which the sequence should be saved. A
 browsing window then displays all the available
 databases for saving the sequences A new database
 could be created (see the CreateDatabase use case).
 The user selects the database and sequence he wants to
 save. The sequence is saved by the system and informs
 the user that the sequence has been saved correctly.
 The systems checks whether a sequence with the same
 name is already saved in the database and asks the
 user to confirm that the sequence should be replaced
 by the current one.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the sequence
 he wished to save has been processed correctly.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 121

Vertex
 Use Case name:
 SaveBehavior

 Category: Use Case View
 Documentation:
 Use case for saving a behavior created/modified by
 another use case.

 Flow of events
 A- Preconditions
 A behavior should reside in the VRES/Vertex
 environment before it can be saved into the behavior
 database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the behavior he wants to save and the
 database into which the behavior should be saved. A
 browsing window then displays all the available
 databases for saving the behavior. A new database
 could be created (see the CreateDatabase use case).
 The user selects the database and behavior he wants to
 save. The behavior is saved by the system and informs
 the user that the behavior has been saved correctly.
 The systems checks whether a behavior with the same
 name is already saved in the database and asks the
 user to confirm that the behavior should be replaced
 by the current one.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the behavior
 he wished to save has been processed correctly.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

122 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 SaveDemo

 Category: Use Case View
 Documentation:
 Use case for saving a demo created/modified by another
 use case.

 Flow of events
 A- Preconditions
 B. Main flow of events
 C. Subflows
 D. Alternative flows

 External Documents:

 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 123

Vertex
 Use Case name:
 SavePlan

 Category: Use Case View
 Documentation:
 Use case for saving a plan created/modified by another
 use case.

 Flow of events
 A- Preconditions
 An plan should reside in the VRES/Vertex environment
 before it can be saved into the plan database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the plan he wants to save and the
 database into which the plan should be saved. A
 browsing window then displays all the available
 databases for saving the plans. A new database could
 be created (see the CreateDatabase use case). The user
 selects the database and plan he wants to save. The
 plan is saved by the system and informs the user that
 the plan has been saved correctly. The systems checks
 whether a plan with the same name is already saved in
 the database and asks the user to confirm that the
 plan should be replaced by the current one.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the plan he
 wished to save has been processed correctly.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

124 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 SaveWorkSession

 Category: Use Case View
 Documentation:
 Use case for saving a work session created/modified by
 another use case.
 Flow of events
 A- Preconditions
 B. Main flow of events
 C. Subflows
 D. Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 SaveGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 125

Vertex
 Use Case name:
 SaveGeneric

 Category: Use Case View
 Documentation:
 Generic use case for saving VRES/VERTEX elements.
 It is a very general and abstract use case that
 should capture the general operations that are
 relevant to the saving of an element into a
 VRES/Vertex database. The database the element is
 saved into depends on the specific use case that is
 considered.

 Flow of events
 A- Preconditions
 An element should reside in a the environment before
 it can be saved into a database.
 B. Main flow of events
 This use case begins when the user selects the save
 command in the VRES/Vertex menu. Following the
 activation of the save command, a menu should prompt
 the user for the name of the element he wants to save.
 A browsing window then displays the databases into
 which the element could be saved (a new database could
 also be created at this moment (see the CreateDatabase
 use case)) and a list of the elements that can be
 saved at this moment. The user selects one element or
 type the name of the element he wants to save in a
 text field and selects a database into which the
 elements should be saved. The element is saved by the
 system and informs the user that the element has been
 saved correctly (a message displayed in a pop-up
 window would provide enough feedback.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the element he
 wished to save is not available or that the name given
 in the text field is incorrect. It would be
 interesting to allow the user to select several
 elements simultaneously and to have been saved in
 sequence. In that case, it would be necessary to
 provide the means for associating several elements to
 several databases...(to develop later).

 External Documents:
 Abstract: No
 State machine: No
 Associations:

126 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 127

Vertex
4.19 Load Use Cases - Complete and Detailed

Description

These use cases are concerned with the action of loading previously
saved operations in Vertex.

LoadScenario

LoadModel

LoadSequence

LoadBehavior

LoadDemo

LoadPlan

LoadWorkSession

User LoadGeneric

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<uses>>

128 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 129

Vertex
 Use Case name:
 LoadScenario

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) scenario
 into VRES/VERTEX.

 Flow of events
 A- Preconditions
 An scenario should reside in a database before it can
 be loaded into the environment.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the scenario he
 wants to load into the environmen. A browsing window
 then displays all the available scenarios in the
 database. The user selects one scenario or type the
 name of the scenario he wants to load in a text field.
 The scenario is loaded by the system and informs the
 user that the scenario has been loaded correctly.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the scenario
 he wished to load is not available or that the name
 given in the text field is incorrect. At this time, it
 seems irrelevant to allow the user to load more than
 one scenario simultaneously.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

130 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 LoadModel

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) model into
 VRES/VERTEX.

 Flow of events
 A- Preconditions
 A model should reside in a database before it can be
 loaded into the environment.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the element he wants
 to load into the environment (type: model in this use
 case). A browsing window then displays all the
 available documents of this type in the database. The
 user selects one model or type the name of the model
 he wants to load in a text field. The model is loaded
 by the system and informs the user that the model has
 been loaded correctly. In the case of a model, a
 graphic rendering of the model would be an adequate
 feedback.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the model he
 wished to load is not available or that the name given
 in the text field is incorrect. It would be
 interesting to allow the user to select several models
 simultaneously and to have been loaded in sequence.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 131

Vertex
 Use Case name:
 LoadSequence

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) sequence
 into VRES/VERTEX. A sequence is a group of images (2d
 and/or 3D) that were acquired sequentially and that
 can be associated to a same trajectory of the
 acquisition sensor. The images in a sequence are
 usually in overlap.

 Flow of events
 A- Preconditions
 A sequence should reside in a database before it can
 be loaded into the environment.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the element he wants
 to load into the environment (type: a sequence in this
 use case). A browsing window then displays all the
 available documents of this type in the database. The
 user selects one sequence or type the name of the
 sequence he wants to load in a text field. The
 sequence is loaded by the system and informs the user
 that the element has been loaded correctly. A display
 of the images into the VRES/Vertex environment would
 be an adequate feedback.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the sequence
 he wished to load is not available or that the name
 given in the text field is incorrect. At this time, it
 does not seems necessary to have several sequences
 loaded simultaneously.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

132 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 LoadBehavior

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) behavior
 into VRES/VERTEX.

 Flow of events
 A- Preconditions
 A behavior should reside in a database before it can
 be loaded into the environment. Models should have
 been loaded in the environment since a behavior must
 be attached to a model.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the element he wants
 to load into the environment (type: a behavior in this
 use case). A browsing window then displays all the
 available documents of this type in the database. The
 user selects one behavior or type the name of the
 behavior he wants to load in a text field. The
 behavior is loaded by the system and informs the user
 that the behavior has been loaded correctly. The user
 then attach a behavior to a model previously loaded in
 the environment (see the LoadModel use case). The user
 is prompted if the association is invalid.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the behavior
 he wished to load is not available or that the name
 given in the text field is incorrect. At this time, it
 would be interesting if several behaviors could be
 loaded simultaneously and attached to models one after
 the other by prompting the user for an association
 between models and behaviors.
 Note: more than one behavior can be attached to a
 model: for instance, a mechanical behavior and a
 thermic behavior could be attached to the same
 geometric model.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 133

Vertex
 Use Case name:
 LoadDemo

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) demo into
 VRES/VERTEX.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

134 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 LoadPlan

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) plan into
 VRES/VERTEX.

 Flow of events
 A- Preconditions
 A plan should reside in a database before it can be
 loaded into the environment.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the element he wants
 to load into the environment (type: a plan in this use
 case). A browsing window then displays all the
 available documents of this type in the database. The
 user selects one plan or type the name of the plan he
 wants to load in a text field. The plan is loaded by
 the system and informs the user that the plan has been
 loaded correctly. The type of feedback that is
 provided to the user remains to be decided.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the plan he
 wished to load is not available or that the name given
 in the text field is incorrect. At this time, it does
 not seems necessary to have several plans loaded
 simultaneously.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 135

Vertex
 Use Case name:
 LoadWorkSession

 Category: Use Case View
 Documentation:
 Use case for loading a (previously saved) work session
 into VRES/VERTEX.

 Flow of events
 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 LoadGeneric (extends)

136 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 LoadGeneric

 Category: Use Case View
 Documentation:
 Generic use case for loading elements in VRES/VERTEX.
 It is a very general and abstract use case that
 should capture the general operations that are
 relevant to the loading of an element into the
 VRES/Vertex environment.

 Flow of events
 A- Preconditions
 An element should reside in a database before it can
 be loaded into the environment.
 B. Main flow of events
 This use case begins when the user selects the load
 command in the VRES/Vertex menu. Following the
 activation of the load command, a menu should prompt
 the user for the type and name of the element he wants
 to load into the environment (type: model, scenario,
 etc). A browsing window then displays all the
 available documents of this type in the database. The
 user selects one element or type the name of the
 element he wants to load in a text field. The element
 is loaded by the system and informs the user that the
 element has been loaded correctly.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the element he
 wished to load is not available or that the name given
 in the text field is incorrect. It would be
 interesting to allow the user to select several
 elements simultaneously and to have been loaded in
 sequence.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 137

Vertex
4.20 Delete Use Cases - Complete ande detailed

Description

These use cases are coincerned with the deletion of elements that were
previously created-designed-modified in Vertex.

DeleteScenario DeleteModel

DeleteSequence

DeleteBehavior

DeleteDemo
DeletePlan

DeleteWorkSession

User DeleteGeneric

<<extends>>

<<extends>>

<<extends>><<extends>>

<<extends>>

<<extends>>
<<extends>>

<<uses>>

138 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 139

Vertex
 Use Case name:
 DeleteScenario

 Category: Use Case View
 Documentation:
 Use case for deleting a scenario from VRES/VERTEX.
 The scenario is deleted from the current environment.
 A special use case describes the procedure for
 deleting a scenario from a database.

 Flow of events
 A- Preconditions
 A scenario should reside in a the environment before
 it can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, a menu should prompt
 the user for the name of the scenario he wants to
 delete (for the first phases of the project the
 environment should contain only one scenario). A
 browsing window then displays a list of the scenarios
 that can be deleted at this moment. The user selects
 one scenario or type the name of the scenario he wants
 to delete in a text field. The scenario is deleted by
 the system and informs the user that the scenario has
 been deleted correctly (a message displayed in a
 pop-up window would provide enough feedback.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the scenario
 he wished to delete is not available or that the name
 given in the text field is incorrect. It would be
 interesting to allow the user to select several
 scenarios (later in the project when several scenarios
 may be reside simultaneously in the environment)
 simultaneously and to have them deleted in sequence.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

140 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DeleteModel

 Category: Use Case View
 Documentation:
 Use case for deleting a model from VRES/VERTEX.

 The model is deleted from the current environment. A
 special use case describes the procedure for deleting
 a model from a database.

 Flow of events
 A- Preconditions
 A model should reside in the environment before it can
 be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, a menu should prompt
 the user for the name of the model he wants to delete
 or the user could point on a model that is currently
 being displayed in the work environement and then
 issue the delete command on this model. The model is
 deleted by the system and informs the user that the
 element has been deleted correctly (a message
 displayed in a pop-up window would provide enough
 feedback. The system should remove the link(s) between
 the model and its associated behaviors and refresh the
 display of the environment.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the model he
 wished to delete is not available or that the name
 given in the text field is incorrect (when the model
 is selected through a menu). It would be interesting
 to allow the user to select several models
 simultaneously and to have them deleted in sequence
 (still removing links with associated behaviors and
 performing a refresh on the display).

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 141

Vertex
 Use Case name:
 DeleteSequence

 Category: Use Case View
 Documentation:
 Use case for deleting a sequence from VRES/VERTEX.

 The sequence is deleted from the current environment.
 A special use case described the procedure for
 deleting a sequence from a database.

 Flow of events
 A- Preconditions
 A sequence should reside in a the environment before
 it can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, a menu should prompt
 the user for the name of the sequence he wants to
 delete. A browsing window then displays a list of
 sequences that can be deleted at this moment. The user
 selects one sequence or type the name of the sequence
 he wants to delete in a text field. The sequence is
 deleted by the system and informs the user that the
 sequence has been deleted correctly (a message
 displayed in a pop-up window would provide enough
 feedback).
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the sequence
 he wished to delete is not available or that the name
 given in the text field is incorrect. It would be
 interesting to allow the user to select several
 sequences simultaneously and to have them deleted.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

142 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DeleteBehavior

 Category: Use Case View
 Documentation:
 Use case for deleting a behavior from VRES/VERTEX.

 The behavior is deleted from the current environment.
 A special use case described the procedure for
 deleting a behavior from a database.

 Flow of events
 A- Preconditions
 A behavior should reside in the environment before it
 can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, a menu should prompt
 the user for the name of the behavior he wants to
 delete. A browsing window then displays a list of the
 behaviors that can be deleted at this moment. The user
 selects one behavior or type the name of the behavior
 he wants to delete in a text field. The behavior is
 deleted by the system and informs the user that the
 behavior has been deleted correctly (a message
 displayed in a pop-up window would provide enough
 feedback. The system should remove the link(s) between
 the behavior and its associated models and update the
 status of each model previously linked with this
 behavior.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the behavior
 he wished to delete is not available or that the name
 given in the text field is incorrect. It would be
 interesting to allow the user to select several
 behaviors simultaneously and to have them deleted in
 sequence (still removing links with associated models
 and updating the models previously linked with these
 behaviors.
 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 143

Vertex
 Use Case name:
 DeleteDemo

 Category: Use Case View
 Documentation:
 Use case for deleting a demo from VRES/VERTEX.

 Flow of events
 A- Preconditions
 B. Main flow of events
 C. Subflows
 D. Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

144 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DeletePlan

 Category: Use Case View
 Documentation:
 Use case for deleting a plan from VRES/VERTEX.

 The plan is deleted from the current environment. A
 special use case described the procedure for deleting
 a plan from a database.

 Flow of events
 A- Preconditions
 A plan should reside in a the environment before it
 can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, a menu should prompt
 the user for the name of the plan he wants to delete.
 A browsing window then displays a list of plans that
 can be deleted at this moment. The user selects one
 plan or type the name of the plan he wants to delete
 in a text field. The plan is deleted by the system and
 informs the user that the plan has been deleted
 correctly (a message displayed in a pop-up window
 would provide enough feedback).
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the plan he
 wished to delete is not available or that the name
 given in the text field is incorrect. It would be
 interesting to allow the user to select several plans
 simultaneously and to have them deleted.

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 145

Vertex
 Use Case name:
 DeleteWorkSession

 Category: Use Case View
 Documentation:
 Use case for deleting a work session from VRES/VERTEX.

 Flow of events
 A- Preconditions
 B. Main flow of events
 C. Subflows
 D. Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 DeleteGeneric (extends)

146 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 DeleteGeneric

 Category: Use Case View
 Documentation:
 Generic use case for deleting previously
 created/modified VRES/VERTEX elements.

 It is a very general and abstract use case that should
 capture the general operations that are relevant to
 the deletion of an element into a VRES/Vertex
 database. The element is deleted from the current
 environment. A special use case described the
 procedure for deleting an element from a database.

 Flow of events
 A- Preconditions
 An element should have been previously loaded in the
 environment before it can be deleted.
 B. Main flow of events
 This use case begins when the user selects the delete
 command in the VRES/Vertex menu. Following the
 activation of the delete command, the user selects
 (through the HMI) the element he wants to delete. A
 browsing window also displays a list of the elements
 that can be deleted at this moment. The user selects
 one element or type the name of the element he wants
 to delete. The element is deleted by the system and
 informs the user that the element has been deleted
 correctly.
 C. Subflows
 None
 D. Alternative flows
 The user is informed by the system that the element he
 wished to delete is not available or that the name
 given in a text field is incorrect (assuming the user
 can choose objects with the mouse or with menus and
 textfields). It would be interesting to allow the user
 to select several elements simultaneously and to have
 them deleted in sequence.

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 147

Vertex
4.21 Analyse Use Cases - Complete and Detailed

Description

These use cases are concerned with the analysis of asequence of
operations in Vertex.

AnalyseSimulation

AnalyseWorkSession

User

AnalyseGeneric

<<extends>>

<<extends>>

<<uses>>

148 IRIS Networks of Center of Excellence, Vertex Project

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

IRIS Networks of Center of Excellence, Vertex Project 149

Vertex
 Use Case name:
 AnalyseSimulation

 Category: Use Case View
 Documentation:
 Use case for analysing the results of a simulation in
 VRES/VERTEX.

 Flow of events

 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows
 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AnalyseGeneric (extends)

150 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 AnalyseWorkSession

 Category: Use Case View
 Documentation:
 Use case for the analysis/assessment of a work session
 in VRES/VERTEX.

 Flow of events

 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Generalization:
 AnalyseGeneric (extends)

IRIS Networks of Center of Excellence, Vertex Project 151

Vertex
 Use Case name:
 AnalyseGeneric

 Category: Use Case View
 Documentation:
 Use case for the analysis of actions/results/etc in
 VRES/VERTEX.
 To be defined...

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

152 IRIS Networks of Center of Excellence, Vertex Project

Vertex
4.22 Error Use Cases - Complete and Detailed

Descitption

These use cases are concerned with the processing of errors / exceptions
in the course of a Vertex manipulation.

ErrorProcess

User

<<uses>>

ErrorThrow<<uses>>

IRIS Networks of Center of Excellence, Vertex Project 153

Vertex
Class name:
 User

 Category: Use Case View
 Documentation:
 User of the VRES/Vertex system. The user can interact
 with the system during a simulation or a real-time run.

 We may have to refine our description of the user as
 the project evolves. To be more specific, the
 VRES/Vertex system may be used by several types of
 users: professionnal computer scientists,
 professionals in site maintenance, operators with
 little knowledge of computers...

 Stereotype: Actor
 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: none
 Associations:

 <no rolename> : CreateGeneric in association <unnamed> (uses)
 <no rolename> : AbortGeneric in association <unnamed> (uses)
 <no rolename> : VisualizeGeneric in association <unnamed> (uses)
 <no rolename> : DesignGeneric in association <unnamed> (uses)
 <no rolename> : ModifyGeneric in association <unnamed> (uses)
 <no rolename> : SaveGeneric in association <unnamed> (uses)
 <no rolename> : LoadGeneric in association <unnamed> (uses)
 <no rolename> : DeleteGeneric in association <unnamed> (uses)
 <no rolename> : AnalyseGeneric in association <unnamed> (uses)
 <no rolename> : ErrorProcess in association <unnamed> (uses)
 <no rolename> : ErrorThrow in association <unnamed> (uses)

 State machine: No
 Concurrency: Sequential
 Persistence: Transient

154 IRIS Networks of Center of Excellence, Vertex Project

Vertex
 Use Case name:
 ErrorProcess

 Category: Use Case View
 Documentation:
 Use case for the processing of an error that was
 previously thrown. The mechanism for error processing
 is still to be defined.

 Flow of events

 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows
 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

IRIS Networks of Center of Excellence, Vertex Project 155

Vertex
 Use Case name:
 ErrorThrow

 Category: Use Case View
 Documentation:
 Use case for throwing an error in VRES/VERTEX. We will
 have to define the classes for the hierarchy of errors
 that can occur in the different use cases.

 Flow of events

 A- Preconditions
 B- Main flow of events
 C- Subflows
 D- Alternative flows

 External Documents:
 Abstract: No
 State machine: No
 Associations:

 <no rolename> : User in association <unnamed> (uses)

156 IRIS Networks of Center of Excellence, Vertex Project

Vertex

IRIS Networks of Center of Excellence, Vertex Project 157

Vertex
CHAPTER 5 References

[1] G. Booch, “Object-Oriented Analysis and Design With Applica-
tions,” Addison-Wesley, 1994

158 IRIS Networks of Center of Excellence, Vertex Project

Vertex

