
A unified representation for interactive 3D modeling

Dragan Tubić, Patrick Hébert, Jean-Daniel Deschênes and Denis Laurendeau
Computer Vision and Systems Laboratory, University Laval, Québec, Canada

[tdragan,hebert,laurendeau]@gel.ulaval.ca

Abstract

Interactive 3D modeling is the process of building a 3D
model of an object or a scene in real-time while the 3D
(range) data is acquired. This is possible only if the compu-
tational complexity of all involved algorithms is linear with
respect to the amount of data. We propose a new frame-
work for 3D modeling where a complete modeling chain
meets with this requirement. The framework is based on
the use of vector fields as an implicit surface represen-
tation. Each modeling step, registration, surface recon-
struction, geometric fusion, compression and visualization
is solved and explained using the vector fields without any
intermediate representations. The proposed framework al-
lows model reconstruction from any type of 3D data, sur-
face patches, curves, unorganized sets of points or a combi-
nation of these.

1. Introduction
Three dimensional modeling from 3D (range) data is the

process of building a 3D model of a measured object. De-
pending on the type of 3D data (unorganized sets of points,
surface curves or surface patches) 3D modeling consists of
several steps: surface reconstruction [6, 10, 13] and/or ge-
ometric fusion1[3, 5, 8, 12, 14, 15], registration [1, 12, 14],
compression and visualization. Due to the computational
complexity, the model reconstruction and the acquisition
processes are usually performed separately.

Current trends in 3D modeling indicate that the next
challenge is building interactive 3D modeling systems,
where a model is reconstructed on-line, in real-time, dur-
ing the acquisition of data. A reconstructed model provides
a visual feedback to the user so that unobserved regions can
be readily identified and scanned. This greatly reduces re-
quired acquisition time especially in cultural heritage appli-
cations where the access to the artefacts is restrained. Also,
by providing the model, some errors such as scanner mis-
calibration, can be detected and corrected immediately in-

1Since the surface patches already represent a surface, building a model
from patches consists in removing redundant data and is usually referred
to as geometric fusion. Building a model from curves or unorganized sets
of points is referred to as surface reconstruction.

stead of returning to the site and repeating the acquisition.
Although interesting work has been published [2, 7, 9, 11]
there were no complete real-time modeling systems due to
the computational complexity with respect to the quantity of
measured data which can be as large as several billion 3D
points. To be able to handle the 3D data in real-time, each
step in an interactive modeling system has to be of linear
computational complexity. Until now this was not the case
and we believe that the solution for this problem is finding
an appropriate surface representation rather than developing
more sophisticated modeling algorithms.

The surface representation in 3D modeling is usually
not considered as a problem in its own right. In some ap-
proaches, polygonal meshes are used throughout the mod-
eling chain [12] which does not allow linear computational
complexity at each step. In others, a signed distance field is
used for surface reconstruction [6, 10] or geometric fusion
[3, 5] while polygonal meshes are used for registration and
for visualization, with notable exception of Masuda [8] who
uses signed distance fields for registration too. However,
this method is limited to model building from partial sur-
faces only, it is not of linear complexity (uses k-d trees) and
the final visualization is performed by extracting a polygo-
nal mesh. Using different representations results in a loss
of efficiency and unnecessary computational steps. Further-
more, this prevents generalization of the model reconstruc-
tion with respect to the type of 3D data.

As a solution for the above problems, we propose an im-
plicit surface representation as a vector field. In the fol-
lowing, a framework based on this representation is pre-
sented. Unlike existing methods, the proposed framework
enables the building of a complete modeling chain from sur-
face reconstruction to the final visualization using only vec-
tor fields as the surface representation. Furthermore, it will
be shown that the same representation provides linear com-
plexity in all modeling steps. Besides the complexity ad-
vantage, our approach simplifies surface reconstruction and
in some cases allows reconstruction not previously possi-
ble such as reconstruction from surface curves and unified
reconstruction from combined 3D data.

In our recent work [13, 14], we have presented algo-



Distance

-5 0 5
(voxels)

(a) (b)

Figure 1. Example of the vector field computed
on a regular grid. a) The values of the field
representthedirectionandthedistancetoward
the closest point on the surface. b) The norm
of the vector field is encoded as grey-levels
with associated directions toward the surface.

rithms for 3D modeling from range images and curves. In
this paper we present a new modeling framework where all
the modeling steps are solved using a single implicit repre-
sentation, vector fields, including reconstruction from unor-
ganized points, unified reconstruction from all types of data
as well as visualization. The principle of each modeling
step is explained as well as how to achieve linear computa-
tional complexity. The remainder of the paper is organized
as follows. Section 2 presents the proposed surface repre-
sentation. Surface reconstruction from the three types of 3D
data, as well as unified reconstruction, are detailed in Sec-
tions 3 and 4, followed by registration in Section 5. Com-
pression and visualization are presented in Sections 6 and
7, respectively.

2. Vector field surface representation

Explicit surfaces, such as triangulated meshes, are the
most commonly used surface representations for 3D mod-
eling and computer graphics. However, a major drawback
of explicit representations is their inappropriate organiza-
tion of the data, which makes it computationally expensive
to perform proximity operations such as the search for clos-
est points on the surface2. Remarkably, the search for clos-
est points is the corner stone of all modeling steps and it is
used in one form or another throughout the modeling chain.
For the purpose of interactive modeling, linear complexity
is an absolute requirement. Otherwise the modeling system
slows down as the amount of data increases, and eventually
comes to a halt. As we will show later, linear complexity
can be achieved by merely changing the representation of
the surface. Moreover, most of the modeling tasks can be

2Using a plain triangulated surface, the complexity of the single closest
point search is O(N) with respect to the number of points on the surface.
Using a specialized data structure, i.e. a different representation, such as
kd-trees, this complexity can be reduced to O(logN), but not to the mini-
mum O(1) which is required for interactive modeling.

greatly simplified and unnecessary computations (such as
the computation of k-d trees) can be avoided.

The proposed representation is an implicit surface repre-
sentation as a vector field. The vector field at each point in
3D space represents the direction and the distance toward
the closest point on the surface, as illustrated in Figure 1a.
The surface itself is represented as the zero set of the vec-
tor field norm. More formally, let a surface S be defined
as a differential map S : U ∈ R2 → R3. The vector field
f : V ⊂ R3 → R3 representing the surface S is defined as

f(p) = argmin
q∈S

‖p − q‖ − p (1)

and

V = {p ∈ R3 |p = c+‖f(p)‖n(c), c = argmin
q∈S

‖p − q‖}

where n(c) denotes the unit normal on the surface at point
c. The restriction on the set V prevents the field from being
computed in regions near the surface discontinuities, i.e. in
regions where the surface normal does not coincide with the
direction of the vector field (hatched region in Figure 5).

In order to reduce computation costs, the field is com-
puted on a regular lattice of points (voxels) and only in the
neighbourhood of the surface, i.e. at points that are closer
to the surface than a predefined constant distance ε > 0.
This neighbourhood is said to be enclosed by a volumetric
envelope. Being defined as the zero-crossing of the norm
(which occurs between neighbouring voxels), the surface
is adequately represented as long as ε is larger than the
voxel’s diagonal (the largest distance between two neigh-
bouring voxels). This representation can also be considered
as an augmented signed distance field where the direction
is added to the distance (see Figure 1b). It should also be
noted that, unlike scalar distance fields, the vector field at
each point defines exactly a point on the surface. This can
be used to improve surface extraction from the vector field.

3. Surface reconstruction

In the proposed framework, surface reconstruction
means building the vector field representation from mea-
sured 3D data. As shown in Figure 2a, to compute the vec-
tor field that represents a surface, a local orientation of the
surface has to be estimated, that is, tangent planes. The vec-
tor field is then computed relative to these tangent planes as
illustrated in Figure 2b.

A local estimate of the surface orientation has to be in-
ferred from relative positions of the measured 3D points.
The value of the vector field at a voxel is estimated us-
ing points in its neighbourhood, for example by fitting a
plane. However, if the 3D data consists of multiple views,
a small positioning error can cause an inaccurate estimate
of surface orientation. To circumvent this problem, another



n1

n2 n3

(a) (b)

Figure 2. Surface reconstruction from 3D data
a) The vector field cannot be built by pointing
vectors toward closest points. b) The surface
is reconstructed by locally estimating surface
orientation, i.e. tangent planes (whose nor-
mals are vectors ni in this example). The vec-
tor field is computed relative to those tangent
planes.

way to proceed is to use additional information that is con-
tained in the connectivity of points in curves and surfaces
patches. For triangulated surfaces, the orientation of the re-
constructed surface is estimated as an average of normals
at vertices in the neighbourhood of a voxel. The effect of
the registration error is then much smaller. Similarly, curve
tangents can be used to improve reconstruction and reduce
the effect of registration errors.

Another reason to use connectivity information in 3D
data (tangents or normals) is the ambiguity that leads to
completely wrong surface reconstruction. One example of
such an ambiguity is shown in Figure 3 where a single curve
is measured on a cylindrical object. By considering this
curve as an unorganized set of points, the reconstructed sur-
face will inevitably be a plane that contains the curve and
will be perpendicular to the real surface. The method pro-
posed in Section 3.3 for surface reconstruction from curves
eliminates this problem by using curve tangents.

In the following it is explained how to reconstruct the
surface (as the vector field) from unorganized sets of points,
curves, surface patches as well as how to combine these
three types of data. The additional information about sur-
face orientation, curve tangents and surface normals, are
exploited for improving the quality of reconstruction.

3.1. Surface reconstruction from partial views
(range images)

Partial views (surface patches or range images) are rep-
resented as a 2D grid, where each point represents the dis-
tance between the sensor and the object. Being in a regular
parametric grid, the points can be easily connected to their
immediate neighbours in order to construct a triangulated
surface patch. Since the initial data is already a surface,
model reconstruction is usually referred to as geometric fu-
sion, with the purpose of merging the sections of the surface
that are observed more than once.

Building the vector field from a single triangulated sur-
face is straightforward: each voxel within the volumetric
envelope contains the vector pointing to the closest point of

Figure 3. Considering all 3D data as unorga-
nizedsetsofpointsmightleadtowrongsurface
reconstruction. In this example, the surface
reconstructed from a measured curve (left) is a
plane perpendicular to the real surface (right).

the closest triangle. Although finding the closest triangles
for each voxel can be performed using brute-force search or
more efficient k-d trees, it is not of linear complexity. This
problem is solved by using the inverse approach where the
closest voxels are found for each triangle. For this purpose,
each triangle defines a so-called fundamental cell [13, 14]
which is the region influenced only by that triangle. The
shape of the cell can be computed and, therefore, the voxel
within the cell can be found. This way, the complexity is
linear with respect to the number of triangles.

3.2. Geometric fusion

In overlapping (volumetric) regions of input surfaces,
voxels can be influenced by two or more surfaces (see Fig-
ure 5). These voxels should contain the direction and dis-
tance toward the new surface which is the local average of
all nearby input surfaces. In our framework, the new value
of the field is the vector that is the most parallel to the vec-
tors of the individual fields, i.e. normal to the surfaces at
the closest points. This vector is a least squares estimate
obtained as follows. Let v be a voxel within the envelope of
N surfaces as in Figure 5, and let ci be the closest points on
each surface. The unit normal n, i.e. the opposite direction
of f(v) at v, is obtained as the eigenvector corresponding
to the largest eigenvalue of the covariance matrix:

C =

N∑

i=1

(v − ci)(v − ci)
T

‖(v − ci)‖
2

(2)

The distance to the reconstructed surface is obtained as
the average projection of the vectors v−ci on n. To be able
to update the field incrementally, matrix C is stored at each
voxel. Being a simple sum, matrix C can be updated for
each new surface without reconsidering already processed
surfaces. An example of geometric fusion and model re-
construction from partial views is shown in Figure 4.

3.3. Surface reconstruction from curves

Optical triangulation in conjunction with a projected
curvilinear light (laser) pattern is commonly used to build
3D scanners, and hand-held scanners in particular since the
mechanical part of the scanner is very light. These scanners



Initial range images Registered range images Reconstructed model.

Figure 4. Example of geometric fusion and registration.

v

c1 c2

f(v)

ε

Figure 5. Geometric fusion. The vector field
f(v) at point v within the envelope of multiple
surfaces is obtained as a least squares esti-
mate. The "average surface" is represented
as a dashed line. Volumetric envelopes are
shaded in gray. The field should not be com-
putedintheregions(hatchedarea)nearsurface
discontinuities.

produce curves measured on the surface of an object. To re-
construct the surface, the curves have been typically consid-
ered either as unorganized sets of points or constrained only
to the curves contained in parallel planes (profiles). Former
approaches result in a loss of quality as explained in Section
3. In the latter approach [5], the neighbouring profiles are
simply connected to form surface patches. To be able to do
so, the scanner has to be moved without abrupt changes of
the speed or the orientation which is very inconvenient, es-
pecially for hand-held scanners. Furthermore, surface pro-
files do not intersect, which implies that they cannot be reg-
istered in order to remove scanner positioning errors.

Surface reconstruction from curves is based on a funda-
mental theorem of differential geometry stating that the tan-
gents of all surface curves passing through a single point are
contained in the tangent plane at the same point. A corollary
of this theorem is that the tangent plane can be computed at
the intersection point of at least two curves if their tangents
are known and are not parallel. In the case of two curves,
the normal on the tangent plane is given as the vector prod-
uct of the two tangents.

Building the vector field from a set of arbitrary (but not
parallel) curves [13] is based on the same principle with
one notable difference, that is: the tangent planes are not

Figure6.Reconstructionfrommultiplecurves.
The normal is obtained as a least squares esti-
mate of the "most perpendicular" vector to the
tangents ti, i = 1, 2, 3, 4 at the closest points pi

of the four curves.

estimated only at the intersection points but also in their
neighbourhood. At each voxel v the vector field is com-
puted relative to the closest points ci to all curves i within
the envelope. The surface normal at the point closest to v is
obtained as the most perpendicular vector to the tangents ti

at the points ci, see Figure 6. More formally, the normal is
the eigenvector associated with the smallest eigenvector of
the covariance matrix

C =

N∑

i=1

tit
T

i . (3)

If the field is to be updated incrementally, this covariance
matrix is stored and updated at each voxel since it is a sim-
ple sum of covariance matrices of individual curves. In the
same manner as it was done for partial surfaces, there is no
need to search for closest points on curves for each voxel.
If the curves are represented as sets of line segments, then a
fundamental cell can be defined for each line segment [13].
Each line segment influences voxels in its cell thus result-
ing in linear complexity with respect to the number of points
contained in curves. An example of surface reconstruction
from curves is shown in Figure 7.



(a) (b)

Figure 7. Example of reconstruction from
curves. a) Input data. b) Reconstructed sur-
face.

(a) (b)

Figure 8. Example of reconstruction from an
unorganized set of points [6]. a) Input data. b)
Reconstructed surface.

3.4. Surface reconstruction from unorganized sets
of points

Surface reconstruction from unorganized sets of points
is very similar to the previous two cases. At each voxel,
a covariance matrix is built from all points that are within
ε > 0 from the voxel. As before, an envelope is defined for
each point, in this case a sphere. The covariance matrix is
obtained as follows:

C =
1

N

N∑

i=1

(ci − µ)(ci − µ)T =
1

N

N∑

i=1

cic
T

i − µµT (4)

where

µ =
1

N

N∑

i=1

ci (5)

is the centroid of closest points ci. Both µ and matrix C

can be computed incrementally as before. The normal is ob-
tained as the eigenvector associated with the smallest eigen-
value. An example of reconstruction from an unorganized
set of points (using data from [6]) is shown in Figure 8.

3.5. Reconstruction from parallel curves

As explained above, the proposed method can only han-
dle non-parallel curves, otherwise the covariance matrix

PSfrag replacements

µ

t1

t2

c1

c2

v

Figure 9. Reconstruction from parallel curves.
If the tangents (t1, t2) are parallel the covari-
ance matrix is not defined. Adding a nonparal-
lel component ci − µ to the covariance matrix
solves this problem.

would not have 3 non-zero eigenvalues and therefore the
normal on the surface is not defined. To handle parallel
curves, one can simply combine the reconstruction from the
unorganized points and from curves by adding components
that are not parallel to the curve tangents (but still tangent to
the surface) to the covariance matrix defined in Eq. 3 (see
Figure 9). These components are vectors ci − µ in Eq. 5.

As explained in Section 3, it is advantageous to use
an orientation estimate from the connectivity of points in
curves rather than from relative positions of curves. There-
fore, the method in section 3.3 should be preferred for mod-
eling unless the curves are parallel.

4. Unified reconstruction

The common ground of the reconstruction approach for
the three types of 3D data is the use of covariance matri-
ces. The only difference is the use of the largest eigenvalue
for surface patches instead of the smallest as for curves and
unorganized points. However, when computing the covari-
ance matrix for a surface patch, the normal (vector v − ci

in Eq. 2) can be used to compute two surface tangents us-
ing Gram-Schmidt orthogonalization, for instance, and the
covariance matrix can be built using the two tangents in ex-
actly the same manner as it was done for surface curves.
That way the computation of the vector field is exactly the
same for all types of data. This opens a new avenue for sur-
face reconstruction from combined data. For example an
initial model could be built using surface patches and then
updated using curvilinear data (fixed scanner for patches,
hand-held for curves).

5. Registration

When acquiring 3D data from multiple views, either the
sensor or the object has to be moved. In order to merge the
data from multiple views, the position of the object and/or
the sensor has to be known in a single reference frame.



Since positioning devices cannot be made perfect, some
registration error is inevitably introduced. This means that
the data collected from multiple viewpoints is not perfectly
aligned. This problem has been traditionally solved using
a pose refinement (registration) algorithm usually based on
the Iterated Closest Points (ICP) algorithm. ICP assumes
that the data is already close to the exact position, which is
suitable for this type of problem.

The registration using an ICP based principle requires
finding correspondences (closest points) between the model
and a rigid point set to be registered. Once correspondences
are found, a rigid transformation aligning the two sets can
easily be computed. The most computationally expensive
step of this operation is finding closest points, which has
O(NM) complexity (NlogM using k-d trees) with respect
to N , the number of points to be registered and M , the num-
ber of points in the model. Since vector fields explicitly en-
code closest points, this operation becomes trivial: for each
point to be matched, it is sufficient to find the closest voxel
and, using the vector field value at the voxel, to compute the
closest point on the model. Finding the closest voxel is also
trivial since the voxels are organized on a regular 3D grid.
This way, the computational complexity is linear, O(N),
and does not depend on the size of the model.

In general, regardless of the type of 3D data, registration
can be performed as follows: first, a model is reconstructed
from all available data and each rigid set of points (a curve, a
surface patch or a set of points) is registered to it. Then, the
model is recomputed and the data is again registered to the
model. The whole procedure is repeated until convergence.
Note that the model is initially distorted by registration er-
rors but registering data to it still improves their poses. As
the algorithm iterates, both model and pose of 3D data im-
prove. An example of registration is shown in Figure 4.

Clearly, in order to allow registration, the positioning er-
rors should be small enough so that the data that needs to
be registered falls within the envelope of the model. On
the other hand, increasing the size of the envelope increases
computational costs considerably. Section 6 explains how
to avoid additional computational cost for large registration
errors.

6. Compression

The main disadvantage of volumetric representations is
their large memory consumption when compared to the
explicit representations, for example triangulated surfaces.
Being computed on a regular grid, implicit representations
always require a large number of points (voxels) even if
the represented surface is a simple plane. For scalar dis-
tance fields, this is a problem usually solved by using com-
pression schemes such as octrees or run-length encoding
[3] to avoid the overhead due to the unoccupied voxels lo-
cated outside the envelope. However, the compression rate

(a) (b)

Figure 10. Principle of the compression of vec-
torfields. Inregionswherethesurfaceisplanar
or changes slowly (a), groups of voxels can be
removedandreplacedwithoutlossbyasmaller
number of voxels at lower resolution (b).

depends largely on the position and the orientation of the
surface within the volume. Moreover, these compression
schemes do not take into account the shape of the surface,
and thus even the representation of a single plane in the vol-
ume, may require a considerable amount of memory.

As explained above, values in the vector field represent
the direction and the distance to the closest points on the
surface. In other words, vector fields encode tangent planes
at the closest points on the surface. Therefore, if the surface
is a plane, all voxels actually encode exactly the same plane
and are therefore redundant. As shown in Figure 10, this
allows a group of voxels in a planar region to be replaced
with a smaller number of voxels at lower resolution. Recon-
struction of higher resolution voxels can be performed with-
out any loss since both lower and higher resolution voxels
encode the same plane. If the surface changes shape, then
the loss of information is inevitable, but the compression
is still possible by imposing a maximal error produced by
truncating higher level voxels. It should be noted that this
compression scheme depends very little on the surface ori-
entation or position.

Another useful property of the compression approach is
that it is a simple way to allow for larger registration errors
during the registration. As mentioned in section 5, the en-
velope should be large enough to accommodate registration
errors but, increasing the size of the envelope significantly
increases computational cost and should be avoided. This is
solved by using lower resolution voxels since the voxels at a
lower resolution level are twice as large and, consequently,
the acceptable registration errors can be twice as large. As
needed, the voxels at several levels below the highest reso-
lution can be used to accommodate even larger errors.

An example of a compressed surface is shown in Figure
13 where the compression rate is 98% relative to the oc-
tree representation (which is already a compressed volume).
The compression rate was 99.94% relative to the whole vol-
umetric grid, i.e. 512x512x512 voxels.



Figure 11. Ray-tracing the vector field. The
normal on the surface at the intersection of the
ray and the model is obtained from the vector
field. The algorithm traverses the volume to
reach the first voxel where the intersection of
the ray with the tangent plane (encoded in the
voxel) remains within voxel boundaries.

7. Visualization: ray-tracing the vector field

Although graphic hardware has advanced considerably
in recent years, the maximum complexity of the rendered
model is still limited. Once again, the reason is the use of
polygonal (triangulated) surfaces. When rendering a trian-
gulated surface, there is no simple way to decide which tri-
angles are visible and which are not. This leads to a compu-
tational complexity which depends directly on the number
of triangles. There is a number of techniques employed to
accelerate rendering of large models, for example progres-
sive meshes or octrees. Even though these techniques give
good results, there is also significant pre-processing and im-
plementation complexity involved while the complexity is
still not constant. In order to display models of arbitrary
size, the computational complexity has to be proportional
only to the number of pixels in the rendered image, i.e. the
complexity should be constant.

Since the vector fields encode the surface normal at
points on a regular grid, the ray-tracing of the vector field
is trivial. It is sufficient to traverse the volume using a vari-
ant of the Bresenham’s algorithm as shown in Figure 11.
The normal on the surface at the intersection of the ray and
the model can be obtained as the value of the vector field at
the voxel where the intersection of the ray with the tangent
plane (encoded in the voxel) remains within voxel bound-
aries. If the field is compressed, then the voxel used will
still be the first traversed voxel at highest resolution avail-
able that satisfies the above condition. Also, a variable level
of rendering details can be simply achieved by choosing the
appropriate level of the octree. By doing direct ray-tracing
of the vector field, the computational complexity depends
only on the resolution of the volume and the resolution of
the rendered image. In other words, it is constant with re-
spect to the size of the model. Examples of rendering for a

(a) (b)

(c) (d)

Figure 12. a) The real-time modeling system is
based on a hand-held sensor that projects a
laser crosshair pattern on the object. b) The
motion of a crosshair pattern in 3D space pro-
duces multiple intersecting curves used to in-
crementally build the model. The partially re-
constructed model is displayed in real-time by
ray-tracing the vector field. c) and d) Final
reconstructed model from two viewpoints.

compressed vector field are shown in Figures 12 and 13.
Being conceptually very simple, a complete ray-tracer

can be implemented in only 200 lines of C++ code. It
should also be noted that scalar (signed) distance fields can-
not be used in such a simple manner, since the surface nor-
mal cannot be estimated from a single voxel, but rather by
using locally a variant of marching cubes. In our implemen-
tation this approach was for an order of magnitude slower
than the direct ray-tracing of the vector field.

8. Implementation

The framework has been validated by constructing a
real-time modeling system based on a hand-held sensor.
The sensor measures two curves at a time by projecting a
crosshair laser pattern on the surface of the object and re-
constructs the two curves in 3D using optical triangulation
(Figure 12a). The sensor displacement generates numerous
intersections between the set of crosshairs, thus allowing re-
construction as described in Section 3.3. The sensor is self-
referenced, that is, it computes its position and orientation
by observing reference points in the scene[4].

What distinguishes this modeling system from others is
its ability to incrementally reconstruct the model while dis-
playing it in real-time. This greatly facilitates the acqui-
sition since the user has a visual feedback. Currently, the
modeling system is efficient enough to perform image pro-



(a) (b) (c)
Figure 13. Example of ray tracing for a compressed vector field. (a) Rendering of the uncompressed
field. (b) Rendering of the compressed field, with a 98% compression rate. (c) Size of voxels used for
rendering; darker colour indicates larger voxels. Since the flat regions contain less information, they
are represented with larger voxels and thus compressed more.

cessing (detection and estimation of laser patterns), opti-
cal triangulation, sensor positioning, curve reconstruction,
model reconstruction and rendering (320×240) at 15fps on
a laptop PC (Pentium 4, 2.4 GHz). The octree has 9 levels.
As expected from a modeling system with linear complex-
ity, its performance does not degrade as the amount of data
increases. Regardless of the number of measured points the
system has a constant frame rate.

9. Conclusion

A novel framework based uniquely on vector field im-
plicit representation has been presented as a solution for 3D
modeling problems. When compared with existing meth-
ods, the proposed framework offers the possibility to im-
plement the whole modeling chain with linear complexity,
making the design of real-time acquisition and modeling
systems possible. Furthermore, the model can be built from
any type of 3D data in the same framework, including previ-
ously unconsidered surface curves. Although current work
concerns algorithm optimization, future work will focus on
the quality analysis of the recovered model (sampling and
resolution).

References

[1] P. Besl and N. McKay. A method for registration of
3-d shapes. IEEE Transactions PAMI, 14(2):239–256,
February 1992.

[2] F. Blais, M. Picard, and G. Godin. Recursive model
optimization using icp and free moving 3d data acqui-
sition. In Proceedings of 3DIM, pages 251–258, 2003.

[3] B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In SIG-
GRAPH ’96 Proceedings, pages 303–312, 1996.

[4] P. Hébert. A self-referenced hand-held range sensor.
In Proceedings of 3DIM, pages 5–11, May 2001.

[5] A. Hilton and J. Illingworth. Geometric fusion for a
hand-held 3d sensor. Machine vision and applications,
12:44–51, 2000.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. In SIGGRAPH ’92 Proceedings, volume 26,
pages 71–78, July 1992.

[7] T. Koninckx, A. Griesser, and L. Van Gool. Real-time
range scanning of deformable surfaces by adaptively
coded structured light. In Proceedings of 3DIM, pages
293–300, 2003.

[8] T. Masuda. Registration and integration of multiple
range images by matching signed distance fields for
object shape modeling. Comput. Vis. Image Underst.,
87(1/2/3):51–65, 2002.

[9] V. Popescu, E. Sacks, and G. Bahmutov. The model-
camera: a hand-held device for interactive modeling.
In Proceedings of 3DIM, pages 285–292, 2003.

[10] G. Roth and E. Wibowo. An efficient volumetric
method for building closed triangular meshes from 3-
d image and point data. In Graphics Interface, pages
173–180, May 1997.

[11] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-
time 3d model acquisition. In proceedings of SIG-
GRAPH 2002, 2002.

[12] M. Soucy and D. Laurendeau. A general surface ap-
proach to the integration of a set of range views. IEEE
Transactions PAMI, 17(4):344–358, 1995.

[13] D. Tubić, P. Hébert, and D. Laurendeau. 3d surface
modeling from curves. In Proceedings of CVPR 2003,
pages 842–849, 2003.

[14] D. Tubić, P. Hébert, and D. Laurendeau. A volumetric
approach for interactive 3d modeling. Comput. Vis.
Image Underst., 92:56–77, 2003.

[15] G. Turk and M. Levoy. Zippered polygon meshes from
range images. SIGGRAPH ’94 Conference Proceed-
ings, 26:311–318, 1994.


